/* * (C) Copyright 2001 * Bill Hunter, Wave 7 Optics, williamhunter@attbi.com * * Based on code by: * * Kenneth Johansson ,Ericsson AB. * kenneth.johansson@etx.ericsson.se * * hacked up by bill hunter. fixed so we could run before * serial_init and console_init. previous version avoided this by * running out of cache memory during serial/console init, then running * this code later. * * (C) Copyright 2002 * Jun Gu, Artesyn Technology, jung@artesyncp.com * Support for IBM 440 based on OpenBIOS draminit.c from IBM. * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include <common.h> #include <asm/processor.h> #include <i2c.h> #include <ppc4xx.h> #ifdef CONFIG_SPD_EEPROM /* * Set default values */ #ifndef CFG_I2C_SPEED #define CFG_I2C_SPEED 50000 #endif #ifndef CFG_I2C_SLAVE #define CFG_I2C_SLAVE 0xFE #endif #ifndef CONFIG_440 /* for 405 WALNUT board */ #define SDRAM0_CFG_DCE 0x80000000 #define SDRAM0_CFG_SRE 0x40000000 #define SDRAM0_CFG_PME 0x20000000 #define SDRAM0_CFG_MEMCHK 0x10000000 #define SDRAM0_CFG_REGEN 0x08000000 #define SDRAM0_CFG_ECCDD 0x00400000 #define SDRAM0_CFG_EMDULR 0x00200000 #define SDRAM0_CFG_DRW_SHIFT (31-6) #define SDRAM0_CFG_BRPF_SHIFT (31-8) #define SDRAM0_TR_CASL_SHIFT (31-8) #define SDRAM0_TR_PTA_SHIFT (31-13) #define SDRAM0_TR_CTP_SHIFT (31-15) #define SDRAM0_TR_LDF_SHIFT (31-17) #define SDRAM0_TR_RFTA_SHIFT (31-29) #define SDRAM0_TR_RCD_SHIFT (31-31) #define SDRAM0_RTR_SHIFT (31-15) #define SDRAM0_ECCCFG_SHIFT (31-11) /* SDRAM0_CFG enable macro */ #define SDRAM0_CFG_BRPF(x) ( ( x & 0x3)<< SDRAM0_CFG_BRPF_SHIFT ) #define SDRAM0_BXCR_SZ_MASK 0x000e0000 #define SDRAM0_BXCR_AM_MASK 0x0000e000 #define SDRAM0_BXCR_SZ_SHIFT (31-14) #define SDRAM0_BXCR_AM_SHIFT (31-18) #define SDRAM0_BXCR_SZ(x) ( (( x << SDRAM0_BXCR_SZ_SHIFT) & SDRAM0_BXCR_SZ_MASK) ) #define SDRAM0_BXCR_AM(x) ( (( x << SDRAM0_BXCR_AM_SHIFT) & SDRAM0_BXCR_AM_MASK) ) #ifdef CONFIG_SPDDRAM_SILENT # define SPD_ERR(x) do { return 0; } while (0) #else # define SPD_ERR(x) do { printf(x); return(0); } while (0) #endif #define sdram_HZ_to_ns(hertz) (1000000000/(hertz)) /* function prototypes */ int spd_read(uint addr); /* * This function is reading data from the DIMM module EEPROM over the SPD bus * and uses that to program the sdram controller. * * This works on boards that has the same schematics that the IBM walnut has. * * Input: null for default I2C spd functions or a pointer to a custom function * returning spd_data. */ long int spd_sdram(int(read_spd)(uint addr)) { int bus_period,tmp,row,col; int total_size,bank_size,bank_code; int ecc_on; int mode; int bank_cnt; int sdram0_pmit=0x07c00000; #ifndef CONFIG_405EP /* not on PPC405EP */ int sdram0_besr0=-1; int sdram0_besr1=-1; int sdram0_eccesr=-1; #endif int sdram0_ecccfg; int sdram0_rtr=0; int sdram0_tr=0; int sdram0_b0cr; int sdram0_b1cr; int sdram0_b2cr; int sdram0_b3cr; int sdram0_cfg=0; int t_rp; int t_rcd; int t_ras; int t_rc; int min_cas; if(read_spd == 0){ read_spd=spd_read; /* * Make sure I2C controller is initialized * before continuing. */ i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE); } /* * Calculate the bus period, we do it this * way to minimize stack utilization. */ #ifndef CONFIG_405EP tmp = (mfdcr(pllmd) >> (31-6)) & 0xf; /* get FBDV bits */ tmp = CONFIG_SYS_CLK_FREQ * tmp; /* get plb freq */ #else { unsigned long freqCPU; unsigned long pllmr0; unsigned long pllmr1; unsigned long pllFbkDiv; unsigned long pllPlbDiv; unsigned long pllmr0_ccdv; /* * Read PLL Mode registers */ pllmr0 = mfdcr (cpc0_pllmr0); pllmr1 = mfdcr (cpc0_pllmr1); pllFbkDiv = ((pllmr1 & PLLMR1_FBMUL_MASK) >> 20); if (pllFbkDiv == 0) { pllFbkDiv = 16; } pllPlbDiv = ((pllmr0 & PLLMR0_CPU_TO_PLB_MASK) >> 16) + 1; /* * Determine CPU clock frequency */ pllmr0_ccdv = ((pllmr0 & PLLMR0_CPU_DIV_MASK) >> 20) + 1; if (pllmr1 & PLLMR1_SSCS_MASK) { freqCPU = (CONFIG_SYS_CLK_FREQ * pllFbkDiv) / pllmr0_ccdv; } else { freqCPU = CONFIG_SYS_CLK_FREQ / pllmr0_ccdv; } /* * Determine PLB clock frequency */ tmp = freqCPU / pllPlbDiv; } #endif bus_period = sdram_HZ_to_ns(tmp); /* get sdram speed */ /* Make shure we are using SDRAM */ if (read_spd(2) != 0x04){ SPD_ERR("SDRAM - non SDRAM memory module found\n"); } /*------------------------------------------------------------------ configure memory timing register data from DIMM: 27 IN Row Precharge Time ( t RP) 29 MIN RAS to CAS Delay ( t RCD) 127 Component and Clock Detail ,clk0-clk3, junction temp, CAS -------------------------------------------------------------------*/ /* * first figure out which cas latency mode to use * use the min supported mode */ tmp = read_spd(127) & 0x6; if(tmp == 0x02){ /* only cas = 2 supported */ min_cas = 2; /* t_ck = read_spd(9); */ /* t_ac = read_spd(10); */ } else if (tmp == 0x04){ /* only cas = 3 supported */ min_cas = 3; /* t_ck = read_spd(9); */ /* t_ac = read_spd(10); */ } else if (tmp == 0x06){ /* 2,3 supported, so use 2 */ min_cas = 2; /* t_ck = read_spd(23); */ /* t_ac = read_spd(24); */ } else { SPD_ERR("SDRAM - unsupported CAS latency \n"); } /* get some timing values, t_rp,t_rcd,t_ras,t_rc */ t_rp = read_spd(27); t_rcd = read_spd(29); t_ras = read_spd(30); t_rc = t_ras + t_rp; /* The following timing calcs subtract 1 before deviding. * this has effect of using ceiling instead of floor rounding, * and also subtracting 1 to convert number to reg value */ /* set up CASL */ sdram0_tr = (min_cas - 1) << SDRAM0_TR_CASL_SHIFT; /* set up PTA */ sdram0_tr |= (((t_rp - 1)/bus_period) & 0x3) << SDRAM0_TR_PTA_SHIFT; /* set up CTP */ tmp = ((t_rc - t_rcd - t_rp -1) / bus_period) & 0x3; if(tmp<1) tmp=1; sdram0_tr |= tmp << SDRAM0_TR_CTP_SHIFT; /* set LDF = 2 cycles, reg value = 1 */ sdram0_tr |= 1 << SDRAM0_TR_LDF_SHIFT; /* set RFTA = t_rfc/bus_period, use t_rfc = t_rc */ tmp = ( (t_rc - 1) / bus_period)-3; if(tmp<0)tmp=0; if(tmp>6)tmp=6; sdram0_tr |= tmp << SDRAM0_TR_RFTA_SHIFT; /* set RCD = t_rcd/bus_period*/ sdram0_tr |= (((t_rcd - 1) / bus_period) &0x3) << SDRAM0_TR_RCD_SHIFT ; /*------------------------------------------------------------------ configure RTR register -------------------------------------------------------------------*/ row = read_spd(3); col = read_spd(4); tmp = read_spd(12) & 0x7f ; /* refresh type less self refresh bit */ switch(tmp){ case 0x00: tmp=15625; break; case 0x01: tmp=15625/4; break; case 0x02: tmp=15625/2; break; case 0x03: tmp=15625*2; break; case 0x04: tmp=15625*4; break; case 0x05: tmp=15625*8; break; default: SPD_ERR("SDRAM - Bad refresh period \n"); } /* convert from nsec to bus cycles */ tmp = tmp/bus_period; sdram0_rtr = (tmp & 0x3ff8)<< SDRAM0_RTR_SHIFT; /*------------------------------------------------------------------ determine the number of banks used -------------------------------------------------------------------*/ /* byte 7:6 is module data width */ if(read_spd(7) != 0) SPD_ERR("SDRAM - unsupported module width\n"); tmp = read_spd(6); if (tmp < 32) SPD_ERR("SDRAM - unsupported module width\n"); else if (tmp < 64) bank_cnt=1; /* one bank per sdram side */ else if (tmp < 73) bank_cnt=2; /* need two banks per side */ else if (tmp < 161) bank_cnt=4; /* need four banks per side */ else SPD_ERR("SDRAM - unsupported module width\n"); /* byte 5 is the module row count (refered to as dimm "sides") */ tmp = read_spd(5); if(tmp==1); else if(tmp==2) bank_cnt *=2; else if(tmp==4) bank_cnt *=4; else bank_cnt = 8; /* 8 is an error code */ if(bank_cnt > 4) /* we only have 4 banks to work with */ SPD_ERR("SDRAM - unsupported module rows for this width\n"); /* now check for ECC ability of module. We only support ECC * on 32 bit wide devices with 8 bit ECC. */ if ( (read_spd(11)==2) && (read_spd(6)==40) && (read_spd(14)==8) ){ sdram0_ecccfg=0xf<<SDRAM0_ECCCFG_SHIFT; ecc_on = 1; } else{ sdram0_ecccfg=0; ecc_on = 0; } /*------------------------------------------------------------------ calculate total size -------------------------------------------------------------------*/ /* calculate total size and do sanity check */ tmp = read_spd(31); total_size=1<<22; /* total_size = 4MB */ /* now multiply 4M by the smallest device row density */ /* note that we don't support asymetric rows */ while (((tmp & 0x0001) == 0) && (tmp != 0)){ total_size= total_size<<1; tmp = tmp>>1; } total_size *= read_spd(5); /* mult by module rows (dimm sides) */ /*------------------------------------------------------------------ map rows * cols * banks to a mode -------------------------------------------------------------------*/ switch( row ) { case 11: switch ( col ) { case 8: mode=4; /* mode 5 */ break; case 9: case 10: mode=0; /* mode 1 */ break; default: SPD_ERR("SDRAM - unsupported mode\n"); } break; case 12: switch ( col ) { case 8: mode=3; /* mode 4 */ break; case 9: case 10: mode=1; /* mode 2 */ break; default: SPD_ERR("SDRAM - unsupported mode\n"); } break; case 13: switch ( col ) { case 8: mode=5; /* mode 6 */ break; case 9: case 10: if (read_spd(17) ==2 ) mode=6; /* mode 7 */ else mode=2; /* mode 3 */ break; case 11: mode=2; /* mode 3 */ break; default: SPD_ERR("SDRAM - unsupported mode\n"); } break; default: SPD_ERR("SDRAM - unsupported mode\n"); } /*------------------------------------------------------------------ using the calculated values, compute the bank config register values. -------------------------------------------------------------------*/ sdram0_b1cr = 0; sdram0_b2cr = 0; sdram0_b3cr = 0; /* compute the size of each bank */ bank_size = total_size / bank_cnt; /* convert bank size to bank size code for ppc4xx by takeing log2(bank_size) - 22 */ tmp=bank_size; /* start with tmp = bank_size */ bank_code=0; /* and bank_code = 0 */ while (tmp>1){ /* this takes log2 of tmp */ bank_code++; /* and stores result in bank_code */ tmp=tmp>>1; } /* bank_code is now log2(bank_size) */ bank_code-=22; /* subtract 22 to get the code */ tmp = SDRAM0_BXCR_SZ(bank_code) | SDRAM0_BXCR_AM(mode) | 1; sdram0_b0cr = (bank_size) * 0 | tmp; if(bank_cnt>1) sdram0_b2cr = (bank_size) * 1 | tmp; if(bank_cnt>2) sdram0_b1cr = (bank_size) * 2 | tmp; if(bank_cnt>3) sdram0_b3cr = (bank_size) * 3 | tmp; /* * enable sdram controller DCE=1 * enable burst read prefetch to 32 bytes BRPF=2 * leave other functions off */ /*------------------------------------------------------------------ now that we've done our calculations, we are ready to program all the registers. -------------------------------------------------------------------*/ #define mtsdram0(reg, data) mtdcr(memcfga,reg);mtdcr(memcfgd,data) /* disable memcontroller so updates work */ sdram0_cfg = 0; mtsdram0( mem_mcopt1, sdram0_cfg ); #ifndef CONFIG_405EP /* not on PPC405EP */ mtsdram0( mem_besra , sdram0_besr0 ); mtsdram0( mem_besrb , sdram0_besr1 ); mtsdram0( mem_ecccf , sdram0_ecccfg ); mtsdram0( mem_eccerr, sdram0_eccesr ); #endif mtsdram0( mem_rtr , sdram0_rtr ); mtsdram0( mem_pmit , sdram0_pmit ); mtsdram0( mem_mb0cf , sdram0_b0cr ); mtsdram0( mem_mb1cf , sdram0_b1cr ); mtsdram0( mem_mb2cf , sdram0_b2cr ); mtsdram0( mem_mb3cf , sdram0_b3cr ); mtsdram0( mem_sdtr1 , sdram0_tr ); /* SDRAM have a power on delay, 500 micro should do */ udelay(500); sdram0_cfg = SDRAM0_CFG_DCE | SDRAM0_CFG_BRPF(1) | SDRAM0_CFG_ECCDD | SDRAM0_CFG_EMDULR; if(ecc_on) sdram0_cfg |= SDRAM0_CFG_MEMCHK; mtsdram0( mem_mcopt1, sdram0_cfg ); /* kernel 2.4.2 from mvista has a bug with memory over 128MB */ #ifdef MVISTA_MEM_BUG if (total_size > 128*1024*1024 ) total_size=128*1024*1024; #endif return (total_size); } int spd_read(uint addr) { char data[2]; if (i2c_read(SPD_EEPROM_ADDRESS, addr, 1, data, 1) == 0) return (int)data[0]; else return 0; } #else /* CONFIG_440 */ /*----------------------------------------------------------------------------- | Memory Controller Options 0 +-----------------------------------------------------------------------------*/ #define SDRAM_CFG0_DCEN 0x80000000 /* SDRAM Controller Enable */ #define SDRAM_CFG0_MCHK_MASK 0x30000000 /* Memory data errchecking mask */ #define SDRAM_CFG0_MCHK_NON 0x00000000 /* No ECC generation */ #define SDRAM_CFG0_MCHK_GEN 0x20000000 /* ECC generation */ #define SDRAM_CFG0_MCHK_CHK 0x30000000 /* ECC generation and checking */ #define SDRAM_CFG0_RDEN 0x08000000 /* Registered DIMM enable */ #define SDRAM_CFG0_PMUD 0x04000000 /* Page management unit */ #define SDRAM_CFG0_DMWD_MASK 0x02000000 /* DRAM width mask */ #define SDRAM_CFG0_DMWD_32 0x00000000 /* 32 bits */ #define SDRAM_CFG0_DMWD_64 0x02000000 /* 64 bits */ #define SDRAM_CFG0_UIOS_MASK 0x00C00000 /* Unused IO State */ #define SDRAM_CFG0_PDP 0x00200000 /* Page deallocation policy */ /*----------------------------------------------------------------------------- | Memory Controller Options 1 +-----------------------------------------------------------------------------*/ #define SDRAM_CFG1_SRE 0x80000000 /* Self-Refresh Entry */ #define SDRAM_CFG1_PMEN 0x40000000 /* Power Management Enable */ /*-----------------------------------------------------------------------------+ | SDRAM DEVPOT Options +-----------------------------------------------------------------------------*/ #define SDRAM_DEVOPT_DLL 0x80000000 #define SDRAM_DEVOPT_DS 0x40000000 /*-----------------------------------------------------------------------------+ | SDRAM MCSTS Options +-----------------------------------------------------------------------------*/ #define SDRAM_MCSTS_MRSC 0x80000000 #define SDRAM_MCSTS_SRMS 0x40000000 #define SDRAM_MCSTS_CIS 0x20000000 /*----------------------------------------------------------------------------- | SDRAM Refresh Timer Register +-----------------------------------------------------------------------------*/ #define SDRAM_RTR_RINT_MASK 0xFFFF0000 #define SDRAM_RTR_RINT_ENCODE(n) (((n) << 16) & SDRAM_RTR_RINT_MASK) #define sdram_HZ_to_ns(hertz) (1000000000/(hertz)) /*-----------------------------------------------------------------------------+ | SDRAM UABus Base Address Reg +-----------------------------------------------------------------------------*/ #define SDRAM_UABBA_UBBA_MASK 0x0000000F /*-----------------------------------------------------------------------------+ | Memory Bank 0-7 configuration +-----------------------------------------------------------------------------*/ #define SDRAM_BXCR_SDBA_MASK 0xff800000 /* Base address */ #define SDRAM_BXCR_SDSZ_MASK 0x000e0000 /* Size */ #define SDRAM_BXCR_SDSZ_8 0x00020000 /* 8M */ #define SDRAM_BXCR_SDSZ_16 0x00040000 /* 16M */ #define SDRAM_BXCR_SDSZ_32 0x00060000 /* 32M */ #define SDRAM_BXCR_SDSZ_64 0x00080000 /* 64M */ #define SDRAM_BXCR_SDSZ_128 0x000a0000 /* 128M */ #define SDRAM_BXCR_SDSZ_256 0x000c0000 /* 256M */ #define SDRAM_BXCR_SDSZ_512 0x000e0000 /* 512M */ #define SDRAM_BXCR_SDAM_MASK 0x0000e000 /* Addressing mode */ #define SDRAM_BXCR_SDAM_1 0x00000000 /* Mode 1 */ #define SDRAM_BXCR_SDAM_2 0x00002000 /* Mode 2 */ #define SDRAM_BXCR_SDAM_3 0x00004000 /* Mode 3 */ #define SDRAM_BXCR_SDAM_4 0x00006000 /* Mode 4 */ #define SDRAM_BXCR_SDBE 0x00000001 /* Memory Bank Enable */ /*-----------------------------------------------------------------------------+ | SDRAM TR0 Options +-----------------------------------------------------------------------------*/ #define SDRAM_TR0_SDWR_MASK 0x80000000 #define SDRAM_TR0_SDWR_2_CLK 0x00000000 #define SDRAM_TR0_SDWR_3_CLK 0x80000000 #define SDRAM_TR0_SDWD_MASK 0x40000000 #define SDRAM_TR0_SDWD_0_CLK 0x00000000 #define SDRAM_TR0_SDWD_1_CLK 0x40000000 #define SDRAM_TR0_SDCL_MASK 0x01800000 #define SDRAM_TR0_SDCL_2_0_CLK 0x00800000 #define SDRAM_TR0_SDCL_2_5_CLK 0x01000000 #define SDRAM_TR0_SDCL_3_0_CLK 0x01800000 #define SDRAM_TR0_SDPA_MASK 0x000C0000 #define SDRAM_TR0_SDPA_2_CLK 0x00040000 #define SDRAM_TR0_SDPA_3_CLK 0x00080000 #define SDRAM_TR0_SDPA_4_CLK 0x000C0000 #define SDRAM_TR0_SDCP_MASK 0x00030000 #define SDRAM_TR0_SDCP_2_CLK 0x00000000 #define SDRAM_TR0_SDCP_3_CLK 0x00010000 #define SDRAM_TR0_SDCP_4_CLK 0x00020000 #define SDRAM_TR0_SDCP_5_CLK 0x00030000 #define SDRAM_TR0_SDLD_MASK 0x0000C000 #define SDRAM_TR0_SDLD_1_CLK 0x00000000 #define SDRAM_TR0_SDLD_2_CLK 0x00004000 #define SDRAM_TR0_SDRA_MASK 0x0000001C #define SDRAM_TR0_SDRA_6_CLK 0x00000000 #define SDRAM_TR0_SDRA_7_CLK 0x00000004 #define SDRAM_TR0_SDRA_8_CLK 0x00000008 #define SDRAM_TR0_SDRA_9_CLK 0x0000000C #define SDRAM_TR0_SDRA_10_CLK 0x00000010 #define SDRAM_TR0_SDRA_11_CLK 0x00000014 #define SDRAM_TR0_SDRA_12_CLK 0x00000018 #define SDRAM_TR0_SDRA_13_CLK 0x0000001C #define SDRAM_TR0_SDRD_MASK 0x00000003 #define SDRAM_TR0_SDRD_2_CLK 0x00000001 #define SDRAM_TR0_SDRD_3_CLK 0x00000002 #define SDRAM_TR0_SDRD_4_CLK 0x00000003 /*-----------------------------------------------------------------------------+ | SDRAM TR1 Options +-----------------------------------------------------------------------------*/ #define SDRAM_TR1_RDSS_MASK 0xC0000000 #define SDRAM_TR1_RDSS_TR0 0x00000000 #define SDRAM_TR1_RDSS_TR1 0x40000000 #define SDRAM_TR1_RDSS_TR2 0x80000000 #define SDRAM_TR1_RDSS_TR3 0xC0000000 #define SDRAM_TR1_RDSL_MASK 0x00C00000 #define SDRAM_TR1_RDSL_STAGE1 0x00000000 #define SDRAM_TR1_RDSL_STAGE2 0x00400000 #define SDRAM_TR1_RDSL_STAGE3 0x00800000 #define SDRAM_TR1_RDCD_MASK 0x00000800 #define SDRAM_TR1_RDCD_RCD_0_0 0x00000000 #define SDRAM_TR1_RDCD_RCD_1_2 0x00000800 #define SDRAM_TR1_RDCT_MASK 0x000001FF #define SDRAM_TR1_RDCT_ENCODE(x) (((x) << 0) & SDRAM_TR1_RDCT_MASK) #define SDRAM_TR1_RDCT_DECODE(x) (((x) & SDRAM_TR1_RDCT_MASK) >> 0) #define SDRAM_TR1_RDCT_MIN 0x00000000 #define SDRAM_TR1_RDCT_MAX 0x000001FF /*-----------------------------------------------------------------------------+ | SDRAM WDDCTR Options +-----------------------------------------------------------------------------*/ #define SDRAM_WDDCTR_WRCP_MASK 0xC0000000 #define SDRAM_WDDCTR_WRCP_0DEG 0x00000000 #define SDRAM_WDDCTR_WRCP_90DEG 0x40000000 #define SDRAM_WDDCTR_WRCP_180DEG 0x80000000 #define SDRAM_WDDCTR_DCD_MASK 0x000001FF /*-----------------------------------------------------------------------------+ | SDRAM CLKTR Options +-----------------------------------------------------------------------------*/ #define SDRAM_CLKTR_CLKP_MASK 0xC0000000 #define SDRAM_CLKTR_CLKP_0DEG 0x00000000 #define SDRAM_CLKTR_CLKP_90DEG 0x40000000 #define SDRAM_CLKTR_CLKP_180DEG 0x80000000 #define SDRAM_CLKTR_DCDT_MASK 0x000001FF /*-----------------------------------------------------------------------------+ | SDRAM DLYCAL Options +-----------------------------------------------------------------------------*/ #define SDRAM_DLYCAL_DLCV_MASK 0x000003FC #define SDRAM_DLYCAL_DLCV_ENCODE(x) (((x)<<2) & SDRAM_DLYCAL_DLCV_MASK) #define SDRAM_DLYCAL_DLCV_DECODE(x) (((x) & SDRAM_DLYCAL_DLCV_MASK)>>2) /*-----------------------------------------------------------------------------+ | General Definition +-----------------------------------------------------------------------------*/ #define DEFAULT_SPD_ADDR1 0x53 #define DEFAULT_SPD_ADDR2 0x52 #define ONE_BILLION 1000000000 #define MAXBANKS 4 /* at most 4 dimm banks */ #define MAX_SPD_BYTES 256 #define NUMHALFCYCLES 4 #define NUMMEMTESTS 8 #define NUMMEMWORDS 8 #define MAXBXCR 4 #define TRUE 1 #define FALSE 0 const unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = { {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF}, {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000}, {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555}, {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA}, {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A}, {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5}, {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA}, {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} }; unsigned char spd_read(uchar chip, uint addr); void get_spd_info(unsigned long* dimm_populated, unsigned char* iic0_dimm_addr, unsigned long num_dimm_banks); void check_mem_type (unsigned long* dimm_populated, unsigned char* iic0_dimm_addr, unsigned long num_dimm_banks); void check_volt_type (unsigned long* dimm_populated, unsigned char* iic0_dimm_addr, unsigned long num_dimm_banks); void program_cfg0(unsigned long* dimm_populated, unsigned char* iic0_dimm_addr, unsigned long num_dimm_banks); void program_cfg1(unsigned long* dimm_populated, unsigned char* iic0_dimm_addr, unsigned long num_dimm_banks); void program_rtr (unsigned long* dimm_populated, unsigned char* iic0_dimm_addr, unsigned long num_dimm_banks); void program_tr0 (unsigned long* dimm_populated, unsigned char* iic0_dimm_addr, unsigned long num_dimm_banks); void program_tr1 (void); void program_ecc (unsigned long num_bytes); unsigned long program_bxcr(unsigned long* dimm_populated, unsigned char* iic0_dimm_addr, unsigned long num_dimm_banks); /* * This function is reading data from the DIMM module EEPROM over the SPD bus * and uses that to program the sdram controller. * * This works on boards that has the same schematics that the IBM walnut has. * * BUG: Don't handle ECC memory * BUG: A few values in the TR register is currently hardcoded */ long int spd_sdram(void) { unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS; unsigned long dimm_populated[sizeof(iic0_dimm_addr)]; unsigned long total_size; unsigned long cfg0; unsigned long mcsts; unsigned long num_dimm_banks; /* on board dimm banks */ num_dimm_banks = sizeof(iic0_dimm_addr); /* * Make sure I2C controller is initialized * before continuing. */ i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE); /* * Read the SPD information using I2C interface. Check to see if the * DIMM slots are populated. */ get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks); /* * Check the memory type for the dimms plugged. */ check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks); /* * Check the voltage type for the dimms plugged. */ check_volt_type(dimm_populated, iic0_dimm_addr, num_dimm_banks); /* * program 440GP SDRAM controller options (SDRAM0_CFG0) */ program_cfg0(dimm_populated, iic0_dimm_addr, num_dimm_banks); /* * program 440GP SDRAM controller options (SDRAM0_CFG1) */ program_cfg1(dimm_populated, iic0_dimm_addr, num_dimm_banks); /* * program SDRAM refresh register (SDRAM0_RTR) */ program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks); /* * program SDRAM Timing Register 0 (SDRAM0_TR0) */ program_tr0(dimm_populated, iic0_dimm_addr, num_dimm_banks); /* * program the BxCR registers to find out total sdram installed */ total_size = program_bxcr(dimm_populated, iic0_dimm_addr, num_dimm_banks); /* * program SDRAM Clock Timing Register (SDRAM0_CLKTR) */ mtsdram(mem_clktr, 0x40000000); /* * delay to ensure 200 usec has elapsed */ udelay(400); /* * enable the memory controller */ mfsdram(mem_cfg0, cfg0); mtsdram(mem_cfg0, cfg0 | SDRAM_CFG0_DCEN); /* * wait for SDRAM_CFG0_DC_EN to complete */ while(1) { mfsdram(mem_mcsts, mcsts); if ((mcsts & SDRAM_MCSTS_MRSC) != 0) { break; } } /* * program SDRAM Timing Register 1, adding some delays */ program_tr1(); /* * if ECC is enabled, initialize parity bits */ return total_size; } unsigned char spd_read(uchar chip, uint addr) { unsigned char data[2]; if (i2c_read(chip, addr, 1, data, 1) == 0) return data[0]; else return 0; } void get_spd_info(unsigned long* dimm_populated, unsigned char* iic0_dimm_addr, unsigned long num_dimm_banks) { unsigned long dimm_num; unsigned long dimm_found; unsigned char num_of_bytes; unsigned char total_size; dimm_found = FALSE; for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { num_of_bytes = 0; total_size = 0; num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0); total_size = spd_read(iic0_dimm_addr[dimm_num], 1); if ((num_of_bytes != 0) && (total_size != 0)) { dimm_populated[dimm_num] = TRUE; dimm_found = TRUE; #if 0 printf("DIMM slot %lu: populated\n", dimm_num); #endif } else { dimm_populated[dimm_num] = FALSE; #if 0 printf("DIMM slot %lu: Not populated\n", dimm_num); #endif } } if (dimm_found == FALSE) { printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n"); hang(); } } void check_mem_type(unsigned long* dimm_populated, unsigned char* iic0_dimm_addr, unsigned long num_dimm_banks) { unsigned long dimm_num; unsigned char dimm_type; for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { if (dimm_populated[dimm_num] == TRUE) { dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2); switch (dimm_type) { case 7: #if 0 printf("DIMM slot %lu: DDR SDRAM detected\n", dimm_num); #endif break; default: printf("ERROR: Unsupported DIMM detected in slot %lu.\n", dimm_num); printf("Only DDR SDRAM DIMMs are supported.\n"); printf("Replace the DIMM module with a supported DIMM.\n\n"); hang(); break; } } } } void check_volt_type(unsigned long* dimm_populated, unsigned char* iic0_dimm_addr, unsigned long num_dimm_banks) { unsigned long dimm_num; unsigned long voltage_type; for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { if (dimm_populated[dimm_num] == TRUE) { voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8); if (voltage_type != 0x04) { printf("ERROR: DIMM %lu with unsupported voltage level.\n", dimm_num); hang(); } else { #if 0 printf("DIMM %lu voltage level supported.\n", dimm_num); #endif } break; } } } void program_cfg0(unsigned long* dimm_populated, unsigned char* iic0_dimm_addr, unsigned long num_dimm_banks) { unsigned long dimm_num; unsigned long cfg0; unsigned long ecc_enabled; unsigned char ecc; unsigned char attributes; unsigned long data_width; unsigned long dimm_32bit; unsigned long dimm_64bit; /* * get Memory Controller Options 0 data */ mfsdram(mem_cfg0, cfg0); /* * clear bits */ cfg0 &= ~(SDRAM_CFG0_DCEN | SDRAM_CFG0_MCHK_MASK | SDRAM_CFG0_RDEN | SDRAM_CFG0_PMUD | SDRAM_CFG0_DMWD_MASK | SDRAM_CFG0_UIOS_MASK | SDRAM_CFG0_PDP); /* * FIXME: assume the DDR SDRAMs in both banks are the same */ ecc_enabled = TRUE; for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { if (dimm_populated[dimm_num] == TRUE) { ecc = spd_read(iic0_dimm_addr[dimm_num], 11); if (ecc != 0x02) { ecc_enabled = FALSE; } /* * program Registered DIMM Enable */ attributes = spd_read(iic0_dimm_addr[dimm_num], 21); if ((attributes & 0x02) != 0x00) { cfg0 |= SDRAM_CFG0_RDEN; } /* * program DDR SDRAM Data Width */ data_width = (unsigned long)spd_read(iic0_dimm_addr[dimm_num],6) + (((unsigned long)spd_read(iic0_dimm_addr[dimm_num],7)) << 8); if (data_width == 64 || data_width == 72) { dimm_64bit = TRUE; cfg0 |= SDRAM_CFG0_DMWD_64; } else if (data_width == 32 || data_width == 40) { dimm_32bit = TRUE; cfg0 |= SDRAM_CFG0_DMWD_32; } else { printf("WARNING: DIMM with datawidth of %lu bits.\n", data_width); printf("Only DIMMs with 32 or 64 bit datawidths supported.\n"); hang(); } break; } } /* * program Memory Data Error Checking */ if (ecc_enabled == TRUE) { cfg0 |= SDRAM_CFG0_MCHK_GEN; } else { cfg0 |= SDRAM_CFG0_MCHK_NON; } /* * program Page Management Unit */ cfg0 |= SDRAM_CFG0_PMUD; /* * program Memory Controller Options 0 * Note: DCEN must be enabled after all DDR SDRAM controller * configuration registers get initialized. */ mtsdram(mem_cfg0, cfg0); } void program_cfg1(unsigned long* dimm_populated, unsigned char* iic0_dimm_addr, unsigned long num_dimm_banks) { unsigned long cfg1; mfsdram(mem_cfg1, cfg1); /* * Self-refresh exit, disable PM */ cfg1 &= ~(SDRAM_CFG1_SRE | SDRAM_CFG1_PMEN); /* * program Memory Controller Options 1 */ mtsdram(mem_cfg1, cfg1); } void program_rtr (unsigned long* dimm_populated, unsigned char* iic0_dimm_addr, unsigned long num_dimm_banks) { unsigned long dimm_num; unsigned long bus_period_x_10; unsigned long refresh_rate = 0; unsigned char refresh_rate_type; unsigned long refresh_interval; unsigned long sdram_rtr; PPC440_SYS_INFO sys_info; /* * get the board info */ get_sys_info(&sys_info); bus_period_x_10 = ONE_BILLION / (sys_info.freqPLB / 10); for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { if (dimm_populated[dimm_num] == TRUE) { refresh_rate_type = 0x7F & spd_read(iic0_dimm_addr[dimm_num], 12); switch (refresh_rate_type) { case 0x00: refresh_rate = 15625; break; case 0x011: refresh_rate = 15625/4; break; case 0x02: refresh_rate = 15625/2; break; case 0x03: refresh_rate = 15626*2; break; case 0x04: refresh_rate = 15625*4; break; case 0x05: refresh_rate = 15625*8; break; default: printf("ERROR: DIMM %lu, unsupported refresh rate/type.\n", dimm_num); printf("Replace the DIMM module with a supported DIMM.\n"); break; } break; } } refresh_interval = refresh_rate * 10 / bus_period_x_10; sdram_rtr = (refresh_interval & 0x3ff8) << 16; /* * program Refresh Timer Register (SDRAM0_RTR) */ mtsdram(mem_rtr, sdram_rtr); } void program_tr0 (unsigned long* dimm_populated, unsigned char* iic0_dimm_addr, unsigned long num_dimm_banks) { unsigned long dimm_num; unsigned long tr0; unsigned char wcsbc; unsigned char t_rp_ns; unsigned char t_rcd_ns; unsigned char t_ras_ns; unsigned long t_rp_clk; unsigned long t_ras_rcd_clk; unsigned long t_rcd_clk; unsigned long t_rfc_clk; unsigned long plb_check; unsigned char cas_bit; unsigned long cas_index; unsigned char cas_2_0_available; unsigned char cas_2_5_available; unsigned char cas_3_0_available; unsigned long cycle_time_ns_x_10[3]; unsigned long tcyc_3_0_ns_x_10; unsigned long tcyc_2_5_ns_x_10; unsigned long tcyc_2_0_ns_x_10; unsigned long tcyc_reg; unsigned long bus_period_x_10; PPC440_SYS_INFO sys_info; unsigned long residue; /* * get the board info */ get_sys_info(&sys_info); bus_period_x_10 = ONE_BILLION / (sys_info.freqPLB / 10); /* * get SDRAM Timing Register 0 (SDRAM_TR0) and clear bits */ mfsdram(mem_tr0, tr0); tr0 &= ~(SDRAM_TR0_SDWR_MASK | SDRAM_TR0_SDWD_MASK | SDRAM_TR0_SDCL_MASK | SDRAM_TR0_SDPA_MASK | SDRAM_TR0_SDCP_MASK | SDRAM_TR0_SDLD_MASK | SDRAM_TR0_SDRA_MASK | SDRAM_TR0_SDRD_MASK); /* * initialization */ wcsbc = 0; t_rp_ns = 0; t_rcd_ns = 0; t_ras_ns = 0; cas_2_0_available = TRUE; cas_2_5_available = TRUE; cas_3_0_available = TRUE; tcyc_2_0_ns_x_10 = 0; tcyc_2_5_ns_x_10 = 0; tcyc_3_0_ns_x_10 = 0; for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { if (dimm_populated[dimm_num] == TRUE) { wcsbc = spd_read(iic0_dimm_addr[dimm_num], 15); t_rp_ns = spd_read(iic0_dimm_addr[dimm_num], 27) >> 2; t_rcd_ns = spd_read(iic0_dimm_addr[dimm_num], 29) >> 2; t_ras_ns = spd_read(iic0_dimm_addr[dimm_num], 30); cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18); for (cas_index = 0; cas_index < 3; cas_index++) { switch (cas_index) { case 0: tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9); break; case 1: tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23); break; default: tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25); break; } if ((tcyc_reg & 0x0F) >= 10) { printf("ERROR: Tcyc incorrect for DIMM in slot %lu\n", dimm_num); hang(); } cycle_time_ns_x_10[cas_index] = (((tcyc_reg & 0xF0) >> 4) * 10) + (tcyc_reg & 0x0F); } cas_index = 0; if ((cas_bit & 0x80) != 0) { cas_index += 3; } else if ((cas_bit & 0x40) != 0) { cas_index += 2; } else if ((cas_bit & 0x20) != 0) { cas_index += 1; } if (((cas_bit & 0x10) != 0) && (cas_index < 3)) { tcyc_3_0_ns_x_10 = cycle_time_ns_x_10[cas_index]; cas_index++; } else { if (cas_index != 0) { cas_index++; } cas_3_0_available = FALSE; } if (((cas_bit & 0x08) != 0) || (cas_index < 3)) { tcyc_2_5_ns_x_10 = cycle_time_ns_x_10[cas_index]; cas_index++; } else { if (cas_index != 0) { cas_index++; } cas_2_5_available = FALSE; } if (((cas_bit & 0x04) != 0) || (cas_index < 3)) { tcyc_2_0_ns_x_10 = cycle_time_ns_x_10[cas_index]; cas_index++; } else { if (cas_index != 0) { cas_index++; } cas_2_0_available = FALSE; } break; } } /* * Program SD_WR and SD_WCSBC fields */ tr0 |= SDRAM_TR0_SDWR_2_CLK; /* Write Recovery: 2 CLK */ switch (wcsbc) { case 0: tr0 |= SDRAM_TR0_SDWD_0_CLK; break; default: tr0 |= SDRAM_TR0_SDWD_1_CLK; break; } /* * Program SD_CASL field */ if ((cas_2_0_available == TRUE) && (bus_period_x_10 >= tcyc_2_0_ns_x_10)) { tr0 |= SDRAM_TR0_SDCL_2_0_CLK; } else if((cas_2_5_available == TRUE) && (bus_period_x_10 >= tcyc_2_5_ns_x_10)) { tr0 |= SDRAM_TR0_SDCL_2_5_CLK; } else if((cas_3_0_available == TRUE) && (bus_period_x_10 >= tcyc_3_0_ns_x_10)) { tr0 |= SDRAM_TR0_SDCL_3_0_CLK; } else { printf("ERROR: No supported CAS latency with the installed DIMMs.\n"); printf("Only CAS latencies of 2.0, 2.5, and 3.0 are supported.\n"); printf("Make sure the PLB speed is within the supported range.\n"); hang(); } /* * Calculate Trp in clock cycles and round up if necessary * Program SD_PTA field */ t_rp_clk = sys_info.freqPLB * t_rp_ns / ONE_BILLION; plb_check = ONE_BILLION * t_rp_clk / t_rp_ns; if (sys_info.freqPLB != plb_check) { t_rp_clk++; } switch ((unsigned long)t_rp_clk) { case 0: case 1: case 2: tr0 |= SDRAM_TR0_SDPA_2_CLK; break; case 3: tr0 |= SDRAM_TR0_SDPA_3_CLK; break; default: tr0 |= SDRAM_TR0_SDPA_4_CLK; break; } /* * Program SD_CTP field */ t_ras_rcd_clk = sys_info.freqPLB * (t_ras_ns - t_rcd_ns) / ONE_BILLION; plb_check = ONE_BILLION * t_ras_rcd_clk / (t_ras_ns - t_rcd_ns); if (sys_info.freqPLB != plb_check) { t_ras_rcd_clk++; } switch (t_ras_rcd_clk) { case 0: case 1: case 2: tr0 |= SDRAM_TR0_SDCP_2_CLK; break; case 3: tr0 |= SDRAM_TR0_SDCP_3_CLK; break; case 4: tr0 |= SDRAM_TR0_SDCP_4_CLK; break; default: tr0 |= SDRAM_TR0_SDCP_5_CLK; break; } /* * Program SD_LDF field */ tr0 |= SDRAM_TR0_SDLD_2_CLK; /* * Program SD_RFTA field * FIXME tRFC hardcoded as 75 nanoseconds */ t_rfc_clk = sys_info.freqPLB / (ONE_BILLION / 75); residue = sys_info.freqPLB % (ONE_BILLION / 75); if (residue >= (ONE_BILLION / 150)) { t_rfc_clk++; } switch (t_rfc_clk) { case 0: case 1: case 2: case 3: case 4: case 5: case 6: tr0 |= SDRAM_TR0_SDRA_6_CLK; break; case 7: tr0 |= SDRAM_TR0_SDRA_7_CLK; break; case 8: tr0 |= SDRAM_TR0_SDRA_8_CLK; break; case 9: tr0 |= SDRAM_TR0_SDRA_9_CLK; break; case 10: tr0 |= SDRAM_TR0_SDRA_10_CLK; break; case 11: tr0 |= SDRAM_TR0_SDRA_11_CLK; break; case 12: tr0 |= SDRAM_TR0_SDRA_12_CLK; break; default: tr0 |= SDRAM_TR0_SDRA_13_CLK; break; } /* * Program SD_RCD field */ t_rcd_clk = sys_info.freqPLB * t_rcd_ns / ONE_BILLION; plb_check = ONE_BILLION * t_rcd_clk / t_rcd_ns; if (sys_info.freqPLB != plb_check) { t_rcd_clk++; } switch (t_rcd_clk) { case 0: case 1: case 2: tr0 |= SDRAM_TR0_SDRD_2_CLK; break; case 3: tr0 |= SDRAM_TR0_SDRD_3_CLK; break; default: tr0 |= SDRAM_TR0_SDRD_4_CLK; break; } #if 0 printf("tr0: %x\n", tr0); #endif mtsdram(mem_tr0, tr0); } void program_tr1 (void) { unsigned long tr0; unsigned long tr1; unsigned long cfg0; unsigned long ecc_temp; unsigned long dlycal; unsigned long dly_val; unsigned long i, j, k; unsigned long bxcr_num; unsigned long max_pass_length; unsigned long current_pass_length; unsigned long current_fail_length; unsigned long current_start; unsigned long rdclt; unsigned long rdclt_offset; long max_start; long max_end; long rdclt_average; unsigned char window_found; unsigned char fail_found; unsigned char pass_found; unsigned long * membase; PPC440_SYS_INFO sys_info; /* * get the board info */ get_sys_info(&sys_info); /* * get SDRAM Timing Register 0 (SDRAM_TR0) and clear bits */ mfsdram(mem_tr1, tr1); tr1 &= ~(SDRAM_TR1_RDSS_MASK | SDRAM_TR1_RDSL_MASK | SDRAM_TR1_RDCD_MASK | SDRAM_TR1_RDCT_MASK); mfsdram(mem_tr0, tr0); if (((tr0 & SDRAM_TR0_SDCL_MASK) == SDRAM_TR0_SDCL_2_5_CLK) && (sys_info.freqPLB > 100000000)) { tr1 |= SDRAM_TR1_RDSS_TR2; tr1 |= SDRAM_TR1_RDSL_STAGE3; tr1 |= SDRAM_TR1_RDCD_RCD_1_2; } else { tr1 |= SDRAM_TR1_RDSS_TR1; tr1 |= SDRAM_TR1_RDSL_STAGE2; tr1 |= SDRAM_TR1_RDCD_RCD_0_0; } /* * save CFG0 ECC setting to a temporary variable and turn ECC off */ mfsdram(mem_cfg0, cfg0); ecc_temp = cfg0 & SDRAM_CFG0_MCHK_MASK; mtsdram(mem_cfg0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) | SDRAM_CFG0_MCHK_NON); /* * get the delay line calibration register value */ mfsdram(mem_dlycal, dlycal); dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2; max_pass_length = 0; max_start = 0; max_end = 0; current_pass_length = 0; current_fail_length = 0; current_start = 0; rdclt_offset = 0; window_found = FALSE; fail_found = FALSE; pass_found = FALSE; #ifdef DEBUG printf("Starting memory test "); #endif for (k = 0; k < NUMHALFCYCLES; k++) { for (rdclt = 0; rdclt < dly_val; rdclt++) { /* * Set the timing reg for the test. */ mtsdram(mem_tr1, (tr1 | SDRAM_TR1_RDCT_ENCODE(rdclt))); for (bxcr_num = 0; bxcr_num < MAXBXCR; bxcr_num++) { mtdcr(memcfga, mem_b0cr + (bxcr_num<<2)); if ((mfdcr(memcfgd) & SDRAM_BXCR_SDBE) == SDRAM_BXCR_SDBE) { /* Bank is enabled */ membase = (unsigned long*) (mfdcr(memcfgd) & SDRAM_BXCR_SDBA_MASK); /* * Run the short memory test */ for (i = 0; i < NUMMEMTESTS; i++) { for (j = 0; j < NUMMEMWORDS; j++) { membase[j] = test[i][j]; ppcDcbf((unsigned long)&(membase[j])); } for (j = 0; j < NUMMEMWORDS; j++) { if (membase[j] != test[i][j]) { ppcDcbf((unsigned long)&(membase[j])); break; } ppcDcbf((unsigned long)&(membase[j])); } if (j < NUMMEMWORDS) { break; } } /* * see if the rdclt value passed */ if (i < NUMMEMTESTS) { break; } } } if (bxcr_num == MAXBXCR) { if (fail_found == TRUE) { pass_found = TRUE; if (current_pass_length == 0) { current_start = rdclt_offset + rdclt; } current_fail_length = 0; current_pass_length++; if (current_pass_length > max_pass_length) { max_pass_length = current_pass_length; max_start = current_start; max_end = rdclt_offset + rdclt; } } } else { current_pass_length = 0; current_fail_length++; if (current_fail_length >= (dly_val>>2)) { if (fail_found == FALSE) { fail_found = TRUE; } else if (pass_found == TRUE) { window_found = TRUE; break; } } } } #ifdef DEBUG printf("."); #endif if (window_found == TRUE) { break; } tr1 = tr1 ^ SDRAM_TR1_RDCD_MASK; rdclt_offset += dly_val; } #ifdef DEBUG printf("\n"); #endif /* * make sure we find the window */ if (window_found == FALSE) { printf("ERROR: Cannot determine a common read delay.\n"); hang(); } /* * restore the orignal ECC setting */ mtsdram(mem_cfg0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) | ecc_temp); /* * set the SDRAM TR1 RDCD value */ tr1 &= ~SDRAM_TR1_RDCD_MASK; if ((tr0 & SDRAM_TR0_SDCL_MASK) == SDRAM_TR0_SDCL_2_5_CLK) { tr1 |= SDRAM_TR1_RDCD_RCD_1_2; } else { tr1 |= SDRAM_TR1_RDCD_RCD_0_0; } /* * set the SDRAM TR1 RDCLT value */ tr1 &= ~SDRAM_TR1_RDCT_MASK; while (max_end >= (dly_val<<1)) { max_end -= (dly_val<<1); max_start -= (dly_val<<1); } rdclt_average = ((max_start + max_end) >> 1); if (rdclt_average >= 0x60) while(1); if (rdclt_average < 0) { rdclt_average = 0; } if (rdclt_average >= dly_val) { rdclt_average -= dly_val; tr1 = tr1 ^ SDRAM_TR1_RDCD_MASK; } tr1 |= SDRAM_TR1_RDCT_ENCODE(rdclt_average); #if 0 printf("tr1: %x\n", tr1); #endif /* * program SDRAM Timing Register 1 TR1 */ mtsdram(mem_tr1, tr1); } unsigned long program_bxcr(unsigned long* dimm_populated, unsigned char* iic0_dimm_addr, unsigned long num_dimm_banks) { unsigned long dimm_num; unsigned long bxcr_num; unsigned long bank_base_addr; unsigned long bank_size_bytes; unsigned long cr; unsigned long i; unsigned long temp; unsigned char num_row_addr; unsigned char num_col_addr; unsigned char num_banks; unsigned char bank_size_id; /* * Set the BxCR regs. First, wipe out the bank config registers. */ for (bxcr_num = 0; bxcr_num < MAXBXCR; bxcr_num++) { mtdcr(memcfga, mem_b0cr + (bxcr_num << 2)); mtdcr(memcfgd, 0x00000000); } /* * reset the bank_base address */ bank_base_addr = CFG_SDRAM_BASE; for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { if (dimm_populated[dimm_num] == TRUE) { num_row_addr = spd_read(iic0_dimm_addr[dimm_num], 3); num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4); num_banks = spd_read(iic0_dimm_addr[dimm_num], 5); bank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31); /* * Set the SDRAM0_BxCR regs */ cr = 0; bank_size_bytes = 4 * 1024 * 1024 * bank_size_id; switch (bank_size_id) { case 0x02: cr |= SDRAM_BXCR_SDSZ_8; break; case 0x04: cr |= SDRAM_BXCR_SDSZ_16; break; case 0x08: cr |= SDRAM_BXCR_SDSZ_32; break; case 0x10: cr |= SDRAM_BXCR_SDSZ_64; break; case 0x20: cr |= SDRAM_BXCR_SDSZ_128; break; case 0x40: cr |= SDRAM_BXCR_SDSZ_256; break; case 0x80: cr |= SDRAM_BXCR_SDSZ_512; break; default: printf("DDR-SDRAM: DIMM %lu BxCR configuration.\n", dimm_num); printf("ERROR: Unsupported value for the banksize: %d.\n", bank_size_id); printf("Replace the DIMM module with a supported DIMM.\n\n"); hang(); } switch (num_col_addr) { case 0x08: cr |= SDRAM_BXCR_SDAM_1; break; case 0x09: cr |= SDRAM_BXCR_SDAM_2; break; case 0x0A: cr |= SDRAM_BXCR_SDAM_3; break; case 0x0B: cr |= SDRAM_BXCR_SDAM_4; break; default: printf("DDR-SDRAM: DIMM %lu BxCR configuration.\n", dimm_num); printf("ERROR: Unsupported value for number of " "column addresses: %d.\n", num_col_addr); printf("Replace the DIMM module with a supported DIMM.\n\n"); hang(); } /* * enable the bank */ cr |= SDRAM_BXCR_SDBE; /*------------------------------------------------------------------ | This next section is hardware dependent and must be programmed | to match the hardware. +-----------------------------------------------------------------*/ if (dimm_num == 0) { for (i = 0; i < num_banks; i++) { mtdcr(memcfga, mem_b0cr + (i << 2)); temp = mfdcr(memcfgd) & ~(SDRAM_BXCR_SDBA_MASK | SDRAM_BXCR_SDSZ_MASK | SDRAM_BXCR_SDAM_MASK | SDRAM_BXCR_SDBE); cr |= temp; cr |= bank_base_addr & SDRAM_BXCR_SDBA_MASK; mtdcr(memcfgd, cr); bank_base_addr += bank_size_bytes; } } else { for (i = 0; i < num_banks; i++) { mtdcr(memcfga, mem_b2cr + (i << 2)); temp = mfdcr(memcfgd) & ~(SDRAM_BXCR_SDBA_MASK | SDRAM_BXCR_SDSZ_MASK | SDRAM_BXCR_SDAM_MASK | SDRAM_BXCR_SDBE); cr |= temp; cr |= bank_base_addr & SDRAM_BXCR_SDBA_MASK; mtdcr(memcfgd, cr); bank_base_addr += bank_size_bytes; } } } } return(bank_base_addr); } void program_ecc (unsigned long num_bytes) { unsigned long bank_base_addr; unsigned long current_address; unsigned long end_address; unsigned long address_increment; unsigned long cfg0; /* * get Memory Controller Options 0 data */ mfsdram(mem_cfg0, cfg0); /* * reset the bank_base address */ bank_base_addr = CFG_SDRAM_BASE; if ((cfg0 & SDRAM_CFG0_MCHK_MASK) != SDRAM_CFG0_MCHK_NON) { mtsdram(mem_cfg0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) | SDRAM_CFG0_MCHK_GEN); if ((cfg0 & SDRAM_CFG0_DMWD_MASK) == SDRAM_CFG0_DMWD_32) { address_increment = 4; } else { address_increment = 8; } current_address = (unsigned long)(bank_base_addr); end_address = (unsigned long)(bank_base_addr) + num_bytes; while (current_address < end_address) { *((unsigned long*)current_address) = 0x00000000; current_address += address_increment; } mtsdram(mem_cfg0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) | SDRAM_CFG0_MCHK_CHK); } } #endif /* CONFIG_440 */ #endif /* CONFIG_SPD_EEPROM */