/* * Faraday FTIDE020 ATA Controller (AHB) * * (C) Copyright 2011 Andes Technology * Greentime Hu <greentime@andestech.com> * Macpaul Lin <macpaul@andestech.com> * Kuo-Wei Chou <kwchou@andestech.com> * * SPDX-License-Identifier: GPL-2.0+ */ /* ftide020.c - ide support functions for the FTIDE020_S controller */ #include <config.h> #include <common.h> #include <ata.h> #include <ide.h> #include <asm/io.h> #include <api_public.h> #include "ftide020.h" /* base address */ #define FTIDE_BASE CONFIG_SYS_ATA_BASE_ADDR /* * data address - The CMD and DATA use the same FIFO in FTIDE020_S * FTIDE_DATA = CONFIG_SYS_ATA_BASE_ADDR + CONFIG_SYS_ATA_DATA_OFFSET * = &ftide020->rw_fifo */ #define FTIDE_DATA (&ftide020->rw_fifo) /* command and data I/O macros */ /* 0x0 - DATA FIFO */ #define WRITE_DATA(x) outl((x), &ftide020->rw_fifo) /* 0x00 */ #define READ_DATA() inl(&ftide020->rw_fifo) /* 0x00 */ /* 0x04 - R: Status Reg, W: CMD_FIFO */ #define WRITE_CMD(x) outl((x), &ftide020->cmd_fifo) /* 0x04 */ #define READ_STATUS() inl(&ftide020->cmd_fifo) /* 0x04 */ void ftide_set_device(int cx8, int dev) { static struct ftide020_s *ftide020 = (struct ftide020_s *) FTIDE_BASE; WRITE_CMD(SET_DEV_CMD | IDE_SET_CX8(cx8) | dev); } unsigned char ide_read_register(int dev, unsigned int port) { static struct ftide020_s *ftide020 = (struct ftide020_s *) FTIDE_BASE; ftide_set_device(0, dev); WRITE_CMD(READ_REG_CMD | IDE_REG_CS_READ(CONFIG_IDE_REG_CS) | IDE_REG_DA_WRITE(port)); return READ_DATA() & 0xff; } void ide_write_register(int dev, unsigned int port, unsigned char val) { static struct ftide020_s *ftide020 = (struct ftide020_s *) FTIDE_BASE; ftide_set_device(0, dev); WRITE_CMD(WRITE_REG_CMD | IDE_REG_CS_WRITE(CONFIG_IDE_REG_CS) | IDE_REG_DA_WRITE(port) | val); } void ide_write_data(int dev, const ulong *sect_buf, int words) { static struct ftide020_s *ftide020 = (struct ftide020_s *) FTIDE_BASE; ftide_set_device(0, dev); WRITE_CMD(WRITE_DATA_CMD | ((words << 2) - 1)); /* block write */ outsl(FTIDE_DATA, sect_buf, words); } void ide_read_data(int dev, ulong *sect_buf, int words) { static struct ftide020_s *ftide020 = (struct ftide020_s *) FTIDE_BASE; ftide_set_device(0, dev); WRITE_CMD(READ_DATA_CMD | ((words << 2) - 1)); /* block read */ insl(FTIDE_DATA, sect_buf, words); } void ftide_dfifo_ready(ulong *time) { static struct ftide020_s *ftide020 = (struct ftide020_s *) FTIDE_BASE; while (!(READ_STATUS() & STATUS_RFE)) { if (*time-- == 0) break; udelay(100); } } extern ulong ide_bus_offset[CONFIG_SYS_IDE_MAXBUS]; /* Reset_IDE_controller */ static void reset_ide_controller(void) { static struct ftide020_s *ftide020 = (struct ftide020_s *) FTIDE_BASE; unsigned int val; val = inl(&ftide020->cr); val |= CONTROL_RST; outl(val, &ftide020->cr); /* wait until reset OK, this is poor HW design */ mdelay(50); val &= ~(CONTROL_RST); outl(val, &ftide020->cr); mdelay(50); val |= CONTROL_SRST; outl(val, &ftide020->cr); /* wait until reset OK, this is poor HW design */ mdelay(50); val &= ~(CONTROL_SRST); outl(val, &ftide020->cr); /* IORDY enable for PIO, for 2 device */ val |= (CONTROL_IRE0 | CONTROL_IRE1); outl(val, &ftide020->cr); } /* IDE clock frequence */ uint ftide_clock_freq(void) { /* * todo: To aquire dynamic system frequency is dependend on the power * management unit which the ftide020 is connected to. In current, * there are only few PMU supports in u-boot. * So this function is wait for future enhancement. */ return 100; } /* Calculate Timing Registers */ static unsigned int timing_cal(u16 t0, u16 t1, u16 t2, u16 t4) { unsigned int val, ahb_ns = 8; u8 TEOC, T1, T2, T4; T1 = (u8) (t1 / ahb_ns); if ((T1 * ahb_ns) == t1) T1--; T2 = (u8) (t2 / ahb_ns); if ((T2 * ahb_ns) == t2) T2--; T4 = (u8) (t4 / ahb_ns); if ((T4 * ahb_ns) == t4) T4--; TEOC = (u8) (t0 / ahb_ns); if ((TEOC * ahb_ns) == t0) TEOC--; TEOC = ((TEOC > (T1 + T2 + T4)) ? (TEOC - (T1 + T2 + T4)) : 0); /* * Here the fields in data timing registers in PIO mode * is accessed the same way as command timing registers. */ val = DT_REG_PIO_T1(T1) | DT_REG_PIO_T2(T2) | DT_REG_PIO_T4(T4) | DT_REG_PIO_TEOC(TEOC); return val; } /* Set Timing Register */ static unsigned int set_mode_timing(u8 dev, u8 id, u8 mode) { static struct ftide020_s *ftide020 = (struct ftide020_s *) FTIDE_BASE; u16 t0, t1, t2, t4; u8 tcyc, tcvs, tmli, tenv, tack, trp; unsigned int val, sysclk = 8; if (id >= TATOL_TIMING) return 0; sysclk = ftide_clock_freq(); switch (id) { case CMD_TIMING: if (mode < REG_MODE) { t0 = REG_ACCESS_TIMING[REG_T0][mode]; t1 = REG_ACCESS_TIMING[REG_T1][mode]; t2 = REG_ACCESS_TIMING[REG_T2][mode]; t4 = REG_ACCESS_TIMING[REG_T4][mode]; val = timing_cal(t0, t1, t2, t4); outl(val, (dev ? &ftide020->ctrd1 : &ftide020->ctrd0)); return 1; } else return 0; case PIO_TIMING: if (mode < PIO_MODE) { t0 = PIO_ACCESS_TIMING[PIO_T0][mode]; t1 = PIO_ACCESS_TIMING[PIO_T1][mode]; t2 = PIO_ACCESS_TIMING[PIO_T2][mode]; t4 = PIO_ACCESS_TIMING[PIO_T4][mode]; val = timing_cal(t0, t1, t2, t4); outl(val, (dev ? &ftide020->dtrd1 : &ftide020->dtrd0)); return 1; } else return 0; case DMA_TIMING: if (mode < UDMA_MODE) { /* * 0.999 is ceiling * for tcyc, tcvs, tmli, tenv, trp, tack */ tcyc = (u8) (((UDMA_ACCESS_TIMING[UDMA_TCYC][mode] \ * sysclk) + 9990) / 10000); tcvs = (u8) (((UDMA_ACCESS_TIMING[UDMA_TCVS][mode] \ * sysclk) + 9990) / 10000); tmli = (u8) (((UDMA_ACCESS_TIMING[UDMA_TMLI][mode] \ * sysclk) + 9990) / 10000); tenv = (u8) (((UDMA_ACCESS_TIMING[UDMA_TENV][mode] \ * sysclk) + 9990) / 10000); trp = (u8) (((UDMA_ACCESS_TIMING[UDMA_TRP][mode] \ * sysclk) + 9990) / 10000); tack = (u8) (((UDMA_ACCESS_TIMING[UDMA_TACK][mode] \ * sysclk) + 9990) / 10000); val = DT_REG_UDMA_TENV((tenv > 0) ? (tenv - 1) : 0) | DT_REG_UDMA_TMLI((tmli > 0) ? (tmli - 1) : 0) | DT_REG_UDMA_TCYC((tcyc > 0) ? (tcyc - 1) : 0) | DT_REG_UDMA_TACK((tack > 0) ? (tack - 1) : 0) | DT_REG_UDMA_TCVS((tcvs > 0) ? (tcvs - 1) : 0) | DT_REG_UDMA_TRP((trp > 0) ? (trp - 1) : 0); outl(val, (dev ? &ftide020->dtrd1 : &ftide020->dtrd0)); return 1; } else return 0; default: return 0; } } static void ftide_read_hwrev(void) { static struct ftide020_s *ftide020 = (struct ftide020_s *) FTIDE_BASE; unsigned int rev; rev = inl(&ftide020->revision); } static int ftide_controller_probe(void) { static struct ftide020_s *ftide020 = (struct ftide020_s *) FTIDE_BASE; unsigned int bak; bak = inl(&ftide020->ctrd1); /* probing by using shorter setup time */ outl(CONFIG_CTRD1_PROBE_T1, &ftide020->ctrd1); if ((inl(&ftide020->ctrd1) & 0xff) != CONFIG_CTRD1_PROBE_T1) { outl(bak, &ftide020->ctrd1); return 0; } /* probing by using longer setup time */ outl(CONFIG_CTRD1_PROBE_T2, &ftide020->ctrd1); if ((inl(&ftide020->ctrd1) & 0xff) != CONFIG_CTRD1_PROBE_T2) { outl(bak, &ftide020->ctrd1); return 0; } outl(bak, &ftide020->ctrd1); return 1; } /* ide_preinit() was migrated from linux driver ide_probe_for_ftide() */ int ide_preinit(void) { static struct ftide020_s *ftide020 = (struct ftide020_s *) FTIDE_BASE; int status; unsigned int val; int i; status = 1; for (i = 0; i < CONFIG_SYS_IDE_MAXBUS; i++) ide_bus_offset[i] = -ATA_STATUS; /* auto-detect IDE controller */ if (ftide_controller_probe()) { printf("FTIDE020_S\n"); } else { printf("FTIDE020_S ATA controller not found.\n"); return API_ENODEV; } /* check HW IP revision */ ftide_read_hwrev(); /* set FIFO threshold */ outl(((WRITE_FIFO - RX_THRESH) << 16) | RX_THRESH, &ftide020->dmatirr); /* set Device_0 PIO_4 timing */ set_mode_timing(0, CMD_TIMING, REG_MODE4); set_mode_timing(0, PIO_TIMING, PIO_MODE4); /* set Device_1 PIO_4 timing */ set_mode_timing(1, CMD_TIMING, REG_MODE4); set_mode_timing(1, PIO_TIMING, PIO_MODE4); /* from E-bios */ /* little endian */ outl(0x0, &ftide020->cr); mdelay(10); outl(0x0fff0fff, &ftide020->ahbtr); mdelay(10); /* Enable controller Interrupt */ val = inl(&ftide020->cr); /* Enable: IDE IRQ, IDE Terminate ERROR IRQ, AHB Timeout error IRQ */ val |= (CONTROL_IIE | CONTROL_TERIE | CONTROL_AERIE); outl(val, &ftide020->cr); status = 0; return status; } void ide_set_reset(int flag) { debug("ide_set_reset()\n"); reset_ide_controller(); return; }