/* * Overview: * Platform independend driver for NDFC (NanD Flash Controller) * integrated into EP440 cores * * (C) Copyright 2006-2007 * Stefan Roese, DENX Software Engineering, sr@denx.de. * * Based on original work by * Thomas Gleixner * Copyright 2006 IBM * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include #if (CONFIG_COMMANDS & CFG_CMD_NAND) && !defined(CFG_NAND_LEGACY) && \ (defined(CONFIG_440EP) || defined(CONFIG_440GR) || \ defined(CONFIG_440EPX) || defined(CONFIG_440GRX)) #include #include #include #include #include #include static u8 hwctl = 0; static void ndfc_hwcontrol(struct mtd_info *mtdinfo, int cmd) { switch (cmd) { case NAND_CTL_SETCLE: hwctl |= 0x1; break; case NAND_CTL_CLRCLE: hwctl &= ~0x1; break; case NAND_CTL_SETALE: hwctl |= 0x2; break; case NAND_CTL_CLRALE: hwctl &= ~0x2; break; } } static void ndfc_write_byte(struct mtd_info *mtdinfo, u_char byte) { struct nand_chip *this = mtdinfo->priv; ulong base = (ulong) this->IO_ADDR_W & 0xfffffffc; if (hwctl & 0x1) out_8((u8 *)(base + NDFC_CMD), byte); else if (hwctl & 0x2) out_8((u8 *)(base + NDFC_ALE), byte); else out_8((u8 *)(base + NDFC_DATA), byte); } static u_char ndfc_read_byte(struct mtd_info *mtdinfo) { struct nand_chip *this = mtdinfo->priv; ulong base = (ulong) this->IO_ADDR_W & 0xfffffffc; return (in_8((u8 *)(base + NDFC_DATA))); } static int ndfc_dev_ready(struct mtd_info *mtdinfo) { struct nand_chip *this = mtdinfo->priv; ulong base = (ulong) this->IO_ADDR_W & 0xfffffffc; while (!(in_be32((u32 *)(base + NDFC_STAT)) & NDFC_STAT_IS_READY)) ; return 1; } static void ndfc_enable_hwecc(struct mtd_info *mtdinfo, int mode) { struct nand_chip *this = mtdinfo->priv; ulong base = (ulong) this->IO_ADDR_W & 0xfffffffc; u32 ccr; ccr = in_be32((u32 *)(base + NDFC_CCR)); ccr |= NDFC_CCR_RESET_ECC; out_be32((u32 *)(base + NDFC_CCR), ccr); } static int ndfc_calculate_ecc(struct mtd_info *mtdinfo, const u_char *dat, u_char *ecc_code) { struct nand_chip *this = mtdinfo->priv; ulong base = (ulong) this->IO_ADDR_W & 0xfffffffc; u32 ecc; u8 *p = (u8 *)&ecc; ecc = in_be32((u32 *)(base + NDFC_ECC)); /* The NDFC uses Smart Media (SMC) bytes order */ ecc_code[0] = p[2]; ecc_code[1] = p[1]; ecc_code[2] = p[3]; return 0; } /* * Speedups for buffer read/write/verify * * NDFC allows 32bit read/write of data. So we can speed up the buffer * functions. No further checking, as nand_base will always read/write * page aligned. */ static void ndfc_read_buf(struct mtd_info *mtdinfo, uint8_t *buf, int len) { struct nand_chip *this = mtdinfo->priv; ulong base = (ulong) this->IO_ADDR_W & 0xfffffffc; uint32_t *p = (uint32_t *) buf; for (;len > 0; len -= 4) *p++ = in_be32((u32 *)(base + NDFC_DATA)); } #ifndef CONFIG_NAND_SPL /* * Don't use these speedup functions in NAND boot image, since the image * has to fit into 4kByte. */ static void ndfc_write_buf(struct mtd_info *mtdinfo, const uint8_t *buf, int len) { struct nand_chip *this = mtdinfo->priv; ulong base = (ulong) this->IO_ADDR_W & 0xfffffffc; uint32_t *p = (uint32_t *) buf; for (; len > 0; len -= 4) out_be32((u32 *)(base + NDFC_DATA), *p++); } static int ndfc_verify_buf(struct mtd_info *mtdinfo, const uint8_t *buf, int len) { struct nand_chip *this = mtdinfo->priv; ulong base = (ulong) this->IO_ADDR_W & 0xfffffffc; uint32_t *p = (uint32_t *) buf; for (; len > 0; len -= 4) if (*p++ != in_be32((u32 *)(base + NDFC_DATA))) return -1; return 0; } #endif /* #ifndef CONFIG_NAND_SPL */ void board_nand_select_device(struct nand_chip *nand, int chip) { /* * Don't use "chip" to address the NAND device, * generate the cs from the address where it is encoded. */ int cs = (ulong)nand->IO_ADDR_W & 0x00000003; ulong base = (ulong)nand->IO_ADDR_W & 0xfffffffc; /* Set NandFlash Core Configuration Register */ /* 1 col x 2 rows */ out_be32((u32 *)(base + NDFC_CCR), 0x00000000 | (cs << 24)); } int board_nand_init(struct nand_chip *nand) { int cs = (ulong)nand->IO_ADDR_W & 0x00000003; ulong base = (ulong)nand->IO_ADDR_W & 0xfffffffc; nand->hwcontrol = ndfc_hwcontrol; nand->read_byte = ndfc_read_byte; nand->read_buf = ndfc_read_buf; nand->write_byte = ndfc_write_byte; nand->dev_ready = ndfc_dev_ready; nand->eccmode = NAND_ECC_HW3_256; nand->enable_hwecc = ndfc_enable_hwecc; nand->calculate_ecc = ndfc_calculate_ecc; nand->correct_data = nand_correct_data; #ifndef CONFIG_NAND_SPL nand->write_buf = ndfc_write_buf; nand->verify_buf = ndfc_verify_buf; #else /* * Setup EBC (CS0 only right now) */ mtdcr(ebccfga, xbcfg); mtdcr(ebccfgd, 0xb8400000); mtebc(pb0cr, CFG_EBC_PB0CR); mtebc(pb0ap, CFG_EBC_PB0AP); #endif /* * Select required NAND chip in NDFC */ board_nand_select_device(nand, cs); out_be32((u32 *)(base + NDFC_BCFG0 + (cs << 2)), 0x80002222); return 0; } #endif