/* * Functions to access the TSC2000 controller on TRAB board (used for scanning * thermo sensors) * * Copyright (C) 2003 Martin Krause, TQ-Systems GmbH, martin.krause@tqs.de * * Copyright (C) 2002 DENX Software Engineering, Wolfgang Denk, wd@denx.de * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include <common.h> #include <s3c2400.h> #include "tsc2000.h" #include "Pt1000_temp_data.h" void spi_init(void) { S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO(); S3C24X0_SPI * const spi = S3C24X0_GetBase_SPI(); int i; /* Configure I/O ports. */ gpio->PDCON = (gpio->PDCON & 0xF3FFFF) | 0x040000; gpio->PGCON = (gpio->PGCON & 0x0F3FFF) | 0x008000; gpio->PGCON = (gpio->PGCON & 0x0CFFFF) | 0x020000; gpio->PGCON = (gpio->PGCON & 0x03FFFF) | 0x080000; CLR_CS_TOUCH(); spi->ch[0].SPPRE = 0x1F; /* Baud-rate ca. 514kHz */ spi->ch[0].SPPIN = 0x01; /* SPI-MOSI holds Level after last bit */ spi->ch[0].SPCON = 0x1A; /* Polling, Prescaler, Master, CPOL=0, CPHA=1 */ /* Dummy byte ensures clock to be low. */ for (i = 0; i < 10; i++) { spi->ch[0].SPTDAT = 0xFF; } spi_wait_transmit_done(); } void spi_wait_transmit_done(void) { S3C24X0_SPI * const spi = S3C24X0_GetBase_SPI(); while (!(spi->ch[0].SPSTA & 0x01)); /* wait until transfer is done */ } void tsc2000_write(unsigned short reg, unsigned short data) { S3C24X0_SPI * const spi = S3C24X0_GetBase_SPI(); unsigned int command; SET_CS_TOUCH(); command = reg; spi->ch[0].SPTDAT = (command & 0xFF00) >> 8; spi_wait_transmit_done(); spi->ch[0].SPTDAT = (command & 0x00FF); spi_wait_transmit_done(); spi->ch[0].SPTDAT = (data & 0xFF00) >> 8; spi_wait_transmit_done(); spi->ch[0].SPTDAT = (data & 0x00FF); spi_wait_transmit_done(); CLR_CS_TOUCH(); } unsigned short tsc2000_read (unsigned short reg) { unsigned short command, data; S3C24X0_SPI * const spi = S3C24X0_GetBase_SPI(); SET_CS_TOUCH(); command = 0x8000 | reg; spi->ch[0].SPTDAT = (command & 0xFF00) >> 8; spi_wait_transmit_done(); spi->ch[0].SPTDAT = (command & 0x00FF); spi_wait_transmit_done(); spi->ch[0].SPTDAT = 0xFF; spi_wait_transmit_done(); data = spi->ch[0].SPRDAT; spi->ch[0].SPTDAT = 0xFF; spi_wait_transmit_done(); CLR_CS_TOUCH(); return (spi->ch[0].SPRDAT & 0x0FF) | (data << 8); } void tsc2000_set_mux (unsigned int channel) { S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO(); CLR_MUX1_ENABLE; CLR_MUX2_ENABLE; CLR_MUX3_ENABLE; CLR_MUX4_ENABLE; switch (channel) { case 0: CLR_MUX0; CLR_MUX1; SET_MUX1_ENABLE; break; case 1: SET_MUX0; CLR_MUX1; SET_MUX1_ENABLE; break; case 2: CLR_MUX0; SET_MUX1; SET_MUX1_ENABLE; break; case 3: SET_MUX0; SET_MUX1; SET_MUX1_ENABLE; break; case 4: CLR_MUX0; CLR_MUX1; SET_MUX2_ENABLE; break; case 5: SET_MUX0; CLR_MUX1; SET_MUX2_ENABLE; break; case 6: CLR_MUX0; SET_MUX1; SET_MUX2_ENABLE; break; case 7: SET_MUX0; SET_MUX1; SET_MUX2_ENABLE; break; case 8: CLR_MUX0; CLR_MUX1; SET_MUX3_ENABLE; break; case 9: SET_MUX0; CLR_MUX1; SET_MUX3_ENABLE; break; case 10: CLR_MUX0; SET_MUX1; SET_MUX3_ENABLE; break; case 11: SET_MUX0; SET_MUX1; SET_MUX3_ENABLE; break; case 12: CLR_MUX0; CLR_MUX1; SET_MUX4_ENABLE; break; case 13: SET_MUX0; CLR_MUX1; SET_MUX4_ENABLE; break; case 14: CLR_MUX0; SET_MUX1; SET_MUX4_ENABLE; break; case 15: SET_MUX0; SET_MUX1; SET_MUX4_ENABLE; break; default: CLR_MUX0; CLR_MUX1; } } void tsc2000_set_range (unsigned int range) { S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO(); switch (range) { case 1: CLR_SEL_TEMP_V_0; SET_SEL_TEMP_V_1; CLR_SEL_TEMP_V_2; CLR_SEL_TEMP_V_3; break; case 2: CLR_SEL_TEMP_V_0; CLR_SEL_TEMP_V_1; CLR_SEL_TEMP_V_2; SET_SEL_TEMP_V_3; break; case 3: SET_SEL_TEMP_V_0; CLR_SEL_TEMP_V_1; SET_SEL_TEMP_V_2; CLR_SEL_TEMP_V_3; break; } } u16 tsc2000_read_channel (unsigned int channel) { u16 res; tsc2000_set_mux(channel); udelay(3 * TSC2000_DELAY_BASE); tsc2000_write(TSC2000_REG_ADC, 0x2036); adc_wait_conversion_done (); res = tsc2000_read(TSC2000_REG_AUX1); return res; } s32 tsc2000_contact_temp (void) { long adc_pt1000, offset; long u_pt1000; long contact_temp; tsc2000_reg_init (); tsc2000_set_range (3); adc_pt1000 = tsc2000_read_channel (14); debug ("read channel 14 (pt1000 adc value): %ld\n", adc_pt1000); offset = tsc2000_read_channel (15); debug ("read channel 15 (offset): %ld\n", offset); /* * Formula for calculating voltage drop on PT1000 resistor: u_pt1000 = * x_range3 * (adc_raw - offset) / 10. Formula to calculate x_range3: * x_range3 = (2500 * (1000000 + err_vref + err_amp3)) / (4095*6). The * error correction Values err_vref and err_amp3 are assumed as 0 in * u-boot, because this could cause only a very small error (< 1%). */ u_pt1000 = (101750 * (adc_pt1000 - offset)) / 10; debug ("u_pt1000: %ld\n", u_pt1000); if (tsc2000_interpolate(u_pt1000, Pt1000_temp_table, &contact_temp) == -1) { printf ("%s: error interpolating PT1000 vlaue\n", __FUNCTION__); return (-1000); } debug ("contact_temp: %ld\n", contact_temp); return contact_temp; } void tsc2000_reg_init (void) { S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO(); tsc2000_write(TSC2000_REG_ADC, 0x2036); tsc2000_write(TSC2000_REG_REF, 0x0011); tsc2000_write(TSC2000_REG_DACCTL, 0x0000); CON_MUX0; CON_MUX1; CON_MUX1_ENABLE; CON_MUX2_ENABLE; CON_MUX3_ENABLE; CON_MUX4_ENABLE; CON_SEL_TEMP_V_0; CON_SEL_TEMP_V_1; CON_SEL_TEMP_V_2; CON_SEL_TEMP_V_3; tsc2000_set_mux(0); tsc2000_set_range(0); } int tsc2000_interpolate(long value, long data[][2], long *result) { int i; /* the data is sorted and the first element is upper * limit so we can easily check for out-of-band values */ if (data[0][0] < value || data[1][0] > value) return -1; i = 1; while (data[i][0] < value) i++; /* To prevent overflow we have to store the intermediate result in 'long long'. */ *result = data[i-1][1] + ((unsigned long long)(data[i][1] - data[i-1][1]) * (unsigned long long)(value - data[i-1][0])) / (data[i][0] - data[i-1][0]); return 0; } void adc_wait_conversion_done(void) { while (!(tsc2000_read(TSC2000_REG_ADC) & (1 << 14))); }