/* * (C) Copyright 2000-2009 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. * * SPDX-License-Identifier: GPL-2.0+ */ #ifndef USE_HOSTCC #include <common.h> #include <bootstage.h> #include <bzlib.h> #include <errno.h> #include <fdt_support.h> #include <lmb.h> #include <malloc.h> #include <mapmem.h> #include <asm/io.h> #include <linux/lzo.h> #include <lzma/LzmaTypes.h> #include <lzma/LzmaDec.h> #include <lzma/LzmaTools.h> #if defined(CONFIG_CMD_USB) #include <usb.h> #endif #else #include "mkimage.h" #endif #include <command.h> #include <bootm.h> #include <image.h> #ifndef CONFIG_SYS_BOOTM_LEN /* use 8MByte as default max gunzip size */ #define CONFIG_SYS_BOOTM_LEN 0x800000 #endif #define IH_INITRD_ARCH IH_ARCH_DEFAULT #ifndef USE_HOSTCC DECLARE_GLOBAL_DATA_PTR; bootm_headers_t images; /* pointers to os/initrd/fdt images */ static const void *boot_get_kernel(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[], bootm_headers_t *images, ulong *os_data, ulong *os_len); #ifdef CONFIG_LMB static void boot_start_lmb(bootm_headers_t *images) { ulong mem_start; phys_size_t mem_size; lmb_init(&images->lmb); mem_start = getenv_bootm_low(); mem_size = getenv_bootm_size(); lmb_add(&images->lmb, (phys_addr_t)mem_start, mem_size); arch_lmb_reserve(&images->lmb); board_lmb_reserve(&images->lmb); } #else #define lmb_reserve(lmb, base, size) static inline void boot_start_lmb(bootm_headers_t *images) { } #endif static int bootm_start(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { memset((void *)&images, 0, sizeof(images)); images.verify = getenv_yesno("verify"); boot_start_lmb(&images); bootstage_mark_name(BOOTSTAGE_ID_BOOTM_START, "bootm_start"); images.state = BOOTM_STATE_START; return 0; } static int bootm_find_os(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { const void *os_hdr; bool ep_found = false; int ret; /* get kernel image header, start address and length */ os_hdr = boot_get_kernel(cmdtp, flag, argc, argv, &images, &images.os.image_start, &images.os.image_len); if (images.os.image_len == 0) { puts("ERROR: can't get kernel image!\n"); return 1; } /* get image parameters */ switch (genimg_get_format(os_hdr)) { #if defined(CONFIG_IMAGE_FORMAT_LEGACY) case IMAGE_FORMAT_LEGACY: images.os.type = image_get_type(os_hdr); images.os.comp = image_get_comp(os_hdr); images.os.os = image_get_os(os_hdr); images.os.end = image_get_image_end(os_hdr); images.os.load = image_get_load(os_hdr); images.os.arch = image_get_arch(os_hdr); break; #endif #if IMAGE_ENABLE_FIT case IMAGE_FORMAT_FIT: if (fit_image_get_type(images.fit_hdr_os, images.fit_noffset_os, &images.os.type)) { puts("Can't get image type!\n"); bootstage_error(BOOTSTAGE_ID_FIT_TYPE); return 1; } if (fit_image_get_comp(images.fit_hdr_os, images.fit_noffset_os, &images.os.comp)) { puts("Can't get image compression!\n"); bootstage_error(BOOTSTAGE_ID_FIT_COMPRESSION); return 1; } if (fit_image_get_os(images.fit_hdr_os, images.fit_noffset_os, &images.os.os)) { puts("Can't get image OS!\n"); bootstage_error(BOOTSTAGE_ID_FIT_OS); return 1; } if (fit_image_get_arch(images.fit_hdr_os, images.fit_noffset_os, &images.os.arch)) { puts("Can't get image ARCH!\n"); return 1; } images.os.end = fit_get_end(images.fit_hdr_os); if (fit_image_get_load(images.fit_hdr_os, images.fit_noffset_os, &images.os.load)) { puts("Can't get image load address!\n"); bootstage_error(BOOTSTAGE_ID_FIT_LOADADDR); return 1; } break; #endif #ifdef CONFIG_ANDROID_BOOT_IMAGE case IMAGE_FORMAT_ANDROID: images.os.type = IH_TYPE_KERNEL; images.os.comp = IH_COMP_NONE; images.os.os = IH_OS_LINUX; images.os.end = android_image_get_end(os_hdr); images.os.load = android_image_get_kload(os_hdr); images.ep = images.os.load; ep_found = true; break; #endif default: puts("ERROR: unknown image format type!\n"); return 1; } /* If we have a valid setup.bin, we will use that for entry (x86) */ if (images.os.arch == IH_ARCH_I386 || images.os.arch == IH_ARCH_X86_64) { ulong len; ret = boot_get_setup(&images, IH_ARCH_I386, &images.ep, &len); if (ret < 0 && ret != -ENOENT) { puts("Could not find a valid setup.bin for x86\n"); return 1; } /* Kernel entry point is the setup.bin */ } else if (images.legacy_hdr_valid) { images.ep = image_get_ep(&images.legacy_hdr_os_copy); #if IMAGE_ENABLE_FIT } else if (images.fit_uname_os) { int ret; ret = fit_image_get_entry(images.fit_hdr_os, images.fit_noffset_os, &images.ep); if (ret) { puts("Can't get entry point property!\n"); return 1; } #endif } else if (!ep_found) { puts("Could not find kernel entry point!\n"); return 1; } if (images.os.type == IH_TYPE_KERNEL_NOLOAD) { images.os.load = images.os.image_start; images.ep += images.os.load; } images.os.start = map_to_sysmem(os_hdr); return 0; } /** * bootm_find_images - wrapper to find and locate various images * @flag: Ignored Argument * @argc: command argument count * @argv: command argument list * * boot_find_images() will attempt to load an available ramdisk, * flattened device tree, as well as specifically marked * "loadable" images (loadables are FIT only) * * Note: bootm_find_images will skip an image if it is not found * * @return: * 0, if all existing images were loaded correctly * 1, if an image is found but corrupted, or invalid */ int bootm_find_images(int flag, int argc, char * const argv[]) { int ret; /* find ramdisk */ ret = boot_get_ramdisk(argc, argv, &images, IH_INITRD_ARCH, &images.rd_start, &images.rd_end); if (ret) { puts("Ramdisk image is corrupt or invalid\n"); return 1; } #if IMAGE_ENABLE_OF_LIBFDT /* find flattened device tree */ ret = boot_get_fdt(flag, argc, argv, IH_ARCH_DEFAULT, &images, &images.ft_addr, &images.ft_len); if (ret) { puts("Could not find a valid device tree\n"); return 1; } set_working_fdt_addr((ulong)images.ft_addr); #endif #if IMAGE_ENABLE_FIT #if defined(CONFIG_FPGA) && defined(CONFIG_FPGA_XILINX) /* find bitstreams */ ret = boot_get_fpga(argc, argv, &images, IH_ARCH_DEFAULT, NULL, NULL); if (ret) { printf("FPGA image is corrupted or invalid\n"); return 1; } #endif /* find all of the loadables */ ret = boot_get_loadable(argc, argv, &images, IH_ARCH_DEFAULT, NULL, NULL); if (ret) { printf("Loadable(s) is corrupt or invalid\n"); return 1; } #endif return 0; } static int bootm_find_other(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { if (((images.os.type == IH_TYPE_KERNEL) || (images.os.type == IH_TYPE_KERNEL_NOLOAD) || (images.os.type == IH_TYPE_MULTI)) && (images.os.os == IH_OS_LINUX || images.os.os == IH_OS_VXWORKS)) return bootm_find_images(flag, argc, argv); return 0; } #endif /* USE_HOSTC */ /** * print_decomp_msg() - Print a suitable decompression/loading message * * @type: OS type (IH_OS_...) * @comp_type: Compression type being used (IH_COMP_...) * @is_xip: true if the load address matches the image start */ static void print_decomp_msg(int comp_type, int type, bool is_xip) { const char *name = genimg_get_type_name(type); if (comp_type == IH_COMP_NONE) printf(" %s %s ... ", is_xip ? "XIP" : "Loading", name); else printf(" Uncompressing %s ... ", name); } /** * handle_decomp_error() - display a decompression error * * This function tries to produce a useful message. In the case where the * uncompressed size is the same as the available space, we can assume that * the image is too large for the buffer. * * @comp_type: Compression type being used (IH_COMP_...) * @uncomp_size: Number of bytes uncompressed * @unc_len: Amount of space available for decompression * @ret: Error code to report * @return BOOTM_ERR_RESET, indicating that the board must be reset */ static int handle_decomp_error(int comp_type, size_t uncomp_size, size_t unc_len, int ret) { const char *name = genimg_get_comp_name(comp_type); if (uncomp_size >= unc_len) printf("Image too large: increase CONFIG_SYS_BOOTM_LEN\n"); else printf("%s: uncompress error %d\n", name, ret); /* * The decompression routines are now safe, so will not write beyond * their bounds. Probably it is not necessary to reset, but maintain * the current behaviour for now. */ printf("Must RESET board to recover\n"); #ifndef USE_HOSTCC bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE); #endif return BOOTM_ERR_RESET; } int bootm_decomp_image(int comp, ulong load, ulong image_start, int type, void *load_buf, void *image_buf, ulong image_len, uint unc_len, ulong *load_end) { int ret = 0; *load_end = load; print_decomp_msg(comp, type, load == image_start); /* * Load the image to the right place, decompressing if needed. After * this, image_len will be set to the number of uncompressed bytes * loaded, ret will be non-zero on error. */ switch (comp) { case IH_COMP_NONE: if (load == image_start) break; if (image_len <= unc_len) memmove_wd(load_buf, image_buf, image_len, CHUNKSZ); else ret = 1; break; #ifdef CONFIG_GZIP case IH_COMP_GZIP: { ret = gunzip(load_buf, unc_len, image_buf, &image_len); break; } #endif /* CONFIG_GZIP */ #ifdef CONFIG_BZIP2 case IH_COMP_BZIP2: { uint size = unc_len; /* * If we've got less than 4 MB of malloc() space, * use slower decompression algorithm which requires * at most 2300 KB of memory. */ ret = BZ2_bzBuffToBuffDecompress(load_buf, &size, image_buf, image_len, CONFIG_SYS_MALLOC_LEN < (4096 * 1024), 0); image_len = size; break; } #endif /* CONFIG_BZIP2 */ #ifdef CONFIG_LZMA case IH_COMP_LZMA: { SizeT lzma_len = unc_len; ret = lzmaBuffToBuffDecompress(load_buf, &lzma_len, image_buf, image_len); image_len = lzma_len; break; } #endif /* CONFIG_LZMA */ #ifdef CONFIG_LZO case IH_COMP_LZO: { size_t size = unc_len; ret = lzop_decompress(image_buf, image_len, load_buf, &size); image_len = size; break; } #endif /* CONFIG_LZO */ #ifdef CONFIG_LZ4 case IH_COMP_LZ4: { size_t size = unc_len; ret = ulz4fn(image_buf, image_len, load_buf, &size); image_len = size; break; } #endif /* CONFIG_LZ4 */ default: printf("Unimplemented compression type %d\n", comp); return BOOTM_ERR_UNIMPLEMENTED; } if (ret) return handle_decomp_error(comp, image_len, unc_len, ret); *load_end = load + image_len; puts("OK\n"); return 0; } #ifndef USE_HOSTCC static int bootm_load_os(bootm_headers_t *images, unsigned long *load_end, int boot_progress) { image_info_t os = images->os; ulong load = os.load; ulong blob_start = os.start; ulong blob_end = os.end; ulong image_start = os.image_start; ulong image_len = os.image_len; bool no_overlap; void *load_buf, *image_buf; int err; load_buf = map_sysmem(load, 0); image_buf = map_sysmem(os.image_start, image_len); err = bootm_decomp_image(os.comp, load, os.image_start, os.type, load_buf, image_buf, image_len, CONFIG_SYS_BOOTM_LEN, load_end); if (err) { bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE); return err; } flush_cache(load, ALIGN(*load_end - load, ARCH_DMA_MINALIGN)); debug(" kernel loaded at 0x%08lx, end = 0x%08lx\n", load, *load_end); bootstage_mark(BOOTSTAGE_ID_KERNEL_LOADED); no_overlap = (os.comp == IH_COMP_NONE && load == image_start); if (!no_overlap && (load < blob_end) && (*load_end > blob_start)) { debug("images.os.start = 0x%lX, images.os.end = 0x%lx\n", blob_start, blob_end); debug("images.os.load = 0x%lx, load_end = 0x%lx\n", load, *load_end); /* Check what type of image this is. */ if (images->legacy_hdr_valid) { if (image_get_type(&images->legacy_hdr_os_copy) == IH_TYPE_MULTI) puts("WARNING: legacy format multi component image overwritten\n"); return BOOTM_ERR_OVERLAP; } else { puts("ERROR: new format image overwritten - must RESET the board to recover\n"); bootstage_error(BOOTSTAGE_ID_OVERWRITTEN); return BOOTM_ERR_RESET; } } return 0; } /** * bootm_disable_interrupts() - Disable interrupts in preparation for load/boot * * @return interrupt flag (0 if interrupts were disabled, non-zero if they were * enabled) */ ulong bootm_disable_interrupts(void) { ulong iflag; /* * We have reached the point of no return: we are going to * overwrite all exception vector code, so we cannot easily * recover from any failures any more... */ iflag = disable_interrupts(); #ifdef CONFIG_NETCONSOLE /* Stop the ethernet stack if NetConsole could have left it up */ eth_halt(); # ifndef CONFIG_DM_ETH eth_unregister(eth_get_dev()); # endif #endif #if defined(CONFIG_CMD_USB) /* * turn off USB to prevent the host controller from writing to the * SDRAM while Linux is booting. This could happen (at least for OHCI * controller), because the HCCA (Host Controller Communication Area) * lies within the SDRAM and the host controller writes continously to * this area (as busmaster!). The HccaFrameNumber is for example * updated every 1 ms within the HCCA structure in SDRAM! For more * details see the OpenHCI specification. */ usb_stop(); #endif return iflag; } #if defined(CONFIG_SILENT_CONSOLE) && !defined(CONFIG_SILENT_U_BOOT_ONLY) #define CONSOLE_ARG "console=" #define CONSOLE_ARG_LEN (sizeof(CONSOLE_ARG) - 1) static void fixup_silent_linux(void) { char *buf; const char *env_val; char *cmdline = getenv("bootargs"); int want_silent; /* * Only fix cmdline when requested. The environment variable can be: * * no - we never fixup * yes - we always fixup * unset - we rely on the console silent flag */ want_silent = getenv_yesno("silent_linux"); if (want_silent == 0) return; else if (want_silent == -1 && !(gd->flags & GD_FLG_SILENT)) return; debug("before silent fix-up: %s\n", cmdline); if (cmdline && (cmdline[0] != '\0')) { char *start = strstr(cmdline, CONSOLE_ARG); /* Allocate space for maximum possible new command line */ buf = malloc(strlen(cmdline) + 1 + CONSOLE_ARG_LEN + 1); if (!buf) { debug("%s: out of memory\n", __func__); return; } if (start) { char *end = strchr(start, ' '); int num_start_bytes = start - cmdline + CONSOLE_ARG_LEN; strncpy(buf, cmdline, num_start_bytes); if (end) strcpy(buf + num_start_bytes, end); else buf[num_start_bytes] = '\0'; } else { sprintf(buf, "%s %s", cmdline, CONSOLE_ARG); } env_val = buf; } else { buf = NULL; env_val = CONSOLE_ARG; } setenv("bootargs", env_val); debug("after silent fix-up: %s\n", env_val); free(buf); } #endif /* CONFIG_SILENT_CONSOLE */ /** * Execute selected states of the bootm command. * * Note the arguments to this state must be the first argument, Any 'bootm' * or sub-command arguments must have already been taken. * * Note that if states contains more than one flag it MUST contain * BOOTM_STATE_START, since this handles and consumes the command line args. * * Also note that aside from boot_os_fn functions and bootm_load_os no other * functions we store the return value of in 'ret' may use a negative return * value, without special handling. * * @param cmdtp Pointer to bootm command table entry * @param flag Command flags (CMD_FLAG_...) * @param argc Number of subcommand arguments (0 = no arguments) * @param argv Arguments * @param states Mask containing states to run (BOOTM_STATE_...) * @param images Image header information * @param boot_progress 1 to show boot progress, 0 to not do this * @return 0 if ok, something else on error. Some errors will cause this * function to perform a reboot! If states contains BOOTM_STATE_OS_GO * then the intent is to boot an OS, so this function will not return * unless the image type is standalone. */ int do_bootm_states(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[], int states, bootm_headers_t *images, int boot_progress) { boot_os_fn *boot_fn; ulong iflag = 0; int ret = 0, need_boot_fn; images->state |= states; /* * Work through the states and see how far we get. We stop on * any error. */ if (states & BOOTM_STATE_START) ret = bootm_start(cmdtp, flag, argc, argv); if (!ret && (states & BOOTM_STATE_FINDOS)) ret = bootm_find_os(cmdtp, flag, argc, argv); if (!ret && (states & BOOTM_STATE_FINDOTHER)) ret = bootm_find_other(cmdtp, flag, argc, argv); /* Load the OS */ if (!ret && (states & BOOTM_STATE_LOADOS)) { ulong load_end; iflag = bootm_disable_interrupts(); ret = bootm_load_os(images, &load_end, 0); if (ret == 0) lmb_reserve(&images->lmb, images->os.load, (load_end - images->os.load)); else if (ret && ret != BOOTM_ERR_OVERLAP) goto err; else if (ret == BOOTM_ERR_OVERLAP) ret = 0; } /* Relocate the ramdisk */ #ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH if (!ret && (states & BOOTM_STATE_RAMDISK)) { ulong rd_len = images->rd_end - images->rd_start; ret = boot_ramdisk_high(&images->lmb, images->rd_start, rd_len, &images->initrd_start, &images->initrd_end); if (!ret) { setenv_hex("initrd_start", images->initrd_start); setenv_hex("initrd_end", images->initrd_end); } } #endif #if IMAGE_ENABLE_OF_LIBFDT && defined(CONFIG_LMB) if (!ret && (states & BOOTM_STATE_FDT)) { boot_fdt_add_mem_rsv_regions(&images->lmb, images->ft_addr); ret = boot_relocate_fdt(&images->lmb, &images->ft_addr, &images->ft_len); } #endif /* From now on, we need the OS boot function */ if (ret) return ret; boot_fn = bootm_os_get_boot_func(images->os.os); need_boot_fn = states & (BOOTM_STATE_OS_CMDLINE | BOOTM_STATE_OS_BD_T | BOOTM_STATE_OS_PREP | BOOTM_STATE_OS_FAKE_GO | BOOTM_STATE_OS_GO); if (boot_fn == NULL && need_boot_fn) { if (iflag) enable_interrupts(); printf("ERROR: booting os '%s' (%d) is not supported\n", genimg_get_os_name(images->os.os), images->os.os); bootstage_error(BOOTSTAGE_ID_CHECK_BOOT_OS); return 1; } /* Call various other states that are not generally used */ if (!ret && (states & BOOTM_STATE_OS_CMDLINE)) ret = boot_fn(BOOTM_STATE_OS_CMDLINE, argc, argv, images); if (!ret && (states & BOOTM_STATE_OS_BD_T)) ret = boot_fn(BOOTM_STATE_OS_BD_T, argc, argv, images); if (!ret && (states & BOOTM_STATE_OS_PREP)) { #if defined(CONFIG_SILENT_CONSOLE) && !defined(CONFIG_SILENT_U_BOOT_ONLY) if (images->os.os == IH_OS_LINUX) fixup_silent_linux(); #endif ret = boot_fn(BOOTM_STATE_OS_PREP, argc, argv, images); } #ifdef CONFIG_TRACE /* Pretend to run the OS, then run a user command */ if (!ret && (states & BOOTM_STATE_OS_FAKE_GO)) { char *cmd_list = getenv("fakegocmd"); ret = boot_selected_os(argc, argv, BOOTM_STATE_OS_FAKE_GO, images, boot_fn); if (!ret && cmd_list) ret = run_command_list(cmd_list, -1, flag); } #endif /* Check for unsupported subcommand. */ if (ret) { puts("subcommand not supported\n"); return ret; } /* Now run the OS! We hope this doesn't return */ if (!ret && (states & BOOTM_STATE_OS_GO)) ret = boot_selected_os(argc, argv, BOOTM_STATE_OS_GO, images, boot_fn); /* Deal with any fallout */ err: if (iflag) enable_interrupts(); if (ret == BOOTM_ERR_UNIMPLEMENTED) bootstage_error(BOOTSTAGE_ID_DECOMP_UNIMPL); else if (ret == BOOTM_ERR_RESET) do_reset(cmdtp, flag, argc, argv); return ret; } #if defined(CONFIG_IMAGE_FORMAT_LEGACY) /** * image_get_kernel - verify legacy format kernel image * @img_addr: in RAM address of the legacy format image to be verified * @verify: data CRC verification flag * * image_get_kernel() verifies legacy image integrity and returns pointer to * legacy image header if image verification was completed successfully. * * returns: * pointer to a legacy image header if valid image was found * otherwise return NULL */ static image_header_t *image_get_kernel(ulong img_addr, int verify) { image_header_t *hdr = (image_header_t *)img_addr; if (!image_check_magic(hdr)) { puts("Bad Magic Number\n"); bootstage_error(BOOTSTAGE_ID_CHECK_MAGIC); return NULL; } bootstage_mark(BOOTSTAGE_ID_CHECK_HEADER); if (!image_check_hcrc(hdr)) { puts("Bad Header Checksum\n"); bootstage_error(BOOTSTAGE_ID_CHECK_HEADER); return NULL; } bootstage_mark(BOOTSTAGE_ID_CHECK_CHECKSUM); image_print_contents(hdr); if (verify) { puts(" Verifying Checksum ... "); if (!image_check_dcrc(hdr)) { printf("Bad Data CRC\n"); bootstage_error(BOOTSTAGE_ID_CHECK_CHECKSUM); return NULL; } puts("OK\n"); } bootstage_mark(BOOTSTAGE_ID_CHECK_ARCH); if (!image_check_target_arch(hdr)) { printf("Unsupported Architecture 0x%x\n", image_get_arch(hdr)); bootstage_error(BOOTSTAGE_ID_CHECK_ARCH); return NULL; } return hdr; } #endif /** * boot_get_kernel - find kernel image * @os_data: pointer to a ulong variable, will hold os data start address * @os_len: pointer to a ulong variable, will hold os data length * * boot_get_kernel() tries to find a kernel image, verifies its integrity * and locates kernel data. * * returns: * pointer to image header if valid image was found, plus kernel start * address and length, otherwise NULL */ static const void *boot_get_kernel(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[], bootm_headers_t *images, ulong *os_data, ulong *os_len) { #if defined(CONFIG_IMAGE_FORMAT_LEGACY) image_header_t *hdr; #endif ulong img_addr; const void *buf; const char *fit_uname_config = NULL; const char *fit_uname_kernel = NULL; #if IMAGE_ENABLE_FIT int os_noffset; #endif img_addr = genimg_get_kernel_addr_fit(argc < 1 ? NULL : argv[0], &fit_uname_config, &fit_uname_kernel); bootstage_mark(BOOTSTAGE_ID_CHECK_MAGIC); /* copy from dataflash if needed */ img_addr = genimg_get_image(img_addr); /* check image type, for FIT images get FIT kernel node */ *os_data = *os_len = 0; buf = map_sysmem(img_addr, 0); switch (genimg_get_format(buf)) { #if defined(CONFIG_IMAGE_FORMAT_LEGACY) case IMAGE_FORMAT_LEGACY: printf("## Booting kernel from Legacy Image at %08lx ...\n", img_addr); hdr = image_get_kernel(img_addr, images->verify); if (!hdr) return NULL; bootstage_mark(BOOTSTAGE_ID_CHECK_IMAGETYPE); /* get os_data and os_len */ switch (image_get_type(hdr)) { case IH_TYPE_KERNEL: case IH_TYPE_KERNEL_NOLOAD: *os_data = image_get_data(hdr); *os_len = image_get_data_size(hdr); break; case IH_TYPE_MULTI: image_multi_getimg(hdr, 0, os_data, os_len); break; case IH_TYPE_STANDALONE: *os_data = image_get_data(hdr); *os_len = image_get_data_size(hdr); break; default: printf("Wrong Image Type for %s command\n", cmdtp->name); bootstage_error(BOOTSTAGE_ID_CHECK_IMAGETYPE); return NULL; } /* * copy image header to allow for image overwrites during * kernel decompression. */ memmove(&images->legacy_hdr_os_copy, hdr, sizeof(image_header_t)); /* save pointer to image header */ images->legacy_hdr_os = hdr; images->legacy_hdr_valid = 1; bootstage_mark(BOOTSTAGE_ID_DECOMP_IMAGE); break; #endif #if IMAGE_ENABLE_FIT case IMAGE_FORMAT_FIT: os_noffset = fit_image_load(images, img_addr, &fit_uname_kernel, &fit_uname_config, IH_ARCH_DEFAULT, IH_TYPE_KERNEL, BOOTSTAGE_ID_FIT_KERNEL_START, FIT_LOAD_IGNORED, os_data, os_len); if (os_noffset < 0) return NULL; images->fit_hdr_os = map_sysmem(img_addr, 0); images->fit_uname_os = fit_uname_kernel; images->fit_uname_cfg = fit_uname_config; images->fit_noffset_os = os_noffset; break; #endif #ifdef CONFIG_ANDROID_BOOT_IMAGE case IMAGE_FORMAT_ANDROID: printf("## Booting Android Image at 0x%08lx ...\n", img_addr); if (android_image_get_kernel(buf, images->verify, os_data, os_len)) return NULL; break; #endif default: printf("Wrong Image Format for %s command\n", cmdtp->name); bootstage_error(BOOTSTAGE_ID_FIT_KERNEL_INFO); return NULL; } debug(" kernel data at 0x%08lx, len = 0x%08lx (%ld)\n", *os_data, *os_len, *os_len); return buf; } #else /* USE_HOSTCC */ void memmove_wd(void *to, void *from, size_t len, ulong chunksz) { memmove(to, from, len); } static int bootm_host_load_image(const void *fit, int req_image_type) { const char *fit_uname_config = NULL; ulong data, len; bootm_headers_t images; int noffset; ulong load_end; uint8_t image_type; uint8_t imape_comp; void *load_buf; int ret; memset(&images, '\0', sizeof(images)); images.verify = 1; noffset = fit_image_load(&images, (ulong)fit, NULL, &fit_uname_config, IH_ARCH_DEFAULT, req_image_type, -1, FIT_LOAD_IGNORED, &data, &len); if (noffset < 0) return noffset; if (fit_image_get_type(fit, noffset, &image_type)) { puts("Can't get image type!\n"); return -EINVAL; } if (fit_image_get_comp(fit, noffset, &imape_comp)) { puts("Can't get image compression!\n"); return -EINVAL; } /* Allow the image to expand by a factor of 4, should be safe */ load_buf = malloc((1 << 20) + len * 4); ret = bootm_decomp_image(imape_comp, 0, data, image_type, load_buf, (void *)data, len, CONFIG_SYS_BOOTM_LEN, &load_end); free(load_buf); if (ret && ret != BOOTM_ERR_UNIMPLEMENTED) return ret; return 0; } int bootm_host_load_images(const void *fit, int cfg_noffset) { static uint8_t image_types[] = { IH_TYPE_KERNEL, IH_TYPE_FLATDT, IH_TYPE_RAMDISK, }; int err = 0; int i; for (i = 0; i < ARRAY_SIZE(image_types); i++) { int ret; ret = bootm_host_load_image(fit, image_types[i]); if (!err && ret && ret != -ENOENT) err = ret; } /* Return the first error we found */ return err; } #endif /* ndef USE_HOSTCC */