README on how boot images are created for secure TI devices CONFIG_TI_SECURE_DEVICE: Secure TI devices require a boot image that is authenticated by ROM code to function. Without this, even JTAG remains locked and the device is essentially useless. In order to create a valid boot image for a secure device from TI, the initial public software image must be signed and combined with various headers, certificates, and other binary images. Information on the details on the complete boot image format can be obtained from Texas Instruments. The tools used to generate boot images for secure devices are part of a secure development package (SECDEV) that can be downloaded from: http://www.ti.com/mysecuresoftware (login required) The secure development package is access controlled due to NDA and export control restrictions. Access must be requested and granted by TI before the package is viewable and downloadable. Contact TI, either online or by way of a local TI representative, to request access. Booting of U-Boot SPL ===================== When CONFIG_TI_SECURE_DEVICE is set, the U-Boot SPL build process requires the presence and use of these tools in order to create a viable boot image. The build process will look for the environment variable TI_SECURE_DEV_PKG, which should be the path of the installed SECDEV package. If the TI_SECURE_DEV_PKG variable is not defined or if it is defined but doesn't point to a valid SECDEV package, a warning is issued during the build to indicate that a final secure bootable image was not created. Within the SECDEV package exists an image creation script: ${TI_SECURE_DEV_PKG}/scripts/create-boot-image.sh This is called as part of the SPL/u-boot build process. As the secure boot image formats and requirements differ between secure SOC from TI, the purpose of this script is to abstract these details as much as possible. The script is basically the only required interface to the TI SECDEV package for creating a bootable SPL image for secure TI devices. Invoking the script for AM33xx Secure Devices ============================================= create-boot-image.sh \ <IMAGE_FLAG> <INPUT_FILE> <OUTPUT_FILE> <SPL_LOAD_ADDR> <IMAGE_FLAG> is a value that specifies the type of the image to generate OR the action the image generation tool will take. Valid values are: SPI_X-LOADER - Generates an image for SPI flash (byte swapped) X-LOADER - Generates an image for non-XIP flash MLO - Generates an image for SD/MMC/eMMC media 2ND - Generates an image for USB, UART and Ethernet XIP_X-LOADER - Generates a single stage u-boot for NOR/QSPI XiP <INPUT_FILE> is the full path and filename of the public world boot loaderbinary file (depending on the boot media, this is usually either u-boot-spl.bin or u-boot.bin). <OUTPUT_FILE> is the full path and filename of the final secure image. The output binary images should be used in place of the standard non-secure binary images (see the platform-specific user's guides and releases notes for how the non-secure images are typically used) u-boot-spl_HS_SPI_X-LOADER - byte swapped boot image for SPI flash u-boot-spl_HS_X-LOADER - boot image for NAND or SD/MMC/eMMC rawmode u-boot-spl_HS_MLO - boot image for SD/MMC/eMMC media u-boot-spl_HS_2ND - boot image for USB, UART and Ethernet u-boot_HS_XIP_X-LOADER - boot image for NOR or QSPI Xip flash <SPL_LOAD_ADDR> is the address at which SOC ROM should load the <INPUT_FILE> Invoking the script for AM43xx Secure Devices ============================================= create-boot-image.sh \ <IMAGE_FLAG> <INPUT_FILE> <OUTPUT_FILE> <SPL_LOAD_ADDR> <IMAGE_FLAG> is a value that specifies the type of the image to generate OR the action the image generation tool will take. Valid values are: SPI_X-LOADER - Generates an image for SPI flash (byte swapped) XIP_X-LOADER - Generates a single stage u-boot for NOR/QSPI XiP ISSW - Generates an image for all other boot modes <INPUT_FILE> is the full path and filename of the public world boot loaderbinary file (depending on the boot media, this is usually either u-boot-spl.bin or u-boot.bin). <OUTPUT_FILE> is the full path and filename of the final secure image. The output binary images should be used in place of the standard non-secure binary images (see the platform-specific user's guides and releases notes for how the non-secure images are typically used) u-boot-spl_HS_SPI_X-LOADER - byte swapped boot image for SPI flash u-boot_HS_XIP_X-LOADER - boot image for NOR or QSPI flash u-boot-spl_HS_ISSW - boot image for all other boot media <SPL_LOAD_ADDR> is the address at which SOC ROM should load the <INPUT_FILE> Invoking the script for DRA7xx/AM57xx Secure Devices ==================================================== create-boot-image.sh <IMAGE_TYPE> <INPUT_FILE> <OUTPUT_FILE> <IMAGE_TYPE> is a value that specifies the type of the image to generate OR the action the image generation tool will take. Valid values are: X-LOADER - Generates an image for NOR or QSPI boot modes MLO - Generates an image for SD/MMC/eMMC boot modes ULO - Generates an image for USB/UART peripheral boot modes Note: ULO is not yet used by the u-boot build process <INPUT_FILE> is the full path and filename of the public world boot loader binary file (for this platform, this is always u-boot-spl.bin). <OUTPUT_FILE> is the full path and filename of the final secure image. The output binary images should be used in place of the standard non-secure binary images (see the platform-specific user's guides and releases notes for how the non-secure images are typically used) u-boot-spl_HS_MLO - boot image for SD/MMC/eMMC. This image is copied to a file named MLO, which is the name that the device ROM bootloader requires for loading from the FAT partition of an SD card (same as on non-secure devices) u-boot-spl_HS_X-LOADER - boot image for all other flash memories including QSPI and NOR flash Booting of Primary U-Boot (u-boot.img) ====================================== The SPL image is responsible for loading the next stage boot loader, which is the main u-boot image. For secure TI devices, the SPL will be authenticated, as described above, as part of the particular device's ROM boot process. In order to continue the secure boot process, the authenticated SPL must authenticate the main u-boot image that it loads. The configurations for secure TI platforms are written to make the boot process use the FIT image format for the u-boot.img (CONFIG_SPL_FRAMEWORK and CONFIG_SPL_LOAD_FIT). With these configurations the binary components that the SPL loads include a specific DTB image and u-boot image. These DTB image may be one of many available to the boot process. In order to secure these components so that they can be authenticated by the SPL as they are loaded from the FIT image, the build procedure for secure TI devices will secure these images before they are integrated into the FIT image. When those images are extracted from the FIT image at boot time, they are post-processed to verify that they are still secure. The outlined security-related SPL post-processing is enabled through the CONFIG_SPL_FIT_IMAGE_POST_PROCESS option which must be enabled for the secure boot scheme to work. In order to allow verifying proper operation of the secure boot chain in case of successful authentication messages like "Authentication passed: CERT_U-BOOT-NOD" are output by the SPL to the console for each blob that got extracted from the FIT image. Note that the last part of this log message is the (truncated) name of the signing certificate embedded into the blob that got processed. The exact details of the how the images are secured is handled by the SECDEV package. Within the SECDEV package exists a script to process an input binary image: ${TI_SECURE_DEV_PKG}/scripts/secure-binary-image.sh This is called as part of the u-boot build process. As the secure image formats and requirements can differ between the various secure SOCs from TI, this script in the SECDEV package abstracts these details. This script is essentially the only required interface to the TI SECDEV package for creating a u-boot.img image for secure TI devices. The SPL/u-boot code contains calls to dedicated secure ROM functions to perform the validation on the secured images. The details of the interface to those functions is shown in the code. The summary is that they are accessed by invoking an ARM secure monitor call to the device's secure ROM (fixed read-only-memory that is secure and only accessible when the ARM core is operating in the secure mode). Invoking the secure-binary-image script for Secure Devices ========================================================== secure-binary-image.sh <INPUT_FILE> <OUTPUT_FILE> <INPUT_FILE> is the full path and filename of the input binary image <OUTPUT_FILE> is the full path and filename of the output secure image.