/* * (C) Copyright 2017 * Vikas Manocha, <vikas.manocha@st.com> * * SPDX-License-Identifier: GPL-2.0+ */ #include <common.h> #include <clk-uclass.h> #include <dm.h> #include <asm/io.h> #include <asm/arch/rcc.h> #include <asm/arch/stm32.h> #include <asm/arch/stm32_periph.h> #include <dt-bindings/mfd/stm32f7-rcc.h> #define RCC_CR_HSION BIT(0) #define RCC_CR_HSEON BIT(16) #define RCC_CR_HSERDY BIT(17) #define RCC_CR_HSEBYP BIT(18) #define RCC_CR_CSSON BIT(19) #define RCC_CR_PLLON BIT(24) #define RCC_CR_PLLRDY BIT(25) #define RCC_PLLCFGR_PLLM_MASK GENMASK(5, 0) #define RCC_PLLCFGR_PLLN_MASK GENMASK(14, 6) #define RCC_PLLCFGR_PLLP_MASK GENMASK(17, 16) #define RCC_PLLCFGR_PLLQ_MASK GENMASK(27, 24) #define RCC_PLLCFGR_PLLSRC BIT(22) #define RCC_PLLCFGR_PLLM_SHIFT 0 #define RCC_PLLCFGR_PLLN_SHIFT 6 #define RCC_PLLCFGR_PLLP_SHIFT 16 #define RCC_PLLCFGR_PLLQ_SHIFT 24 #define RCC_CFGR_AHB_PSC_MASK GENMASK(7, 4) #define RCC_CFGR_APB1_PSC_MASK GENMASK(12, 10) #define RCC_CFGR_APB2_PSC_MASK GENMASK(15, 13) #define RCC_CFGR_SW0 BIT(0) #define RCC_CFGR_SW1 BIT(1) #define RCC_CFGR_SW_MASK GENMASK(1, 0) #define RCC_CFGR_SW_HSI 0 #define RCC_CFGR_SW_HSE RCC_CFGR_SW0 #define RCC_CFGR_SW_PLL RCC_CFGR_SW1 #define RCC_CFGR_SWS0 BIT(2) #define RCC_CFGR_SWS1 BIT(3) #define RCC_CFGR_SWS_MASK GENMASK(3, 2) #define RCC_CFGR_SWS_HSI 0 #define RCC_CFGR_SWS_HSE RCC_CFGR_SWS0 #define RCC_CFGR_SWS_PLL RCC_CFGR_SWS1 #define RCC_CFGR_HPRE_SHIFT 4 #define RCC_CFGR_PPRE1_SHIFT 10 #define RCC_CFGR_PPRE2_SHIFT 13 /* * Offsets of some PWR registers */ #define PWR_CR1_ODEN BIT(16) #define PWR_CR1_ODSWEN BIT(17) #define PWR_CSR1_ODRDY BIT(16) #define PWR_CSR1_ODSWRDY BIT(17) struct pll_psc { u8 pll_m; u16 pll_n; u8 pll_p; u8 pll_q; u8 ahb_psc; u8 apb1_psc; u8 apb2_psc; }; #define AHB_PSC_1 0 #define AHB_PSC_2 0x8 #define AHB_PSC_4 0x9 #define AHB_PSC_8 0xA #define AHB_PSC_16 0xB #define AHB_PSC_64 0xC #define AHB_PSC_128 0xD #define AHB_PSC_256 0xE #define AHB_PSC_512 0xF #define APB_PSC_1 0 #define APB_PSC_2 0x4 #define APB_PSC_4 0x5 #define APB_PSC_8 0x6 #define APB_PSC_16 0x7 struct stm32_clk { struct stm32_rcc_regs *base; }; #if !defined(CONFIG_STM32_HSE_HZ) #error "CONFIG_STM32_HSE_HZ not defined!" #else #if (CONFIG_STM32_HSE_HZ == 25000000) #if (CONFIG_SYS_CLK_FREQ == 200000000) /* 200 MHz */ struct pll_psc sys_pll_psc = { .pll_m = 25, .pll_n = 400, .pll_p = 2, .pll_q = 8, .ahb_psc = AHB_PSC_1, .apb1_psc = APB_PSC_4, .apb2_psc = APB_PSC_2 }; #endif #else #error "No PLL/Prescaler configuration for given CONFIG_STM32_HSE_HZ exists" #endif #endif static int configure_clocks(struct udevice *dev) { struct stm32_clk *priv = dev_get_priv(dev); struct stm32_rcc_regs *regs = priv->base; /* Reset RCC configuration */ setbits_le32(®s->cr, RCC_CR_HSION); writel(0, ®s->cfgr); /* Reset CFGR */ clrbits_le32(®s->cr, (RCC_CR_HSEON | RCC_CR_CSSON | RCC_CR_PLLON)); writel(0x24003010, ®s->pllcfgr); /* Reset value from RM */ clrbits_le32(®s->cr, RCC_CR_HSEBYP); writel(0, ®s->cir); /* Disable all interrupts */ /* Configure for HSE+PLL operation */ setbits_le32(®s->cr, RCC_CR_HSEON); while (!(readl(®s->cr) & RCC_CR_HSERDY)) ; setbits_le32(®s->cfgr, (( sys_pll_psc.ahb_psc << RCC_CFGR_HPRE_SHIFT) | (sys_pll_psc.apb1_psc << RCC_CFGR_PPRE1_SHIFT) | (sys_pll_psc.apb2_psc << RCC_CFGR_PPRE2_SHIFT))); /* Configure the main PLL */ uint32_t pllcfgr = 0; pllcfgr = RCC_PLLCFGR_PLLSRC; /* pll source HSE */ pllcfgr |= sys_pll_psc.pll_m << RCC_PLLCFGR_PLLM_SHIFT; pllcfgr |= sys_pll_psc.pll_n << RCC_PLLCFGR_PLLN_SHIFT; pllcfgr |= ((sys_pll_psc.pll_p >> 1) - 1) << RCC_PLLCFGR_PLLP_SHIFT; pllcfgr |= sys_pll_psc.pll_q << RCC_PLLCFGR_PLLQ_SHIFT; writel(pllcfgr, ®s->pllcfgr); /* Enable the main PLL */ setbits_le32(®s->cr, RCC_CR_PLLON); while (!(readl(®s->cr) & RCC_CR_PLLRDY)) ; /* Enable high performance mode, System frequency up to 200 MHz */ setbits_le32(®s->apb1enr, RCC_APB1ENR_PWREN); setbits_le32(&STM32_PWR->cr1, PWR_CR1_ODEN); /* Infinite wait! */ while (!(readl(&STM32_PWR->csr1) & PWR_CSR1_ODRDY)) ; /* Enable the Over-drive switch */ setbits_le32(&STM32_PWR->cr1, PWR_CR1_ODSWEN); /* Infinite wait! */ while (!(readl(&STM32_PWR->csr1) & PWR_CSR1_ODSWRDY)) ; stm32_flash_latency_cfg(5); clrbits_le32(®s->cfgr, (RCC_CFGR_SW0 | RCC_CFGR_SW1)); setbits_le32(®s->cfgr, RCC_CFGR_SW_PLL); while ((readl(®s->cfgr) & RCC_CFGR_SWS_MASK) != RCC_CFGR_SWS_PLL) ; return 0; } static unsigned long stm32_clk_get_rate(struct clk *clk) { struct stm32_clk *priv = dev_get_priv(clk->dev); struct stm32_rcc_regs *regs = priv->base; u32 sysclk = 0; u32 shift = 0; /* Prescaler table lookups for clock computation */ u8 ahb_psc_table[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9 }; u8 apb_psc_table[8] = { 0, 0, 0, 0, 1, 2, 3, 4 }; if ((readl(®s->cfgr) & RCC_CFGR_SWS_MASK) == RCC_CFGR_SWS_PLL) { u16 pllm, plln, pllp; pllm = (readl(®s->pllcfgr) & RCC_PLLCFGR_PLLM_MASK); plln = ((readl(®s->pllcfgr) & RCC_PLLCFGR_PLLN_MASK) >> RCC_PLLCFGR_PLLN_SHIFT); pllp = ((((readl(®s->pllcfgr) & RCC_PLLCFGR_PLLP_MASK) >> RCC_PLLCFGR_PLLP_SHIFT) + 1) << 1); sysclk = ((CONFIG_STM32_HSE_HZ / pllm) * plln) / pllp; } else { return -EINVAL; } switch (clk->id) { /* * AHB CLOCK: 3 x 32 bits consecutive registers are used : * AHB1, AHB2 and AHB3 */ case STM32F7_AHB1_CLOCK(GPIOA) ... STM32F7_AHB3_CLOCK(QSPI): shift = ahb_psc_table[( (readl(®s->cfgr) & RCC_CFGR_AHB_PSC_MASK) >> RCC_CFGR_HPRE_SHIFT)]; return sysclk >>= shift; break; /* APB1 CLOCK */ case STM32F7_APB1_CLOCK(TIM2) ... STM32F7_APB1_CLOCK(UART8): shift = apb_psc_table[( (readl(®s->cfgr) & RCC_CFGR_APB1_PSC_MASK) >> RCC_CFGR_PPRE1_SHIFT)]; return sysclk >>= shift; break; /* APB2 CLOCK */ case STM32F7_APB2_CLOCK(TIM1) ... STM32F7_APB2_CLOCK(LTDC): shift = apb_psc_table[( (readl(®s->cfgr) & RCC_CFGR_APB2_PSC_MASK) >> RCC_CFGR_PPRE2_SHIFT)]; return sysclk >>= shift; break; default: pr_err("clock index %ld out of range\n", clk->id); return -EINVAL; break; } } static int stm32_clk_enable(struct clk *clk) { struct stm32_clk *priv = dev_get_priv(clk->dev); struct stm32_rcc_regs *regs = priv->base; u32 offset = clk->id / 32; u32 bit_index = clk->id % 32; debug("%s: clkid = %ld, offset from AHB1ENR is %d, bit_index = %d\n", __func__, clk->id, offset, bit_index); setbits_le32(®s->ahb1enr + offset, BIT(bit_index)); return 0; } void clock_setup(int peripheral) { switch (peripheral) { case SYSCFG_CLOCK_CFG: setbits_le32(&STM32_RCC->apb2enr, RCC_APB2ENR_SYSCFGEN); break; case TIMER2_CLOCK_CFG: setbits_le32(&STM32_RCC->apb1enr, RCC_APB1ENR_TIM2EN); break; case STMMAC_CLOCK_CFG: setbits_le32(&STM32_RCC->ahb1enr, RCC_AHB1ENR_ETHMAC_EN); setbits_le32(&STM32_RCC->ahb1enr, RCC_AHB1ENR_ETHMAC_RX_EN); setbits_le32(&STM32_RCC->ahb1enr, RCC_AHB1ENR_ETHMAC_TX_EN); break; default: break; } } static int stm32_clk_probe(struct udevice *dev) { debug("%s: stm32_clk_probe\n", __func__); struct stm32_clk *priv = dev_get_priv(dev); fdt_addr_t addr; addr = devfdt_get_addr(dev); if (addr == FDT_ADDR_T_NONE) return -EINVAL; priv->base = (struct stm32_rcc_regs *)addr; configure_clocks(dev); return 0; } static int stm32_clk_of_xlate(struct clk *clk, struct ofnode_phandle_args *args) { debug("%s(clk=%p)\n", __func__, clk); if (args->args_count != 2) { debug("Invaild args_count: %d\n", args->args_count); return -EINVAL; } if (args->args_count) clk->id = args->args[1]; else clk->id = 0; return 0; } static struct clk_ops stm32_clk_ops = { .of_xlate = stm32_clk_of_xlate, .enable = stm32_clk_enable, .get_rate = stm32_clk_get_rate, }; static const struct udevice_id stm32_clk_ids[] = { { .compatible = "st,stm32f42xx-rcc"}, {} }; U_BOOT_DRIVER(stm32f7_clk) = { .name = "stm32f7_clk", .id = UCLASS_CLK, .of_match = stm32_clk_ids, .ops = &stm32_clk_ops, .probe = stm32_clk_probe, .priv_auto_alloc_size = sizeof(struct stm32_clk), .flags = DM_FLAG_PRE_RELOC, };