/* * board.c * * Board functions for TI AM335X based boards * * Copyright (C) 2011, Texas Instruments, Incorporated - http://www.ti.com/ * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../common/board_detect.h" #include "board.h" DECLARE_GLOBAL_DATA_PTR; /* GPIO that controls power to DDR on EVM-SK */ #define GPIO_TO_PIN(bank, gpio) (32 * (bank) + (gpio)) #define GPIO_DDR_VTT_EN GPIO_TO_PIN(0, 7) #define ICE_GPIO_DDR_VTT_EN GPIO_TO_PIN(0, 18) #define GPIO_PR1_MII_CTRL GPIO_TO_PIN(3, 4) #define GPIO_MUX_MII_CTRL GPIO_TO_PIN(3, 10) #define GPIO_FET_SWITCH_CTRL GPIO_TO_PIN(0, 7) #define GPIO_PHY_RESET GPIO_TO_PIN(2, 5) #define GPIO_ETH0_MODE GPIO_TO_PIN(0, 11) #define GPIO_ETH1_MODE GPIO_TO_PIN(1, 26) static struct ctrl_dev *cdev = (struct ctrl_dev *)CTRL_DEVICE_BASE; #define GPIO0_RISINGDETECT (AM33XX_GPIO0_BASE + OMAP_GPIO_RISINGDETECT) #define GPIO1_RISINGDETECT (AM33XX_GPIO1_BASE + OMAP_GPIO_RISINGDETECT) #define GPIO0_IRQSTATUS1 (AM33XX_GPIO0_BASE + OMAP_GPIO_IRQSTATUS1) #define GPIO1_IRQSTATUS1 (AM33XX_GPIO1_BASE + OMAP_GPIO_IRQSTATUS1) #define GPIO0_IRQSTATUSRAW (AM33XX_GPIO0_BASE + 0x024) #define GPIO1_IRQSTATUSRAW (AM33XX_GPIO1_BASE + 0x024) /* * Read header information from EEPROM into global structure. */ #ifdef CONFIG_TI_I2C_BOARD_DETECT void do_board_detect(void) { enable_i2c0_pin_mux(); i2c_init(CONFIG_SYS_OMAP24_I2C_SPEED, CONFIG_SYS_OMAP24_I2C_SLAVE); if (ti_i2c_eeprom_am_get(CONFIG_EEPROM_BUS_ADDRESS, CONFIG_EEPROM_CHIP_ADDRESS)) printf("ti_i2c_eeprom_init failed\n"); } #endif #ifndef CONFIG_DM_SERIAL struct serial_device *default_serial_console(void) { if (board_is_icev2()) return &eserial4_device; else return &eserial1_device; } #endif #ifndef CONFIG_SKIP_LOWLEVEL_INIT static const struct ddr_data ddr2_data = { .datardsratio0 = MT47H128M16RT25E_RD_DQS, .datafwsratio0 = MT47H128M16RT25E_PHY_FIFO_WE, .datawrsratio0 = MT47H128M16RT25E_PHY_WR_DATA, }; static const struct cmd_control ddr2_cmd_ctrl_data = { .cmd0csratio = MT47H128M16RT25E_RATIO, .cmd1csratio = MT47H128M16RT25E_RATIO, .cmd2csratio = MT47H128M16RT25E_RATIO, }; static const struct emif_regs ddr2_emif_reg_data = { .sdram_config = MT47H128M16RT25E_EMIF_SDCFG, .ref_ctrl = MT47H128M16RT25E_EMIF_SDREF, .sdram_tim1 = MT47H128M16RT25E_EMIF_TIM1, .sdram_tim2 = MT47H128M16RT25E_EMIF_TIM2, .sdram_tim3 = MT47H128M16RT25E_EMIF_TIM3, .emif_ddr_phy_ctlr_1 = MT47H128M16RT25E_EMIF_READ_LATENCY, }; static const struct emif_regs ddr2_evm_emif_reg_data = { .sdram_config = MT47H128M16RT25E_EMIF_SDCFG, .ref_ctrl = MT47H128M16RT25E_EMIF_SDREF, .sdram_tim1 = MT47H128M16RT25E_EMIF_TIM1, .sdram_tim2 = MT47H128M16RT25E_EMIF_TIM2, .sdram_tim3 = MT47H128M16RT25E_EMIF_TIM3, .ocp_config = EMIF_OCP_CONFIG_AM335X_EVM, .emif_ddr_phy_ctlr_1 = MT47H128M16RT25E_EMIF_READ_LATENCY, }; static const struct ddr_data ddr3_data = { .datardsratio0 = MT41J128MJT125_RD_DQS, .datawdsratio0 = MT41J128MJT125_WR_DQS, .datafwsratio0 = MT41J128MJT125_PHY_FIFO_WE, .datawrsratio0 = MT41J128MJT125_PHY_WR_DATA, }; static const struct ddr_data ddr3_beagleblack_data = { .datardsratio0 = MT41K256M16HA125E_RD_DQS, .datawdsratio0 = MT41K256M16HA125E_WR_DQS, .datafwsratio0 = MT41K256M16HA125E_PHY_FIFO_WE, .datawrsratio0 = MT41K256M16HA125E_PHY_WR_DATA, }; static const struct ddr_data ddr3_evm_data = { .datardsratio0 = MT41J512M8RH125_RD_DQS, .datawdsratio0 = MT41J512M8RH125_WR_DQS, .datafwsratio0 = MT41J512M8RH125_PHY_FIFO_WE, .datawrsratio0 = MT41J512M8RH125_PHY_WR_DATA, }; static const struct ddr_data ddr3_icev2_data = { .datardsratio0 = MT41J128MJT125_RD_DQS_400MHz, .datawdsratio0 = MT41J128MJT125_WR_DQS_400MHz, .datafwsratio0 = MT41J128MJT125_PHY_FIFO_WE_400MHz, .datawrsratio0 = MT41J128MJT125_PHY_WR_DATA_400MHz, }; static const struct cmd_control ddr3_cmd_ctrl_data = { .cmd0csratio = MT41J128MJT125_RATIO, .cmd0iclkout = MT41J128MJT125_INVERT_CLKOUT, .cmd1csratio = MT41J128MJT125_RATIO, .cmd1iclkout = MT41J128MJT125_INVERT_CLKOUT, .cmd2csratio = MT41J128MJT125_RATIO, .cmd2iclkout = MT41J128MJT125_INVERT_CLKOUT, }; static const struct cmd_control ddr3_beagleblack_cmd_ctrl_data = { .cmd0csratio = MT41K256M16HA125E_RATIO, .cmd0iclkout = MT41K256M16HA125E_INVERT_CLKOUT, .cmd1csratio = MT41K256M16HA125E_RATIO, .cmd1iclkout = MT41K256M16HA125E_INVERT_CLKOUT, .cmd2csratio = MT41K256M16HA125E_RATIO, .cmd2iclkout = MT41K256M16HA125E_INVERT_CLKOUT, }; static const struct cmd_control ddr3_evm_cmd_ctrl_data = { .cmd0csratio = MT41J512M8RH125_RATIO, .cmd0iclkout = MT41J512M8RH125_INVERT_CLKOUT, .cmd1csratio = MT41J512M8RH125_RATIO, .cmd1iclkout = MT41J512M8RH125_INVERT_CLKOUT, .cmd2csratio = MT41J512M8RH125_RATIO, .cmd2iclkout = MT41J512M8RH125_INVERT_CLKOUT, }; static const struct cmd_control ddr3_icev2_cmd_ctrl_data = { .cmd0csratio = MT41J128MJT125_RATIO_400MHz, .cmd0iclkout = MT41J128MJT125_INVERT_CLKOUT_400MHz, .cmd1csratio = MT41J128MJT125_RATIO_400MHz, .cmd1iclkout = MT41J128MJT125_INVERT_CLKOUT_400MHz, .cmd2csratio = MT41J128MJT125_RATIO_400MHz, .cmd2iclkout = MT41J128MJT125_INVERT_CLKOUT_400MHz, }; static struct emif_regs ddr3_emif_reg_data = { .sdram_config = MT41J128MJT125_EMIF_SDCFG, .ref_ctrl = MT41J128MJT125_EMIF_SDREF, .sdram_tim1 = MT41J128MJT125_EMIF_TIM1, .sdram_tim2 = MT41J128MJT125_EMIF_TIM2, .sdram_tim3 = MT41J128MJT125_EMIF_TIM3, .zq_config = MT41J128MJT125_ZQ_CFG, .emif_ddr_phy_ctlr_1 = MT41J128MJT125_EMIF_READ_LATENCY | PHY_EN_DYN_PWRDN, }; static struct emif_regs ddr3_beagleblack_emif_reg_data = { .sdram_config = MT41K256M16HA125E_EMIF_SDCFG, .ref_ctrl = MT41K256M16HA125E_EMIF_SDREF, .sdram_tim1 = MT41K256M16HA125E_EMIF_TIM1, .sdram_tim2 = MT41K256M16HA125E_EMIF_TIM2, .sdram_tim3 = MT41K256M16HA125E_EMIF_TIM3, .ocp_config = EMIF_OCP_CONFIG_BEAGLEBONE_BLACK, .zq_config = MT41K256M16HA125E_ZQ_CFG, .emif_ddr_phy_ctlr_1 = MT41K256M16HA125E_EMIF_READ_LATENCY, }; static struct emif_regs ddr3_evm_emif_reg_data = { .sdram_config = MT41J512M8RH125_EMIF_SDCFG, .ref_ctrl = MT41J512M8RH125_EMIF_SDREF, .sdram_tim1 = MT41J512M8RH125_EMIF_TIM1, .sdram_tim2 = MT41J512M8RH125_EMIF_TIM2, .sdram_tim3 = MT41J512M8RH125_EMIF_TIM3, .ocp_config = EMIF_OCP_CONFIG_AM335X_EVM, .zq_config = MT41J512M8RH125_ZQ_CFG, .emif_ddr_phy_ctlr_1 = MT41J512M8RH125_EMIF_READ_LATENCY | PHY_EN_DYN_PWRDN, }; static struct emif_regs ddr3_icev2_emif_reg_data = { .sdram_config = MT41J128MJT125_EMIF_SDCFG_400MHz, .ref_ctrl = MT41J128MJT125_EMIF_SDREF_400MHz, .sdram_tim1 = MT41J128MJT125_EMIF_TIM1_400MHz, .sdram_tim2 = MT41J128MJT125_EMIF_TIM2_400MHz, .sdram_tim3 = MT41J128MJT125_EMIF_TIM3_400MHz, .zq_config = MT41J128MJT125_ZQ_CFG_400MHz, .emif_ddr_phy_ctlr_1 = MT41J128MJT125_EMIF_READ_LATENCY_400MHz | PHY_EN_DYN_PWRDN, }; #ifdef CONFIG_SPL_OS_BOOT int spl_start_uboot(void) { /* break into full u-boot on 'c' */ if (serial_tstc() && serial_getc() == 'c') return 1; #ifdef CONFIG_SPL_ENV_SUPPORT env_init(); env_load(); if (env_get_yesno("boot_os") != 1) return 1; #endif return 0; } #endif const struct dpll_params *get_dpll_ddr_params(void) { int ind = get_sys_clk_index(); if (board_is_evm_sk()) return &dpll_ddr3_303MHz[ind]; else if (board_is_pb() || board_is_bone_lt() || board_is_icev2()) return &dpll_ddr3_400MHz[ind]; else if (board_is_evm_15_or_later()) return &dpll_ddr3_303MHz[ind]; else return &dpll_ddr2_266MHz[ind]; } static u8 bone_not_connected_to_ac_power(void) { if (board_is_bone()) { uchar pmic_status_reg; if (tps65217_reg_read(TPS65217_STATUS, &pmic_status_reg)) return 1; if (!(pmic_status_reg & TPS65217_PWR_SRC_AC_BITMASK)) { puts("No AC power, switching to default OPP\n"); return 1; } } return 0; } const struct dpll_params *get_dpll_mpu_params(void) { int ind = get_sys_clk_index(); int freq = am335x_get_efuse_mpu_max_freq(cdev); if (bone_not_connected_to_ac_power()) freq = MPUPLL_M_600; if (board_is_pb() || board_is_bone_lt()) freq = MPUPLL_M_1000; switch (freq) { case MPUPLL_M_1000: return &dpll_mpu_opp[ind][5]; case MPUPLL_M_800: return &dpll_mpu_opp[ind][4]; case MPUPLL_M_720: return &dpll_mpu_opp[ind][3]; case MPUPLL_M_600: return &dpll_mpu_opp[ind][2]; case MPUPLL_M_500: return &dpll_mpu_opp100; case MPUPLL_M_300: return &dpll_mpu_opp[ind][0]; } return &dpll_mpu_opp[ind][0]; } static void scale_vcores_bone(int freq) { int usb_cur_lim, mpu_vdd; /* * Only perform PMIC configurations if board rev > A1 * on Beaglebone White */ if (board_is_bone() && !strncmp(board_ti_get_rev(), "00A1", 4)) return; if (i2c_probe(TPS65217_CHIP_PM)) return; /* * On Beaglebone White we need to ensure we have AC power * before increasing the frequency. */ if (bone_not_connected_to_ac_power()) freq = MPUPLL_M_600; /* * Override what we have detected since we know if we have * a Beaglebone Black it supports 1GHz. */ if (board_is_pb() || board_is_bone_lt()) freq = MPUPLL_M_1000; switch (freq) { case MPUPLL_M_1000: mpu_vdd = TPS65217_DCDC_VOLT_SEL_1325MV; usb_cur_lim = TPS65217_USB_INPUT_CUR_LIMIT_1800MA; break; case MPUPLL_M_800: mpu_vdd = TPS65217_DCDC_VOLT_SEL_1275MV; usb_cur_lim = TPS65217_USB_INPUT_CUR_LIMIT_1300MA; break; case MPUPLL_M_720: mpu_vdd = TPS65217_DCDC_VOLT_SEL_1200MV; usb_cur_lim = TPS65217_USB_INPUT_CUR_LIMIT_1300MA; break; case MPUPLL_M_600: case MPUPLL_M_500: case MPUPLL_M_300: default: mpu_vdd = TPS65217_DCDC_VOLT_SEL_1100MV; usb_cur_lim = TPS65217_USB_INPUT_CUR_LIMIT_1300MA; break; } if (tps65217_reg_write(TPS65217_PROT_LEVEL_NONE, TPS65217_POWER_PATH, usb_cur_lim, TPS65217_USB_INPUT_CUR_LIMIT_MASK)) puts("tps65217_reg_write failure\n"); /* Set DCDC3 (CORE) voltage to 1.10V */ if (tps65217_voltage_update(TPS65217_DEFDCDC3, TPS65217_DCDC_VOLT_SEL_1100MV)) { puts("tps65217_voltage_update failure\n"); return; } /* Set DCDC2 (MPU) voltage */ if (tps65217_voltage_update(TPS65217_DEFDCDC2, mpu_vdd)) { puts("tps65217_voltage_update failure\n"); return; } /* * Set LDO3, LDO4 output voltage to 3.3V for Beaglebone. * Set LDO3 to 1.8V and LDO4 to 3.3V for Beaglebone Black. */ if (board_is_bone()) { if (tps65217_reg_write(TPS65217_PROT_LEVEL_2, TPS65217_DEFLS1, TPS65217_LDO_VOLTAGE_OUT_3_3, TPS65217_LDO_MASK)) puts("tps65217_reg_write failure\n"); } else { if (tps65217_reg_write(TPS65217_PROT_LEVEL_2, TPS65217_DEFLS1, TPS65217_LDO_VOLTAGE_OUT_1_8, TPS65217_LDO_MASK)) puts("tps65217_reg_write failure\n"); } if (tps65217_reg_write(TPS65217_PROT_LEVEL_2, TPS65217_DEFLS2, TPS65217_LDO_VOLTAGE_OUT_3_3, TPS65217_LDO_MASK)) puts("tps65217_reg_write failure\n"); } void scale_vcores_generic(int freq) { int sil_rev, mpu_vdd; /* * The GP EVM, IDK and EVM SK use a TPS65910 PMIC. For all * MPU frequencies we support we use a CORE voltage of * 1.10V. For MPU voltage we need to switch based on * the frequency we are running at. */ if (i2c_probe(TPS65910_CTRL_I2C_ADDR)) return; /* * Depending on MPU clock and PG we will need a different * VDD to drive at that speed. */ sil_rev = readl(&cdev->deviceid) >> 28; mpu_vdd = am335x_get_tps65910_mpu_vdd(sil_rev, freq); /* Tell the TPS65910 to use i2c */ tps65910_set_i2c_control(); /* First update MPU voltage. */ if (tps65910_voltage_update(MPU, mpu_vdd)) return; /* Second, update the CORE voltage. */ if (tps65910_voltage_update(CORE, TPS65910_OP_REG_SEL_1_1_0)) return; } void gpi2c_init(void) { /* When needed to be invoked prior to BSS initialization */ static bool first_time = true; if (first_time) { enable_i2c0_pin_mux(); i2c_init(CONFIG_SYS_OMAP24_I2C_SPEED, CONFIG_SYS_OMAP24_I2C_SLAVE); first_time = false; } } void scale_vcores(void) { int freq; gpi2c_init(); freq = am335x_get_efuse_mpu_max_freq(cdev); if (board_is_beaglebonex()) scale_vcores_bone(freq); else scale_vcores_generic(freq); } void set_uart_mux_conf(void) { #if CONFIG_CONS_INDEX == 1 enable_uart0_pin_mux(); #elif CONFIG_CONS_INDEX == 2 enable_uart1_pin_mux(); #elif CONFIG_CONS_INDEX == 3 enable_uart2_pin_mux(); #elif CONFIG_CONS_INDEX == 4 enable_uart3_pin_mux(); #elif CONFIG_CONS_INDEX == 5 enable_uart4_pin_mux(); #elif CONFIG_CONS_INDEX == 6 enable_uart5_pin_mux(); #endif } void set_mux_conf_regs(void) { enable_board_pin_mux(); } const struct ctrl_ioregs ioregs_evmsk = { .cm0ioctl = MT41J128MJT125_IOCTRL_VALUE, .cm1ioctl = MT41J128MJT125_IOCTRL_VALUE, .cm2ioctl = MT41J128MJT125_IOCTRL_VALUE, .dt0ioctl = MT41J128MJT125_IOCTRL_VALUE, .dt1ioctl = MT41J128MJT125_IOCTRL_VALUE, }; const struct ctrl_ioregs ioregs_bonelt = { .cm0ioctl = MT41K256M16HA125E_IOCTRL_VALUE, .cm1ioctl = MT41K256M16HA125E_IOCTRL_VALUE, .cm2ioctl = MT41K256M16HA125E_IOCTRL_VALUE, .dt0ioctl = MT41K256M16HA125E_IOCTRL_VALUE, .dt1ioctl = MT41K256M16HA125E_IOCTRL_VALUE, }; const struct ctrl_ioregs ioregs_evm15 = { .cm0ioctl = MT41J512M8RH125_IOCTRL_VALUE, .cm1ioctl = MT41J512M8RH125_IOCTRL_VALUE, .cm2ioctl = MT41J512M8RH125_IOCTRL_VALUE, .dt0ioctl = MT41J512M8RH125_IOCTRL_VALUE, .dt1ioctl = MT41J512M8RH125_IOCTRL_VALUE, }; const struct ctrl_ioregs ioregs = { .cm0ioctl = MT47H128M16RT25E_IOCTRL_VALUE, .cm1ioctl = MT47H128M16RT25E_IOCTRL_VALUE, .cm2ioctl = MT47H128M16RT25E_IOCTRL_VALUE, .dt0ioctl = MT47H128M16RT25E_IOCTRL_VALUE, .dt1ioctl = MT47H128M16RT25E_IOCTRL_VALUE, }; void sdram_init(void) { if (board_is_evm_sk()) { /* * EVM SK 1.2A and later use gpio0_7 to enable DDR3. * This is safe enough to do on older revs. */ gpio_request(GPIO_DDR_VTT_EN, "ddr_vtt_en"); gpio_direction_output(GPIO_DDR_VTT_EN, 1); } if (board_is_icev2()) { gpio_request(ICE_GPIO_DDR_VTT_EN, "ddr_vtt_en"); gpio_direction_output(ICE_GPIO_DDR_VTT_EN, 1); } if (board_is_evm_sk()) config_ddr(303, &ioregs_evmsk, &ddr3_data, &ddr3_cmd_ctrl_data, &ddr3_emif_reg_data, 0); else if (board_is_pb() || board_is_bone_lt()) config_ddr(400, &ioregs_bonelt, &ddr3_beagleblack_data, &ddr3_beagleblack_cmd_ctrl_data, &ddr3_beagleblack_emif_reg_data, 0); else if (board_is_evm_15_or_later()) config_ddr(303, &ioregs_evm15, &ddr3_evm_data, &ddr3_evm_cmd_ctrl_data, &ddr3_evm_emif_reg_data, 0); else if (board_is_icev2()) config_ddr(400, &ioregs_evmsk, &ddr3_icev2_data, &ddr3_icev2_cmd_ctrl_data, &ddr3_icev2_emif_reg_data, 0); else if (board_is_gp_evm()) config_ddr(266, &ioregs, &ddr2_data, &ddr2_cmd_ctrl_data, &ddr2_evm_emif_reg_data, 0); else config_ddr(266, &ioregs, &ddr2_data, &ddr2_cmd_ctrl_data, &ddr2_emif_reg_data, 0); } #endif #if defined(CONFIG_CLOCK_SYNTHESIZER) && (!defined(CONFIG_SPL_BUILD) || \ (defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD))) static void request_and_set_gpio(int gpio, char *name, int val) { int ret; ret = gpio_request(gpio, name); if (ret < 0) { printf("%s: Unable to request %s\n", __func__, name); return; } ret = gpio_direction_output(gpio, 0); if (ret < 0) { printf("%s: Unable to set %s as output\n", __func__, name); goto err_free_gpio; } gpio_set_value(gpio, val); return; err_free_gpio: gpio_free(gpio); } #define REQUEST_AND_SET_GPIO(N) request_and_set_gpio(N, #N, 1); #define REQUEST_AND_CLR_GPIO(N) request_and_set_gpio(N, #N, 0); /** * RMII mode on ICEv2 board needs 50MHz clock. Given the clock * synthesizer With a capacitor of 18pF, and 25MHz input clock cycle * PLL1 gives an output of 100MHz. So, configuring the div2/3 as 2 to * give 50MHz output for Eth0 and 1. */ static struct clk_synth cdce913_data = { .id = 0x81, .capacitor = 0x90, .mux = 0x6d, .pdiv2 = 0x2, .pdiv3 = 0x2, }; #endif /* * Basic board specific setup. Pinmux has been handled already. */ int board_init(void) { #if defined(CONFIG_HW_WATCHDOG) hw_watchdog_init(); #endif gd->bd->bi_boot_params = CONFIG_SYS_SDRAM_BASE + 0x100; #if defined(CONFIG_NOR) || defined(CONFIG_NAND) gpmc_init(); #endif #if defined(CONFIG_CLOCK_SYNTHESIZER) && (!defined(CONFIG_SPL_BUILD) || \ (defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD))) if (board_is_icev2()) { int rv; u32 reg; REQUEST_AND_SET_GPIO(GPIO_PR1_MII_CTRL); /* Make J19 status available on GPIO1_26 */ REQUEST_AND_CLR_GPIO(GPIO_MUX_MII_CTRL); REQUEST_AND_SET_GPIO(GPIO_FET_SWITCH_CTRL); /* * Both ports can be set as RMII-CPSW or MII-PRU-ETH using * jumpers near the port. Read the jumper value and set * the pinmux, external mux and PHY clock accordingly. * As jumper line is overridden by PHY RX_DV pin immediately * after bootstrap (power-up/reset), we need to sample * it during PHY reset using GPIO rising edge detection. */ REQUEST_AND_SET_GPIO(GPIO_PHY_RESET); /* Enable rising edge IRQ on GPIO0_11 and GPIO 1_26 */ reg = readl(GPIO0_RISINGDETECT) | BIT(11); writel(reg, GPIO0_RISINGDETECT); reg = readl(GPIO1_RISINGDETECT) | BIT(26); writel(reg, GPIO1_RISINGDETECT); /* Reset PHYs to capture the Jumper setting */ gpio_set_value(GPIO_PHY_RESET, 0); udelay(2); /* PHY datasheet states 1uS min. */ gpio_set_value(GPIO_PHY_RESET, 1); reg = readl(GPIO0_IRQSTATUSRAW) & BIT(11); if (reg) { writel(reg, GPIO0_IRQSTATUS1); /* clear irq */ /* RMII mode */ printf("ETH0, CPSW\n"); } else { /* MII mode */ printf("ETH0, PRU\n"); cdce913_data.pdiv3 = 4; /* 25MHz PHY clk */ } reg = readl(GPIO1_IRQSTATUSRAW) & BIT(26); if (reg) { writel(reg, GPIO1_IRQSTATUS1); /* clear irq */ /* RMII mode */ printf("ETH1, CPSW\n"); gpio_set_value(GPIO_MUX_MII_CTRL, 1); } else { /* MII mode */ printf("ETH1, PRU\n"); cdce913_data.pdiv2 = 4; /* 25MHz PHY clk */ } /* disable rising edge IRQs */ reg = readl(GPIO0_RISINGDETECT) & ~BIT(11); writel(reg, GPIO0_RISINGDETECT); reg = readl(GPIO1_RISINGDETECT) & ~BIT(26); writel(reg, GPIO1_RISINGDETECT); rv = setup_clock_synthesizer(&cdce913_data); if (rv) { printf("Clock synthesizer setup failed %d\n", rv); return rv; } /* reset PHYs */ gpio_set_value(GPIO_PHY_RESET, 0); udelay(2); /* PHY datasheet states 1uS min. */ gpio_set_value(GPIO_PHY_RESET, 1); } #endif return 0; } #ifdef CONFIG_BOARD_LATE_INIT int board_late_init(void) { #if !defined(CONFIG_SPL_BUILD) uint8_t mac_addr[6]; uint32_t mac_hi, mac_lo; #endif #ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG char *name = NULL; if (board_is_bone_lt()) { /* BeagleBoard.org BeagleBone Black Wireless: */ if (!strncmp(board_ti_get_rev(), "BWA", 3)) { name = "BBBW"; } /* SeeedStudio BeagleBone Green Wireless */ if (!strncmp(board_ti_get_rev(), "GW1", 3)) { name = "BBGW"; } /* BeagleBoard.org BeagleBone Blue */ if (!strncmp(board_ti_get_rev(), "BLA", 3)) { name = "BBBL"; } } if (board_is_bbg1()) name = "BBG1"; set_board_info_env(name); /* * Default FIT boot on HS devices. Non FIT images are not allowed * on HS devices. */ if (get_device_type() == HS_DEVICE) env_set("boot_fit", "1"); #endif #if !defined(CONFIG_SPL_BUILD) /* try reading mac address from efuse */ mac_lo = readl(&cdev->macid0l); mac_hi = readl(&cdev->macid0h); mac_addr[0] = mac_hi & 0xFF; mac_addr[1] = (mac_hi & 0xFF00) >> 8; mac_addr[2] = (mac_hi & 0xFF0000) >> 16; mac_addr[3] = (mac_hi & 0xFF000000) >> 24; mac_addr[4] = mac_lo & 0xFF; mac_addr[5] = (mac_lo & 0xFF00) >> 8; if (!env_get("ethaddr")) { printf(" not set. Validating first E-fuse MAC\n"); if (is_valid_ethaddr(mac_addr)) eth_env_set_enetaddr("ethaddr", mac_addr); } mac_lo = readl(&cdev->macid1l); mac_hi = readl(&cdev->macid1h); mac_addr[0] = mac_hi & 0xFF; mac_addr[1] = (mac_hi & 0xFF00) >> 8; mac_addr[2] = (mac_hi & 0xFF0000) >> 16; mac_addr[3] = (mac_hi & 0xFF000000) >> 24; mac_addr[4] = mac_lo & 0xFF; mac_addr[5] = (mac_lo & 0xFF00) >> 8; if (!env_get("eth1addr")) { if (is_valid_ethaddr(mac_addr)) eth_env_set_enetaddr("eth1addr", mac_addr); } #endif if (!env_get("serial#")) { char *board_serial = env_get("board_serial"); char *ethaddr = env_get("ethaddr"); if (!board_serial || !strncmp(board_serial, "unknown", 7)) env_set("serial#", ethaddr); else env_set("serial#", board_serial); } return 0; } #endif #ifndef CONFIG_DM_ETH #if (defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_SPL_BUILD)) || \ (defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD)) static void cpsw_control(int enabled) { /* VTP can be added here */ return; } static struct cpsw_slave_data cpsw_slaves[] = { { .slave_reg_ofs = 0x208, .sliver_reg_ofs = 0xd80, .phy_addr = 0, }, { .slave_reg_ofs = 0x308, .sliver_reg_ofs = 0xdc0, .phy_addr = 1, }, }; static struct cpsw_platform_data cpsw_data = { .mdio_base = CPSW_MDIO_BASE, .cpsw_base = CPSW_BASE, .mdio_div = 0xff, .channels = 8, .cpdma_reg_ofs = 0x800, .slaves = 1, .slave_data = cpsw_slaves, .ale_reg_ofs = 0xd00, .ale_entries = 1024, .host_port_reg_ofs = 0x108, .hw_stats_reg_ofs = 0x900, .bd_ram_ofs = 0x2000, .mac_control = (1 << 5), .control = cpsw_control, .host_port_num = 0, .version = CPSW_CTRL_VERSION_2, }; #endif #if ((defined(CONFIG_SPL_ETH_SUPPORT) || defined(CONFIG_SPL_USB_ETHER)) &&\ defined(CONFIG_SPL_BUILD)) || \ ((defined(CONFIG_DRIVER_TI_CPSW) || \ defined(CONFIG_USB_ETHER) && defined(CONFIG_MUSB_GADGET)) && \ !defined(CONFIG_SPL_BUILD)) /* * This function will: * Read the eFuse for MAC addresses, and set ethaddr/eth1addr/usbnet_devaddr * in the environment * Perform fixups to the PHY present on certain boards. We only need this * function in: * - SPL with either CPSW or USB ethernet support * - Full U-Boot, with either CPSW or USB ethernet * Build in only these cases to avoid warnings about unused variables * when we build an SPL that has neither option but full U-Boot will. */ int board_eth_init(bd_t *bis) { int rv, n = 0; #if defined(CONFIG_USB_ETHER) && \ (!defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_USB_ETHER)) uint8_t mac_addr[6]; uint32_t mac_hi, mac_lo; /* * use efuse mac address for USB ethernet as we know that * both CPSW and USB ethernet will never be active at the same time */ mac_lo = readl(&cdev->macid0l); mac_hi = readl(&cdev->macid0h); mac_addr[0] = mac_hi & 0xFF; mac_addr[1] = (mac_hi & 0xFF00) >> 8; mac_addr[2] = (mac_hi & 0xFF0000) >> 16; mac_addr[3] = (mac_hi & 0xFF000000) >> 24; mac_addr[4] = mac_lo & 0xFF; mac_addr[5] = (mac_lo & 0xFF00) >> 8; #endif #if (defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_SPL_BUILD)) || \ (defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD)) #ifdef CONFIG_DRIVER_TI_CPSW if (board_is_bone() || board_is_bone_lt() || board_is_idk()) { writel(MII_MODE_ENABLE, &cdev->miisel); cpsw_slaves[0].phy_if = cpsw_slaves[1].phy_if = PHY_INTERFACE_MODE_MII; } else if (board_is_icev2()) { writel(RMII_MODE_ENABLE | RMII_CHIPCKL_ENABLE, &cdev->miisel); cpsw_slaves[0].phy_if = PHY_INTERFACE_MODE_RMII; cpsw_slaves[1].phy_if = PHY_INTERFACE_MODE_RMII; cpsw_slaves[0].phy_addr = 1; cpsw_slaves[1].phy_addr = 3; } else { writel((RGMII_MODE_ENABLE | RGMII_INT_DELAY), &cdev->miisel); cpsw_slaves[0].phy_if = cpsw_slaves[1].phy_if = PHY_INTERFACE_MODE_RGMII; } rv = cpsw_register(&cpsw_data); if (rv < 0) printf("Error %d registering CPSW switch\n", rv); else n += rv; #endif /* * * CPSW RGMII Internal Delay Mode is not supported in all PVT * operating points. So we must set the TX clock delay feature * in the AR8051 PHY. Since we only support a single ethernet * device in U-Boot, we only do this for the first instance. */ #define AR8051_PHY_DEBUG_ADDR_REG 0x1d #define AR8051_PHY_DEBUG_DATA_REG 0x1e #define AR8051_DEBUG_RGMII_CLK_DLY_REG 0x5 #define AR8051_RGMII_TX_CLK_DLY 0x100 if (board_is_evm_sk() || board_is_gp_evm()) { const char *devname; devname = miiphy_get_current_dev(); miiphy_write(devname, 0x0, AR8051_PHY_DEBUG_ADDR_REG, AR8051_DEBUG_RGMII_CLK_DLY_REG); miiphy_write(devname, 0x0, AR8051_PHY_DEBUG_DATA_REG, AR8051_RGMII_TX_CLK_DLY); } #endif #if defined(CONFIG_USB_ETHER) && \ (!defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_USB_ETHER)) if (is_valid_ethaddr(mac_addr)) eth_env_set_enetaddr("usbnet_devaddr", mac_addr); rv = usb_eth_initialize(bis); if (rv < 0) printf("Error %d registering USB_ETHER\n", rv); else n += rv; #endif return n; } #endif #endif /* CONFIG_DM_ETH */ #ifdef CONFIG_SPL_LOAD_FIT int board_fit_config_name_match(const char *name) { if (board_is_gp_evm() && !strcmp(name, "am335x-evm")) return 0; else if (board_is_bone() && !strcmp(name, "am335x-bone")) return 0; else if (board_is_bone_lt() && !strcmp(name, "am335x-boneblack")) return 0; else if (board_is_pb() && !strcmp(name, "am335x-pocketbeagle")) return 0; else if (board_is_evm_sk() && !strcmp(name, "am335x-evmsk")) return 0; else if (board_is_bbg1() && !strcmp(name, "am335x-bonegreen")) return 0; else if (board_is_icev2() && !strcmp(name, "am335x-icev2")) return 0; else return -1; } #endif #ifdef CONFIG_TI_SECURE_DEVICE void board_fit_image_post_process(void **p_image, size_t *p_size) { secure_boot_verify_image(p_image, p_size); } #endif #if !CONFIG_IS_ENABLED(OF_CONTROL) static const struct omap_hsmmc_plat am335x_mmc0_platdata = { .base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE, .cfg.host_caps = MMC_MODE_HS_52MHz | MMC_MODE_HS | MMC_MODE_4BIT, .cfg.f_min = 400000, .cfg.f_max = 52000000, .cfg.voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195, .cfg.b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT, }; U_BOOT_DEVICE(am335x_mmc0) = { .name = "omap_hsmmc", .platdata = &am335x_mmc0_platdata, }; static const struct omap_hsmmc_plat am335x_mmc1_platdata = { .base_addr = (struct hsmmc *)OMAP_HSMMC2_BASE, .cfg.host_caps = MMC_MODE_HS_52MHz | MMC_MODE_HS | MMC_MODE_8BIT, .cfg.f_min = 400000, .cfg.f_max = 52000000, .cfg.voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195, .cfg.b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT, }; U_BOOT_DEVICE(am335x_mmc1) = { .name = "omap_hsmmc", .platdata = &am335x_mmc1_platdata, }; #endif