Lightweight UBI and UBI fastmap support # Copyright (C) Thomas Gleixner <tglx@linutronix.de> # # SPDX-License-Identifier: GPL 2.0+ BSD-3-Clause Scans the UBI information and loads the requested static volumes into memory. Configuration Options: CONFIG_SPL_UBI Enables the SPL UBI support CONFIG_SPL_UBI_MAX_VOL_LEBS The maximum number of logical eraseblocks which a static volume to load can contain. Used for sizing the scan data structure CONFIG_SPL_UBI_MAX_PEB_SIZE The maximum physical erase block size. Either a compile time constant or runtime detection. Used for sizing the scan data structure CONFIG_SPL_UBI_MAX_PEBS The maximum physical erase block count. Either a compile time constant or runtime detection. Used for sizing the scan data structure CONFIG_SPL_UBI_VOL_IDS The maximum volume ids which can be loaded. Used for sizing the scan data structure. Usage notes: In the board config file define for example: #define CONFIG_SPL_UBI #define CONFIG_SPL_UBI_MAX_VOL_LEBS 256 #define CONFIG_SPL_UBI_MAX_PEB_SIZE (256*1024) #define CONFIG_SPL_UBI_MAX_PEBS 4096 #define CONFIG_SPL_UBI_VOL_IDS 8 The size requirement is roughly as follows: 2k for the basic data structure + CONFIG_SPL_UBI_VOL_IDS * CONFIG_SPL_UBI_MAX_VOL_LEBS * 8 + CONFIG_SPL_UBI_MAX_PEBS * 64 + CONFIG_SPL_UBI_MAX_PEB_SIZE * UBI_FM_MAX_BLOCKS The last one is big, but I really don't care in that stage. Real world implementations only use the first couple of blocks, but the code handles up to UBI_FM_MAX_BLOCKS. Given the above configuration example the requirement is about 5M which is usually not a problem to reserve in the RAM along with the other areas like the kernel/dts load address. So something like this will do the trick: #define SPL_FINFO_ADDR 0x80800000 #define SPL_DTB_LOAD_ADDR 0x81800000 #define SPL_KERNEL_LOAD_ADDR 0x82000000 In the board file, implement the following: static struct ubispl_load myvolumes[] = { { .vol_id = 0, /* kernel volume */ .load_addr = (void *)SPL_KERNEL_LOAD_ADDR, }, { .vol_id = 1, /* DT blob */ .load_addr = (void *)SPL_DTB_LOAD_ADDR, } }; int spl_start_uboot(void) { struct ubispl_info info; info.ubi = (struct ubi_scan_info *) SPL_FINFO_ADDR; info.fastmap = 1; info.read = nand_spl_read_flash; #if COMPILE_TIME_DEFINED /* * MY_NAND_NR_SPL_PEBS is the number of physical erase blocks * in the FLASH which are reserved for the SPL. Think about * mtd partitions: * * part_spl { .start = 0, .end = 4 } * part_ubi { .start = 4, .end = NR_PEBS } */ info.peb_offset = MY_NAND_NR_SPL_PEBS; info.peb_size = CONFIG_SYS_NAND_BLOCK_SIZE; info.vid_offset = MY_NAND_UBI_VID_OFFS; info.leb_start = MY_NAND_UBI_DATA_OFFS; info.peb_count = MY_NAND_UBI_NUM_PEBS; #else get_flash_info(&flash_info); info.peb_offset = MY_NAND_NR_SPL_PEBS; info.peb_size = flash_info.peb_size; /* * The VID and Data offset depend on the capability of the * FLASH chip to do subpage writes. * * If the flash chip supports subpage writes, then the VID * header starts at the second subpage. So for 2k pages size * with 4 subpages the VID offset is 512. The DATA offset is 2k. * * If the flash chip does not support subpage writes then the * VID offset is FLASH_PAGE_SIZE and the DATA offset * 2 * FLASH_PAGE_SIZE */ info.vid_offset = flash_info.vid_offset; info.leb_start = flash_info.data_offset; /* * The flash reports the total number of erase blocks, so * we need to subtract the number of blocks which are reserved * for the SPL itself and not managed by UBI. */ info.peb_count = flash_info.peb_count - MY_NAND_NR_SPL_PEBS; #endif ret = ubispl_load_volumes(&info, myvolumes, ARRAY_SIZE(myvolumes); .... } Note: you can load any payload that way. You can even load u-boot from UBI, so the only non UBI managed FLASH area is the one which is reserved for the SPL itself and read from the SoC ROM. And you can do fallback scenarios: if (ubispl_load_volumes(&info, volumes0, ARRAY_SIZE(volumes0))) if (ubispl_load_volumes(&info, volumes1, ARRAY_SIZE(volumes1))) ubispl_load_volumes(&info, vol_uboot, ARRAY_SIZE(vol_uboot));