/* * (C) Copyright 2015 Google, Inc * (C) 2017 Theobroma Systems Design und Consulting GmbH * * SPDX-License-Identifier: GPL-2.0 */ #include #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; #if CONFIG_IS_ENABLED(OF_PLATDATA) struct rk3399_clk_plat { struct dtd_rockchip_rk3399_cru dtd; }; struct rk3399_pmuclk_plat { struct dtd_rockchip_rk3399_pmucru dtd; }; #endif struct pll_div { u32 refdiv; u32 fbdiv; u32 postdiv1; u32 postdiv2; u32 frac; }; #define RATE_TO_DIV(input_rate, output_rate) \ ((input_rate) / (output_rate) - 1); #define DIV_TO_RATE(input_rate, div) ((input_rate) / ((div) + 1)) #define PLL_DIVISORS(hz, _refdiv, _postdiv1, _postdiv2) {\ .refdiv = _refdiv,\ .fbdiv = (u32)((u64)hz * _refdiv * _postdiv1 * _postdiv2 / OSC_HZ),\ .postdiv1 = _postdiv1, .postdiv2 = _postdiv2}; #if defined(CONFIG_SPL_BUILD) static const struct pll_div gpll_init_cfg = PLL_DIVISORS(GPLL_HZ, 2, 2, 1); static const struct pll_div cpll_init_cfg = PLL_DIVISORS(CPLL_HZ, 1, 2, 2); #else static const struct pll_div ppll_init_cfg = PLL_DIVISORS(PPLL_HZ, 2, 2, 1); #endif static const struct pll_div apll_l_1600_cfg = PLL_DIVISORS(1600*MHz, 3, 1, 1); static const struct pll_div apll_l_600_cfg = PLL_DIVISORS(600*MHz, 1, 2, 1); static const struct pll_div *apll_l_cfgs[] = { [APLL_L_1600_MHZ] = &apll_l_1600_cfg, [APLL_L_600_MHZ] = &apll_l_600_cfg, }; enum { /* PLL_CON0 */ PLL_FBDIV_MASK = 0xfff, PLL_FBDIV_SHIFT = 0, /* PLL_CON1 */ PLL_POSTDIV2_SHIFT = 12, PLL_POSTDIV2_MASK = 0x7 << PLL_POSTDIV2_SHIFT, PLL_POSTDIV1_SHIFT = 8, PLL_POSTDIV1_MASK = 0x7 << PLL_POSTDIV1_SHIFT, PLL_REFDIV_MASK = 0x3f, PLL_REFDIV_SHIFT = 0, /* PLL_CON2 */ PLL_LOCK_STATUS_SHIFT = 31, PLL_LOCK_STATUS_MASK = 1 << PLL_LOCK_STATUS_SHIFT, PLL_FRACDIV_MASK = 0xffffff, PLL_FRACDIV_SHIFT = 0, /* PLL_CON3 */ PLL_MODE_SHIFT = 8, PLL_MODE_MASK = 3 << PLL_MODE_SHIFT, PLL_MODE_SLOW = 0, PLL_MODE_NORM, PLL_MODE_DEEP, PLL_DSMPD_SHIFT = 3, PLL_DSMPD_MASK = 1 << PLL_DSMPD_SHIFT, PLL_INTEGER_MODE = 1, /* PMUCRU_CLKSEL_CON0 */ PMU_PCLK_DIV_CON_MASK = 0x1f, PMU_PCLK_DIV_CON_SHIFT = 0, /* PMUCRU_CLKSEL_CON1 */ SPI3_PLL_SEL_SHIFT = 7, SPI3_PLL_SEL_MASK = 1 << SPI3_PLL_SEL_SHIFT, SPI3_PLL_SEL_24M = 0, SPI3_PLL_SEL_PPLL = 1, SPI3_DIV_CON_SHIFT = 0x0, SPI3_DIV_CON_MASK = 0x7f, /* PMUCRU_CLKSEL_CON2 */ I2C_DIV_CON_MASK = 0x7f, CLK_I2C8_DIV_CON_SHIFT = 8, CLK_I2C0_DIV_CON_SHIFT = 0, /* PMUCRU_CLKSEL_CON3 */ CLK_I2C4_DIV_CON_SHIFT = 0, /* CLKSEL_CON0 */ ACLKM_CORE_L_DIV_CON_SHIFT = 8, ACLKM_CORE_L_DIV_CON_MASK = 0x1f << ACLKM_CORE_L_DIV_CON_SHIFT, CLK_CORE_L_PLL_SEL_SHIFT = 6, CLK_CORE_L_PLL_SEL_MASK = 3 << CLK_CORE_L_PLL_SEL_SHIFT, CLK_CORE_L_PLL_SEL_ALPLL = 0x0, CLK_CORE_L_PLL_SEL_ABPLL = 0x1, CLK_CORE_L_PLL_SEL_DPLL = 0x10, CLK_CORE_L_PLL_SEL_GPLL = 0x11, CLK_CORE_L_DIV_MASK = 0x1f, CLK_CORE_L_DIV_SHIFT = 0, /* CLKSEL_CON1 */ PCLK_DBG_L_DIV_SHIFT = 0x8, PCLK_DBG_L_DIV_MASK = 0x1f << PCLK_DBG_L_DIV_SHIFT, ATCLK_CORE_L_DIV_SHIFT = 0, ATCLK_CORE_L_DIV_MASK = 0x1f << ATCLK_CORE_L_DIV_SHIFT, /* CLKSEL_CON14 */ PCLK_PERIHP_DIV_CON_SHIFT = 12, PCLK_PERIHP_DIV_CON_MASK = 0x7 << PCLK_PERIHP_DIV_CON_SHIFT, HCLK_PERIHP_DIV_CON_SHIFT = 8, HCLK_PERIHP_DIV_CON_MASK = 3 << HCLK_PERIHP_DIV_CON_SHIFT, ACLK_PERIHP_PLL_SEL_SHIFT = 7, ACLK_PERIHP_PLL_SEL_MASK = 1 << ACLK_PERIHP_PLL_SEL_SHIFT, ACLK_PERIHP_PLL_SEL_CPLL = 0, ACLK_PERIHP_PLL_SEL_GPLL = 1, ACLK_PERIHP_DIV_CON_SHIFT = 0, ACLK_PERIHP_DIV_CON_MASK = 0x1f, /* CLKSEL_CON21 */ ACLK_EMMC_PLL_SEL_SHIFT = 7, ACLK_EMMC_PLL_SEL_MASK = 0x1 << ACLK_EMMC_PLL_SEL_SHIFT, ACLK_EMMC_PLL_SEL_GPLL = 0x1, ACLK_EMMC_DIV_CON_SHIFT = 0, ACLK_EMMC_DIV_CON_MASK = 0x1f, /* CLKSEL_CON22 */ CLK_EMMC_PLL_SHIFT = 8, CLK_EMMC_PLL_MASK = 0x7 << CLK_EMMC_PLL_SHIFT, CLK_EMMC_PLL_SEL_GPLL = 0x1, CLK_EMMC_PLL_SEL_24M = 0x5, CLK_EMMC_DIV_CON_SHIFT = 0, CLK_EMMC_DIV_CON_MASK = 0x7f << CLK_EMMC_DIV_CON_SHIFT, /* CLKSEL_CON23 */ PCLK_PERILP0_DIV_CON_SHIFT = 12, PCLK_PERILP0_DIV_CON_MASK = 0x7 << PCLK_PERILP0_DIV_CON_SHIFT, HCLK_PERILP0_DIV_CON_SHIFT = 8, HCLK_PERILP0_DIV_CON_MASK = 3 << HCLK_PERILP0_DIV_CON_SHIFT, ACLK_PERILP0_PLL_SEL_SHIFT = 7, ACLK_PERILP0_PLL_SEL_MASK = 1 << ACLK_PERILP0_PLL_SEL_SHIFT, ACLK_PERILP0_PLL_SEL_CPLL = 0, ACLK_PERILP0_PLL_SEL_GPLL = 1, ACLK_PERILP0_DIV_CON_SHIFT = 0, ACLK_PERILP0_DIV_CON_MASK = 0x1f, /* CLKSEL_CON25 */ PCLK_PERILP1_DIV_CON_SHIFT = 8, PCLK_PERILP1_DIV_CON_MASK = 0x7 << PCLK_PERILP1_DIV_CON_SHIFT, HCLK_PERILP1_PLL_SEL_SHIFT = 7, HCLK_PERILP1_PLL_SEL_MASK = 1 << HCLK_PERILP1_PLL_SEL_SHIFT, HCLK_PERILP1_PLL_SEL_CPLL = 0, HCLK_PERILP1_PLL_SEL_GPLL = 1, HCLK_PERILP1_DIV_CON_SHIFT = 0, HCLK_PERILP1_DIV_CON_MASK = 0x1f, /* CLKSEL_CON26 */ CLK_SARADC_DIV_CON_SHIFT = 8, CLK_SARADC_DIV_CON_MASK = 0xff << CLK_SARADC_DIV_CON_SHIFT, /* CLKSEL_CON27 */ CLK_TSADC_SEL_X24M = 0x0, CLK_TSADC_SEL_SHIFT = 15, CLK_TSADC_SEL_MASK = 1 << CLK_TSADC_SEL_SHIFT, CLK_TSADC_DIV_CON_SHIFT = 0, CLK_TSADC_DIV_CON_MASK = 0x3ff, /* CLKSEL_CON47 & CLKSEL_CON48 */ ACLK_VOP_PLL_SEL_SHIFT = 6, ACLK_VOP_PLL_SEL_MASK = 0x3 << ACLK_VOP_PLL_SEL_SHIFT, ACLK_VOP_PLL_SEL_CPLL = 0x1, ACLK_VOP_DIV_CON_SHIFT = 0, ACLK_VOP_DIV_CON_MASK = 0x1f << ACLK_VOP_DIV_CON_SHIFT, /* CLKSEL_CON49 & CLKSEL_CON50 */ DCLK_VOP_DCLK_SEL_SHIFT = 11, DCLK_VOP_DCLK_SEL_MASK = 1 << DCLK_VOP_DCLK_SEL_SHIFT, DCLK_VOP_DCLK_SEL_DIVOUT = 0, DCLK_VOP_PLL_SEL_SHIFT = 8, DCLK_VOP_PLL_SEL_MASK = 3 << DCLK_VOP_PLL_SEL_SHIFT, DCLK_VOP_PLL_SEL_VPLL = 0, DCLK_VOP_DIV_CON_MASK = 0xff, DCLK_VOP_DIV_CON_SHIFT = 0, /* CLKSEL_CON58 */ CLK_SPI_PLL_SEL_WIDTH = 1, CLK_SPI_PLL_SEL_MASK = ((1 < CLK_SPI_PLL_SEL_WIDTH) - 1), CLK_SPI_PLL_SEL_CPLL = 0, CLK_SPI_PLL_SEL_GPLL = 1, CLK_SPI_PLL_DIV_CON_WIDTH = 7, CLK_SPI_PLL_DIV_CON_MASK = ((1 << CLK_SPI_PLL_DIV_CON_WIDTH) - 1), CLK_SPI5_PLL_DIV_CON_SHIFT = 8, CLK_SPI5_PLL_SEL_SHIFT = 15, /* CLKSEL_CON59 */ CLK_SPI1_PLL_SEL_SHIFT = 15, CLK_SPI1_PLL_DIV_CON_SHIFT = 8, CLK_SPI0_PLL_SEL_SHIFT = 7, CLK_SPI0_PLL_DIV_CON_SHIFT = 0, /* CLKSEL_CON60 */ CLK_SPI4_PLL_SEL_SHIFT = 15, CLK_SPI4_PLL_DIV_CON_SHIFT = 8, CLK_SPI2_PLL_SEL_SHIFT = 7, CLK_SPI2_PLL_DIV_CON_SHIFT = 0, /* CLKSEL_CON61 */ CLK_I2C_PLL_SEL_MASK = 1, CLK_I2C_PLL_SEL_CPLL = 0, CLK_I2C_PLL_SEL_GPLL = 1, CLK_I2C5_PLL_SEL_SHIFT = 15, CLK_I2C5_DIV_CON_SHIFT = 8, CLK_I2C1_PLL_SEL_SHIFT = 7, CLK_I2C1_DIV_CON_SHIFT = 0, /* CLKSEL_CON62 */ CLK_I2C6_PLL_SEL_SHIFT = 15, CLK_I2C6_DIV_CON_SHIFT = 8, CLK_I2C2_PLL_SEL_SHIFT = 7, CLK_I2C2_DIV_CON_SHIFT = 0, /* CLKSEL_CON63 */ CLK_I2C7_PLL_SEL_SHIFT = 15, CLK_I2C7_DIV_CON_SHIFT = 8, CLK_I2C3_PLL_SEL_SHIFT = 7, CLK_I2C3_DIV_CON_SHIFT = 0, /* CRU_SOFTRST_CON4 */ RESETN_DDR0_REQ_SHIFT = 8, RESETN_DDR0_REQ_MASK = 1 << RESETN_DDR0_REQ_SHIFT, RESETN_DDRPHY0_REQ_SHIFT = 9, RESETN_DDRPHY0_REQ_MASK = 1 << RESETN_DDRPHY0_REQ_SHIFT, RESETN_DDR1_REQ_SHIFT = 12, RESETN_DDR1_REQ_MASK = 1 << RESETN_DDR1_REQ_SHIFT, RESETN_DDRPHY1_REQ_SHIFT = 13, RESETN_DDRPHY1_REQ_MASK = 1 << RESETN_DDRPHY1_REQ_SHIFT, }; #define VCO_MAX_KHZ (3200 * (MHz / KHz)) #define VCO_MIN_KHZ (800 * (MHz / KHz)) #define OUTPUT_MAX_KHZ (3200 * (MHz / KHz)) #define OUTPUT_MIN_KHZ (16 * (MHz / KHz)) /* * the div restructions of pll in integer mode, these are defined in * * CRU_*PLL_CON0 or PMUCRU_*PLL_CON0 */ #define PLL_DIV_MIN 16 #define PLL_DIV_MAX 3200 /* * How to calculate the PLL(from TRM V0.3 Part 1 Page 63): * Formulas also embedded within the Fractional PLL Verilog model: * If DSMPD = 1 (DSM is disabled, "integer mode") * FOUTVCO = FREF / REFDIV * FBDIV * FOUTPOSTDIV = FOUTVCO / POSTDIV1 / POSTDIV2 * Where: * FOUTVCO = Fractional PLL non-divided output frequency * FOUTPOSTDIV = Fractional PLL divided output frequency * (output of second post divider) * FREF = Fractional PLL input reference frequency, (the OSC_HZ 24MHz input) * REFDIV = Fractional PLL input reference clock divider * FBDIV = Integer value programmed into feedback divide * */ static void rkclk_set_pll(u32 *pll_con, const struct pll_div *div) { /* All 8 PLLs have same VCO and output frequency range restrictions. */ u32 vco_khz = OSC_HZ / 1000 * div->fbdiv / div->refdiv; u32 output_khz = vco_khz / div->postdiv1 / div->postdiv2; debug("PLL at %p: fbdiv=%d, refdiv=%d, postdiv1=%d, " "postdiv2=%d, vco=%u khz, output=%u khz\n", pll_con, div->fbdiv, div->refdiv, div->postdiv1, div->postdiv2, vco_khz, output_khz); assert(vco_khz >= VCO_MIN_KHZ && vco_khz <= VCO_MAX_KHZ && output_khz >= OUTPUT_MIN_KHZ && output_khz <= OUTPUT_MAX_KHZ && div->fbdiv >= PLL_DIV_MIN && div->fbdiv <= PLL_DIV_MAX); /* * When power on or changing PLL setting, * we must force PLL into slow mode to ensure output stable clock. */ rk_clrsetreg(&pll_con[3], PLL_MODE_MASK, PLL_MODE_SLOW << PLL_MODE_SHIFT); /* use integer mode */ rk_clrsetreg(&pll_con[3], PLL_DSMPD_MASK, PLL_INTEGER_MODE << PLL_DSMPD_SHIFT); rk_clrsetreg(&pll_con[0], PLL_FBDIV_MASK, div->fbdiv << PLL_FBDIV_SHIFT); rk_clrsetreg(&pll_con[1], PLL_POSTDIV2_MASK | PLL_POSTDIV1_MASK | PLL_REFDIV_MASK | PLL_REFDIV_SHIFT, (div->postdiv2 << PLL_POSTDIV2_SHIFT) | (div->postdiv1 << PLL_POSTDIV1_SHIFT) | (div->refdiv << PLL_REFDIV_SHIFT)); /* waiting for pll lock */ while (!(readl(&pll_con[2]) & (1 << PLL_LOCK_STATUS_SHIFT))) udelay(1); /* pll enter normal mode */ rk_clrsetreg(&pll_con[3], PLL_MODE_MASK, PLL_MODE_NORM << PLL_MODE_SHIFT); } static int pll_para_config(u32 freq_hz, struct pll_div *div) { u32 ref_khz = OSC_HZ / KHz, refdiv, fbdiv = 0; u32 postdiv1, postdiv2 = 1; u32 fref_khz; u32 diff_khz, best_diff_khz; const u32 max_refdiv = 63, max_fbdiv = 3200, min_fbdiv = 16; const u32 max_postdiv1 = 7, max_postdiv2 = 7; u32 vco_khz; u32 freq_khz = freq_hz / KHz; if (!freq_hz) { printf("%s: the frequency can't be 0 Hz\n", __func__); return -1; } postdiv1 = DIV_ROUND_UP(VCO_MIN_KHZ, freq_khz); if (postdiv1 > max_postdiv1) { postdiv2 = DIV_ROUND_UP(postdiv1, max_postdiv1); postdiv1 = DIV_ROUND_UP(postdiv1, postdiv2); } vco_khz = freq_khz * postdiv1 * postdiv2; if (vco_khz < VCO_MIN_KHZ || vco_khz > VCO_MAX_KHZ || postdiv2 > max_postdiv2) { printf("%s: Cannot find out a supported VCO" " for Frequency (%uHz).\n", __func__, freq_hz); return -1; } div->postdiv1 = postdiv1; div->postdiv2 = postdiv2; best_diff_khz = vco_khz; for (refdiv = 1; refdiv < max_refdiv && best_diff_khz; refdiv++) { fref_khz = ref_khz / refdiv; fbdiv = vco_khz / fref_khz; if ((fbdiv >= max_fbdiv) || (fbdiv <= min_fbdiv)) continue; diff_khz = vco_khz - fbdiv * fref_khz; if (fbdiv + 1 < max_fbdiv && diff_khz > fref_khz / 2) { fbdiv++; diff_khz = fref_khz - diff_khz; } if (diff_khz >= best_diff_khz) continue; best_diff_khz = diff_khz; div->refdiv = refdiv; div->fbdiv = fbdiv; } if (best_diff_khz > 4 * (MHz/KHz)) { printf("%s: Failed to match output frequency %u, " "difference is %u Hz,exceed 4MHZ\n", __func__, freq_hz, best_diff_khz * KHz); return -1; } return 0; } #ifdef CONFIG_SPL_BUILD static void rkclk_init(struct rk3399_cru *cru) { u32 aclk_div; u32 hclk_div; u32 pclk_div; /* * some cru registers changed by bootrom, we'd better reset them to * reset/default values described in TRM to avoid confusion in kernel. * Please consider these three lines as a fix of bootrom bug. */ rk_clrsetreg(&cru->clksel_con[12], 0xffff, 0x4101); rk_clrsetreg(&cru->clksel_con[19], 0xffff, 0x033f); rk_clrsetreg(&cru->clksel_con[56], 0x0003, 0x0003); /* configure gpll cpll */ rkclk_set_pll(&cru->gpll_con[0], &gpll_init_cfg); rkclk_set_pll(&cru->cpll_con[0], &cpll_init_cfg); /* configure perihp aclk, hclk, pclk */ aclk_div = GPLL_HZ / PERIHP_ACLK_HZ - 1; assert((aclk_div + 1) * PERIHP_ACLK_HZ == GPLL_HZ && aclk_div < 0x1f); hclk_div = PERIHP_ACLK_HZ / PERIHP_HCLK_HZ - 1; assert((hclk_div + 1) * PERIHP_HCLK_HZ == PERIHP_ACLK_HZ && (hclk_div < 0x4)); pclk_div = PERIHP_ACLK_HZ / PERIHP_PCLK_HZ - 1; assert((pclk_div + 1) * PERIHP_PCLK_HZ == PERIHP_ACLK_HZ && (pclk_div < 0x7)); rk_clrsetreg(&cru->clksel_con[14], PCLK_PERIHP_DIV_CON_MASK | HCLK_PERIHP_DIV_CON_MASK | ACLK_PERIHP_PLL_SEL_MASK | ACLK_PERIHP_DIV_CON_MASK, pclk_div << PCLK_PERIHP_DIV_CON_SHIFT | hclk_div << HCLK_PERIHP_DIV_CON_SHIFT | ACLK_PERIHP_PLL_SEL_GPLL << ACLK_PERIHP_PLL_SEL_SHIFT | aclk_div << ACLK_PERIHP_DIV_CON_SHIFT); /* configure perilp0 aclk, hclk, pclk */ aclk_div = GPLL_HZ / PERILP0_ACLK_HZ - 1; assert((aclk_div + 1) * PERILP0_ACLK_HZ == GPLL_HZ && aclk_div < 0x1f); hclk_div = PERILP0_ACLK_HZ / PERILP0_HCLK_HZ - 1; assert((hclk_div + 1) * PERILP0_HCLK_HZ == PERILP0_ACLK_HZ && (hclk_div < 0x4)); pclk_div = PERILP0_ACLK_HZ / PERILP0_PCLK_HZ - 1; assert((pclk_div + 1) * PERILP0_PCLK_HZ == PERILP0_ACLK_HZ && (pclk_div < 0x7)); rk_clrsetreg(&cru->clksel_con[23], PCLK_PERILP0_DIV_CON_MASK | HCLK_PERILP0_DIV_CON_MASK | ACLK_PERILP0_PLL_SEL_MASK | ACLK_PERILP0_DIV_CON_MASK, pclk_div << PCLK_PERILP0_DIV_CON_SHIFT | hclk_div << HCLK_PERILP0_DIV_CON_SHIFT | ACLK_PERILP0_PLL_SEL_GPLL << ACLK_PERILP0_PLL_SEL_SHIFT | aclk_div << ACLK_PERILP0_DIV_CON_SHIFT); /* perilp1 hclk select gpll as source */ hclk_div = GPLL_HZ / PERILP1_HCLK_HZ - 1; assert((hclk_div + 1) * PERILP1_HCLK_HZ == GPLL_HZ && (hclk_div < 0x1f)); pclk_div = PERILP1_HCLK_HZ / PERILP1_HCLK_HZ - 1; assert((pclk_div + 1) * PERILP1_HCLK_HZ == PERILP1_HCLK_HZ && (hclk_div < 0x7)); rk_clrsetreg(&cru->clksel_con[25], PCLK_PERILP1_DIV_CON_MASK | HCLK_PERILP1_DIV_CON_MASK | HCLK_PERILP1_PLL_SEL_MASK, pclk_div << PCLK_PERILP1_DIV_CON_SHIFT | hclk_div << HCLK_PERILP1_DIV_CON_SHIFT | HCLK_PERILP1_PLL_SEL_GPLL << HCLK_PERILP1_PLL_SEL_SHIFT); } #endif void rk3399_configure_cpu(struct rk3399_cru *cru, enum apll_l_frequencies apll_l_freq) { u32 aclkm_div; u32 pclk_dbg_div; u32 atclk_div; rkclk_set_pll(&cru->apll_l_con[0], apll_l_cfgs[apll_l_freq]); aclkm_div = APLL_HZ / ACLKM_CORE_HZ - 1; assert((aclkm_div + 1) * ACLKM_CORE_HZ == APLL_HZ && aclkm_div < 0x1f); pclk_dbg_div = APLL_HZ / PCLK_DBG_HZ - 1; assert((pclk_dbg_div + 1) * PCLK_DBG_HZ == APLL_HZ && pclk_dbg_div < 0x1f); atclk_div = APLL_HZ / ATCLK_CORE_HZ - 1; assert((atclk_div + 1) * ATCLK_CORE_HZ == APLL_HZ && atclk_div < 0x1f); rk_clrsetreg(&cru->clksel_con[0], ACLKM_CORE_L_DIV_CON_MASK | CLK_CORE_L_PLL_SEL_MASK | CLK_CORE_L_DIV_MASK, aclkm_div << ACLKM_CORE_L_DIV_CON_SHIFT | CLK_CORE_L_PLL_SEL_ALPLL << CLK_CORE_L_PLL_SEL_SHIFT | 0 << CLK_CORE_L_DIV_SHIFT); rk_clrsetreg(&cru->clksel_con[1], PCLK_DBG_L_DIV_MASK | ATCLK_CORE_L_DIV_MASK, pclk_dbg_div << PCLK_DBG_L_DIV_SHIFT | atclk_div << ATCLK_CORE_L_DIV_SHIFT); } #define I2C_CLK_REG_MASK(bus) \ (I2C_DIV_CON_MASK << \ CLK_I2C ##bus## _DIV_CON_SHIFT | \ CLK_I2C_PLL_SEL_MASK << \ CLK_I2C ##bus## _PLL_SEL_SHIFT) #define I2C_CLK_REG_VALUE(bus, clk_div) \ ((clk_div - 1) << \ CLK_I2C ##bus## _DIV_CON_SHIFT | \ CLK_I2C_PLL_SEL_GPLL << \ CLK_I2C ##bus## _PLL_SEL_SHIFT) #define I2C_CLK_DIV_VALUE(con, bus) \ (con >> CLK_I2C ##bus## _DIV_CON_SHIFT) & \ I2C_DIV_CON_MASK; #define I2C_PMUCLK_REG_MASK(bus) \ (I2C_DIV_CON_MASK << \ CLK_I2C ##bus## _DIV_CON_SHIFT) #define I2C_PMUCLK_REG_VALUE(bus, clk_div) \ ((clk_div - 1) << \ CLK_I2C ##bus## _DIV_CON_SHIFT) static ulong rk3399_i2c_get_clk(struct rk3399_cru *cru, ulong clk_id) { u32 div, con; switch (clk_id) { case SCLK_I2C1: con = readl(&cru->clksel_con[61]); div = I2C_CLK_DIV_VALUE(con, 1); break; case SCLK_I2C2: con = readl(&cru->clksel_con[62]); div = I2C_CLK_DIV_VALUE(con, 2); break; case SCLK_I2C3: con = readl(&cru->clksel_con[63]); div = I2C_CLK_DIV_VALUE(con, 3); break; case SCLK_I2C5: con = readl(&cru->clksel_con[61]); div = I2C_CLK_DIV_VALUE(con, 5); break; case SCLK_I2C6: con = readl(&cru->clksel_con[62]); div = I2C_CLK_DIV_VALUE(con, 6); break; case SCLK_I2C7: con = readl(&cru->clksel_con[63]); div = I2C_CLK_DIV_VALUE(con, 7); break; default: printf("do not support this i2c bus\n"); return -EINVAL; } return DIV_TO_RATE(GPLL_HZ, div); } static ulong rk3399_i2c_set_clk(struct rk3399_cru *cru, ulong clk_id, uint hz) { int src_clk_div; /* i2c0,4,8 src clock from ppll, i2c1,2,3,5,6,7 src clock from gpll*/ src_clk_div = GPLL_HZ / hz; assert(src_clk_div - 1 < 127); switch (clk_id) { case SCLK_I2C1: rk_clrsetreg(&cru->clksel_con[61], I2C_CLK_REG_MASK(1), I2C_CLK_REG_VALUE(1, src_clk_div)); break; case SCLK_I2C2: rk_clrsetreg(&cru->clksel_con[62], I2C_CLK_REG_MASK(2), I2C_CLK_REG_VALUE(2, src_clk_div)); break; case SCLK_I2C3: rk_clrsetreg(&cru->clksel_con[63], I2C_CLK_REG_MASK(3), I2C_CLK_REG_VALUE(3, src_clk_div)); break; case SCLK_I2C5: rk_clrsetreg(&cru->clksel_con[61], I2C_CLK_REG_MASK(5), I2C_CLK_REG_VALUE(5, src_clk_div)); break; case SCLK_I2C6: rk_clrsetreg(&cru->clksel_con[62], I2C_CLK_REG_MASK(6), I2C_CLK_REG_VALUE(6, src_clk_div)); break; case SCLK_I2C7: rk_clrsetreg(&cru->clksel_con[63], I2C_CLK_REG_MASK(7), I2C_CLK_REG_VALUE(7, src_clk_div)); break; default: printf("do not support this i2c bus\n"); return -EINVAL; } return rk3399_i2c_get_clk(cru, clk_id); } /* * RK3399 SPI clocks have a common divider-width (7 bits) and a single bit * to select either CPLL or GPLL as the clock-parent. The location within * the enclosing CLKSEL_CON (i.e. div_shift and sel_shift) are variable. */ struct spi_clkreg { uint8_t reg; /* CLKSEL_CON[reg] register in CRU */ uint8_t div_shift; uint8_t sel_shift; }; /* * The entries are numbered relative to their offset from SCLK_SPI0. * * Note that SCLK_SPI3 (which is configured via PMUCRU and requires different * logic is not supported). */ static const struct spi_clkreg spi_clkregs[] = { [0] = { .reg = 59, .div_shift = CLK_SPI0_PLL_DIV_CON_SHIFT, .sel_shift = CLK_SPI0_PLL_SEL_SHIFT, }, [1] = { .reg = 59, .div_shift = CLK_SPI1_PLL_DIV_CON_SHIFT, .sel_shift = CLK_SPI1_PLL_SEL_SHIFT, }, [2] = { .reg = 60, .div_shift = CLK_SPI2_PLL_DIV_CON_SHIFT, .sel_shift = CLK_SPI2_PLL_SEL_SHIFT, }, [3] = { .reg = 60, .div_shift = CLK_SPI4_PLL_DIV_CON_SHIFT, .sel_shift = CLK_SPI4_PLL_SEL_SHIFT, }, [4] = { .reg = 58, .div_shift = CLK_SPI5_PLL_DIV_CON_SHIFT, .sel_shift = CLK_SPI5_PLL_SEL_SHIFT, }, }; static inline u32 extract_bits(u32 val, unsigned width, unsigned shift) { return (val >> shift) & ((1 << width) - 1); } static ulong rk3399_spi_get_clk(struct rk3399_cru *cru, ulong clk_id) { const struct spi_clkreg *spiclk = NULL; u32 div, val; switch (clk_id) { case SCLK_SPI0 ... SCLK_SPI5: spiclk = &spi_clkregs[clk_id - SCLK_SPI0]; break; default: error("%s: SPI clk-id %ld not supported\n", __func__, clk_id); return -EINVAL; } val = readl(&cru->clksel_con[spiclk->reg]); div = extract_bits(val, CLK_SPI_PLL_DIV_CON_WIDTH, spiclk->div_shift); return DIV_TO_RATE(GPLL_HZ, div); } static ulong rk3399_spi_set_clk(struct rk3399_cru *cru, ulong clk_id, uint hz) { const struct spi_clkreg *spiclk = NULL; int src_clk_div; src_clk_div = RATE_TO_DIV(GPLL_HZ, hz); assert(src_clk_div < 127); switch (clk_id) { case SCLK_SPI1 ... SCLK_SPI5: spiclk = &spi_clkregs[clk_id - SCLK_SPI0]; break; default: error("%s: SPI clk-id %ld not supported\n", __func__, clk_id); return -EINVAL; } rk_clrsetreg(&cru->clksel_con[spiclk->reg], ((CLK_SPI_PLL_DIV_CON_MASK << spiclk->div_shift) | (CLK_SPI_PLL_SEL_GPLL << spiclk->sel_shift)), ((src_clk_div << spiclk->div_shift) | (CLK_SPI_PLL_SEL_GPLL << spiclk->sel_shift))); return rk3399_spi_get_clk(cru, clk_id); } static ulong rk3399_vop_set_clk(struct rk3399_cru *cru, ulong clk_id, u32 hz) { struct pll_div vpll_config = {0}; int aclk_vop = 198*MHz; void *aclkreg_addr, *dclkreg_addr; u32 div; switch (clk_id) { case DCLK_VOP0: aclkreg_addr = &cru->clksel_con[47]; dclkreg_addr = &cru->clksel_con[49]; break; case DCLK_VOP1: aclkreg_addr = &cru->clksel_con[48]; dclkreg_addr = &cru->clksel_con[50]; break; default: return -EINVAL; } /* vop aclk source clk: cpll */ div = CPLL_HZ / aclk_vop; assert(div - 1 < 32); rk_clrsetreg(aclkreg_addr, ACLK_VOP_PLL_SEL_MASK | ACLK_VOP_DIV_CON_MASK, ACLK_VOP_PLL_SEL_CPLL << ACLK_VOP_PLL_SEL_SHIFT | (div - 1) << ACLK_VOP_DIV_CON_SHIFT); /* vop dclk source from vpll, and equals to vpll(means div == 1) */ if (pll_para_config(hz, &vpll_config)) return -1; rkclk_set_pll(&cru->vpll_con[0], &vpll_config); rk_clrsetreg(dclkreg_addr, DCLK_VOP_DCLK_SEL_MASK | DCLK_VOP_PLL_SEL_MASK| DCLK_VOP_DIV_CON_MASK, DCLK_VOP_DCLK_SEL_DIVOUT << DCLK_VOP_DCLK_SEL_SHIFT | DCLK_VOP_PLL_SEL_VPLL << DCLK_VOP_PLL_SEL_SHIFT | (1 - 1) << DCLK_VOP_DIV_CON_SHIFT); return hz; } static ulong rk3399_mmc_get_clk(struct rk3399_cru *cru, uint clk_id) { u32 div, con; switch (clk_id) { case HCLK_SDMMC: case SCLK_SDMMC: con = readl(&cru->clksel_con[16]); break; case SCLK_EMMC: con = readl(&cru->clksel_con[21]); break; default: return -EINVAL; } div = (con & CLK_EMMC_DIV_CON_MASK) >> CLK_EMMC_DIV_CON_SHIFT; if ((con & CLK_EMMC_PLL_MASK) >> CLK_EMMC_PLL_SHIFT == CLK_EMMC_PLL_SEL_24M) return DIV_TO_RATE(24*1000*1000, div); else return DIV_TO_RATE(GPLL_HZ, div); } static ulong rk3399_mmc_set_clk(struct rk3399_cru *cru, ulong clk_id, ulong set_rate) { int src_clk_div; int aclk_emmc = 198*MHz; switch (clk_id) { case HCLK_SDMMC: case SCLK_SDMMC: /* Select clk_sdmmc source from GPLL by default */ src_clk_div = GPLL_HZ / set_rate; if (src_clk_div > 127) { /* use 24MHz source for 400KHz clock */ src_clk_div = 24*1000*1000 / set_rate; rk_clrsetreg(&cru->clksel_con[16], CLK_EMMC_PLL_MASK | CLK_EMMC_DIV_CON_MASK, CLK_EMMC_PLL_SEL_24M << CLK_EMMC_PLL_SHIFT | (src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT); } else { rk_clrsetreg(&cru->clksel_con[16], CLK_EMMC_PLL_MASK | CLK_EMMC_DIV_CON_MASK, CLK_EMMC_PLL_SEL_GPLL << CLK_EMMC_PLL_SHIFT | (src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT); } break; case SCLK_EMMC: /* Select aclk_emmc source from GPLL */ src_clk_div = GPLL_HZ / aclk_emmc; assert(src_clk_div - 1 < 31); rk_clrsetreg(&cru->clksel_con[21], ACLK_EMMC_PLL_SEL_MASK | ACLK_EMMC_DIV_CON_MASK, ACLK_EMMC_PLL_SEL_GPLL << ACLK_EMMC_PLL_SEL_SHIFT | (src_clk_div - 1) << ACLK_EMMC_DIV_CON_SHIFT); /* Select clk_emmc source from GPLL too */ src_clk_div = GPLL_HZ / set_rate; assert(src_clk_div - 1 < 127); rk_clrsetreg(&cru->clksel_con[22], CLK_EMMC_PLL_MASK | CLK_EMMC_DIV_CON_MASK, CLK_EMMC_PLL_SEL_GPLL << CLK_EMMC_PLL_SHIFT | (src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT); break; default: return -EINVAL; } return rk3399_mmc_get_clk(cru, clk_id); } #define PMUSGRF_DDR_RGN_CON16 0xff330040 static ulong rk3399_ddr_set_clk(struct rk3399_cru *cru, ulong set_rate) { struct pll_div dpll_cfg; /* IC ECO bug, need to set this register */ writel(0xc000c000, PMUSGRF_DDR_RGN_CON16); /* clk_ddrc == DPLL = 24MHz / refdiv * fbdiv / postdiv1 / postdiv2 */ switch (set_rate) { case 200*MHz: dpll_cfg = (struct pll_div) {.refdiv = 1, .fbdiv = 50, .postdiv1 = 6, .postdiv2 = 1}; break; case 300*MHz: dpll_cfg = (struct pll_div) {.refdiv = 2, .fbdiv = 100, .postdiv1 = 4, .postdiv2 = 1}; break; case 666*MHz: dpll_cfg = (struct pll_div) {.refdiv = 2, .fbdiv = 111, .postdiv1 = 2, .postdiv2 = 1}; break; case 800*MHz: dpll_cfg = (struct pll_div) {.refdiv = 1, .fbdiv = 100, .postdiv1 = 3, .postdiv2 = 1}; break; case 933*MHz: dpll_cfg = (struct pll_div) {.refdiv = 1, .fbdiv = 116, .postdiv1 = 3, .postdiv2 = 1}; break; default: error("Unsupported SDRAM frequency!,%ld\n", set_rate); } rkclk_set_pll(&cru->dpll_con[0], &dpll_cfg); return set_rate; } static ulong rk3399_clk_get_rate(struct clk *clk) { struct rk3399_clk_priv *priv = dev_get_priv(clk->dev); ulong rate = 0; switch (clk->id) { case 0 ... 63: return 0; case HCLK_SDMMC: case SCLK_SDMMC: case SCLK_EMMC: rate = rk3399_mmc_get_clk(priv->cru, clk->id); break; case SCLK_I2C1: case SCLK_I2C2: case SCLK_I2C3: case SCLK_I2C5: case SCLK_I2C6: case SCLK_I2C7: rate = rk3399_i2c_get_clk(priv->cru, clk->id); break; case SCLK_SPI0...SCLK_SPI5: rate = rk3399_spi_get_clk(priv->cru, clk->id); break; case SCLK_UART0: case SCLK_UART2: return 24000000; case DCLK_VOP0: case DCLK_VOP1: break; case PCLK_EFUSE1024NS: break; default: return -ENOENT; } return rate; } static ulong rk3399_clk_set_rate(struct clk *clk, ulong rate) { struct rk3399_clk_priv *priv = dev_get_priv(clk->dev); ulong ret = 0; switch (clk->id) { case 0 ... 63: return 0; case HCLK_SDMMC: case SCLK_SDMMC: case SCLK_EMMC: ret = rk3399_mmc_set_clk(priv->cru, clk->id, rate); break; case SCLK_MAC: /* nothing to do, as this is an external clock */ ret = rate; break; case SCLK_I2C1: case SCLK_I2C2: case SCLK_I2C3: case SCLK_I2C5: case SCLK_I2C6: case SCLK_I2C7: ret = rk3399_i2c_set_clk(priv->cru, clk->id, rate); break; case SCLK_SPI0...SCLK_SPI5: ret = rk3399_spi_set_clk(priv->cru, clk->id, rate); break; case DCLK_VOP0: case DCLK_VOP1: ret = rk3399_vop_set_clk(priv->cru, clk->id, rate); break; case SCLK_DDRCLK: ret = rk3399_ddr_set_clk(priv->cru, rate); break; case PCLK_EFUSE1024NS: break; default: return -ENOENT; } return ret; } static struct clk_ops rk3399_clk_ops = { .get_rate = rk3399_clk_get_rate, .set_rate = rk3399_clk_set_rate, }; static int rk3399_clk_probe(struct udevice *dev) { #ifdef CONFIG_SPL_BUILD struct rk3399_clk_priv *priv = dev_get_priv(dev); #if CONFIG_IS_ENABLED(OF_PLATDATA) struct rk3399_clk_plat *plat = dev_get_platdata(dev); priv->cru = map_sysmem(plat->dtd.reg[1], plat->dtd.reg[3]); #endif rkclk_init(priv->cru); #endif return 0; } static int rk3399_clk_ofdata_to_platdata(struct udevice *dev) { #if !CONFIG_IS_ENABLED(OF_PLATDATA) struct rk3399_clk_priv *priv = dev_get_priv(dev); priv->cru = (struct rk3399_cru *)dev_get_addr(dev); #endif return 0; } static int rk3399_clk_bind(struct udevice *dev) { int ret; /* The reset driver does not have a device node, so bind it here */ ret = device_bind_driver(gd->dm_root, "rk3399_sysreset", "reset", &dev); if (ret) printf("Warning: No RK3399 reset driver: ret=%d\n", ret); return 0; } static const struct udevice_id rk3399_clk_ids[] = { { .compatible = "rockchip,rk3399-cru" }, { } }; U_BOOT_DRIVER(clk_rk3399) = { .name = "rockchip_rk3399_cru", .id = UCLASS_CLK, .of_match = rk3399_clk_ids, .priv_auto_alloc_size = sizeof(struct rk3399_clk_priv), .ofdata_to_platdata = rk3399_clk_ofdata_to_platdata, .ops = &rk3399_clk_ops, .bind = rk3399_clk_bind, .probe = rk3399_clk_probe, #if CONFIG_IS_ENABLED(OF_PLATDATA) .platdata_auto_alloc_size = sizeof(struct rk3399_clk_plat), #endif }; static ulong rk3399_i2c_get_pmuclk(struct rk3399_pmucru *pmucru, ulong clk_id) { u32 div, con; switch (clk_id) { case SCLK_I2C0_PMU: con = readl(&pmucru->pmucru_clksel[2]); div = I2C_CLK_DIV_VALUE(con, 0); break; case SCLK_I2C4_PMU: con = readl(&pmucru->pmucru_clksel[3]); div = I2C_CLK_DIV_VALUE(con, 4); break; case SCLK_I2C8_PMU: con = readl(&pmucru->pmucru_clksel[2]); div = I2C_CLK_DIV_VALUE(con, 8); break; default: printf("do not support this i2c bus\n"); return -EINVAL; } return DIV_TO_RATE(PPLL_HZ, div); } static ulong rk3399_i2c_set_pmuclk(struct rk3399_pmucru *pmucru, ulong clk_id, uint hz) { int src_clk_div; src_clk_div = PPLL_HZ / hz; assert(src_clk_div - 1 < 127); switch (clk_id) { case SCLK_I2C0_PMU: rk_clrsetreg(&pmucru->pmucru_clksel[2], I2C_PMUCLK_REG_MASK(0), I2C_PMUCLK_REG_VALUE(0, src_clk_div)); break; case SCLK_I2C4_PMU: rk_clrsetreg(&pmucru->pmucru_clksel[3], I2C_PMUCLK_REG_MASK(4), I2C_PMUCLK_REG_VALUE(4, src_clk_div)); break; case SCLK_I2C8_PMU: rk_clrsetreg(&pmucru->pmucru_clksel[2], I2C_PMUCLK_REG_MASK(8), I2C_PMUCLK_REG_VALUE(8, src_clk_div)); break; default: printf("do not support this i2c bus\n"); return -EINVAL; } return DIV_TO_RATE(PPLL_HZ, src_clk_div); } static ulong rk3399_pwm_get_clk(struct rk3399_pmucru *pmucru) { u32 div, con; /* PWM closk rate is same as pclk_pmu */ con = readl(&pmucru->pmucru_clksel[0]); div = con & PMU_PCLK_DIV_CON_MASK; return DIV_TO_RATE(PPLL_HZ, div); } static ulong rk3399_pmuclk_get_rate(struct clk *clk) { struct rk3399_pmuclk_priv *priv = dev_get_priv(clk->dev); ulong rate = 0; switch (clk->id) { case PCLK_RKPWM_PMU: rate = rk3399_pwm_get_clk(priv->pmucru); break; case SCLK_I2C0_PMU: case SCLK_I2C4_PMU: case SCLK_I2C8_PMU: rate = rk3399_i2c_get_pmuclk(priv->pmucru, clk->id); break; default: return -ENOENT; } return rate; } static ulong rk3399_pmuclk_set_rate(struct clk *clk, ulong rate) { struct rk3399_pmuclk_priv *priv = dev_get_priv(clk->dev); ulong ret = 0; switch (clk->id) { case SCLK_I2C0_PMU: case SCLK_I2C4_PMU: case SCLK_I2C8_PMU: ret = rk3399_i2c_set_pmuclk(priv->pmucru, clk->id, rate); break; default: return -ENOENT; } return ret; } static struct clk_ops rk3399_pmuclk_ops = { .get_rate = rk3399_pmuclk_get_rate, .set_rate = rk3399_pmuclk_set_rate, }; #ifndef CONFIG_SPL_BUILD static void pmuclk_init(struct rk3399_pmucru *pmucru) { u32 pclk_div; /* configure pmu pll(ppll) */ rkclk_set_pll(&pmucru->ppll_con[0], &ppll_init_cfg); /* configure pmu pclk */ pclk_div = PPLL_HZ / PMU_PCLK_HZ - 1; rk_clrsetreg(&pmucru->pmucru_clksel[0], PMU_PCLK_DIV_CON_MASK, pclk_div << PMU_PCLK_DIV_CON_SHIFT); } #endif static int rk3399_pmuclk_probe(struct udevice *dev) { #if CONFIG_IS_ENABLED(OF_PLATDATA) || !defined(CONFIG_SPL_BUILD) struct rk3399_pmuclk_priv *priv = dev_get_priv(dev); #endif #if CONFIG_IS_ENABLED(OF_PLATDATA) struct rk3399_pmuclk_plat *plat = dev_get_platdata(dev); priv->pmucru = map_sysmem(plat->dtd.reg[1], plat->dtd.reg[3]); #endif #ifndef CONFIG_SPL_BUILD pmuclk_init(priv->pmucru); #endif return 0; } static int rk3399_pmuclk_ofdata_to_platdata(struct udevice *dev) { #if !CONFIG_IS_ENABLED(OF_PLATDATA) struct rk3399_pmuclk_priv *priv = dev_get_priv(dev); priv->pmucru = (struct rk3399_pmucru *)dev_get_addr(dev); #endif return 0; } static const struct udevice_id rk3399_pmuclk_ids[] = { { .compatible = "rockchip,rk3399-pmucru" }, { } }; U_BOOT_DRIVER(rockchip_rk3399_pmuclk) = { .name = "rockchip_rk3399_pmucru", .id = UCLASS_CLK, .of_match = rk3399_pmuclk_ids, .priv_auto_alloc_size = sizeof(struct rk3399_pmuclk_priv), .ofdata_to_platdata = rk3399_pmuclk_ofdata_to_platdata, .ops = &rk3399_pmuclk_ops, .probe = rk3399_pmuclk_probe, #if CONFIG_IS_ENABLED(OF_PLATDATA) .platdata_auto_alloc_size = sizeof(struct rk3399_pmuclk_plat), #endif };