/* * Device manager * * Copyright (c) 2013 Google, Inc * * (C) Copyright 2012 * Pavel Herrmann * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; static int device_bind_common(struct udevice *parent, const struct driver *drv, const char *name, void *platdata, ulong driver_data, int of_offset, uint of_platdata_size, struct udevice **devp) { struct udevice *dev; struct uclass *uc; int size, ret = 0; if (devp) *devp = NULL; if (!name) return -EINVAL; ret = uclass_get(drv->id, &uc); if (ret) { debug("Missing uclass for driver %s\n", drv->name); return ret; } dev = calloc(1, sizeof(struct udevice)); if (!dev) return -ENOMEM; INIT_LIST_HEAD(&dev->sibling_node); INIT_LIST_HEAD(&dev->child_head); INIT_LIST_HEAD(&dev->uclass_node); #ifdef CONFIG_DEVRES INIT_LIST_HEAD(&dev->devres_head); #endif dev->platdata = platdata; dev->driver_data = driver_data; dev->name = name; dev->of_offset = of_offset; dev->parent = parent; dev->driver = drv; dev->uclass = uc; dev->seq = -1; dev->req_seq = -1; if (CONFIG_IS_ENABLED(OF_CONTROL) && CONFIG_IS_ENABLED(DM_SEQ_ALIAS)) { /* * Some devices, such as a SPI bus, I2C bus and serial ports * are numbered using aliases. * * This is just a 'requested' sequence, and will be * resolved (and ->seq updated) when the device is probed. */ if (uc->uc_drv->flags & DM_UC_FLAG_SEQ_ALIAS) { if (uc->uc_drv->name && of_offset != -1) { fdtdec_get_alias_seq(gd->fdt_blob, uc->uc_drv->name, of_offset, &dev->req_seq); } } } if (drv->platdata_auto_alloc_size) { bool alloc = !platdata; if (CONFIG_IS_ENABLED(OF_PLATDATA)) { if (of_platdata_size) { dev->flags |= DM_FLAG_OF_PLATDATA; if (of_platdata_size < drv->platdata_auto_alloc_size) alloc = true; } } if (alloc) { dev->flags |= DM_FLAG_ALLOC_PDATA; dev->platdata = calloc(1, drv->platdata_auto_alloc_size); if (!dev->platdata) { ret = -ENOMEM; goto fail_alloc1; } if (CONFIG_IS_ENABLED(OF_PLATDATA) && platdata) { memcpy(dev->platdata, platdata, of_platdata_size); } } } size = uc->uc_drv->per_device_platdata_auto_alloc_size; if (size) { dev->flags |= DM_FLAG_ALLOC_UCLASS_PDATA; dev->uclass_platdata = calloc(1, size); if (!dev->uclass_platdata) { ret = -ENOMEM; goto fail_alloc2; } } if (parent) { size = parent->driver->per_child_platdata_auto_alloc_size; if (!size) { size = parent->uclass->uc_drv-> per_child_platdata_auto_alloc_size; } if (size) { dev->flags |= DM_FLAG_ALLOC_PARENT_PDATA; dev->parent_platdata = calloc(1, size); if (!dev->parent_platdata) { ret = -ENOMEM; goto fail_alloc3; } } } /* put dev into parent's successor list */ if (parent) list_add_tail(&dev->sibling_node, &parent->child_head); ret = uclass_bind_device(dev); if (ret) goto fail_uclass_bind; /* if we fail to bind we remove device from successors and free it */ if (drv->bind) { ret = drv->bind(dev); if (ret) goto fail_bind; } if (parent && parent->driver->child_post_bind) { ret = parent->driver->child_post_bind(dev); if (ret) goto fail_child_post_bind; } if (uc->uc_drv->post_bind) { ret = uc->uc_drv->post_bind(dev); if (ret) goto fail_uclass_post_bind; } if (parent) dm_dbg("Bound device %s to %s\n", dev->name, parent->name); if (devp) *devp = dev; dev->flags |= DM_FLAG_BOUND; return 0; fail_uclass_post_bind: /* There is no child unbind() method, so no clean-up required */ fail_child_post_bind: if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) { if (drv->unbind && drv->unbind(dev)) { dm_warn("unbind() method failed on dev '%s' on error path\n", dev->name); } } fail_bind: if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) { if (uclass_unbind_device(dev)) { dm_warn("Failed to unbind dev '%s' on error path\n", dev->name); } } fail_uclass_bind: if (CONFIG_IS_ENABLED(DM_DEVICE_REMOVE)) { list_del(&dev->sibling_node); if (dev->flags & DM_FLAG_ALLOC_PARENT_PDATA) { free(dev->parent_platdata); dev->parent_platdata = NULL; } } fail_alloc3: if (dev->flags & DM_FLAG_ALLOC_UCLASS_PDATA) { free(dev->uclass_platdata); dev->uclass_platdata = NULL; } fail_alloc2: if (dev->flags & DM_FLAG_ALLOC_PDATA) { free(dev->platdata); dev->platdata = NULL; } fail_alloc1: devres_release_all(dev); free(dev); return ret; } int device_bind_with_driver_data(struct udevice *parent, const struct driver *drv, const char *name, ulong driver_data, int of_offset, struct udevice **devp) { return device_bind_common(parent, drv, name, NULL, driver_data, of_offset, 0, devp); } int device_bind(struct udevice *parent, const struct driver *drv, const char *name, void *platdata, int of_offset, struct udevice **devp) { return device_bind_common(parent, drv, name, platdata, 0, of_offset, 0, devp); } int device_bind_by_name(struct udevice *parent, bool pre_reloc_only, const struct driver_info *info, struct udevice **devp) { struct driver *drv; uint platdata_size = 0; drv = lists_driver_lookup_name(info->name); if (!drv) return -ENOENT; if (pre_reloc_only && !(drv->flags & DM_FLAG_PRE_RELOC)) return -EPERM; #if CONFIG_IS_ENABLED(OF_PLATDATA) platdata_size = info->platdata_size; #endif return device_bind_common(parent, drv, info->name, (void *)info->platdata, 0, -1, platdata_size, devp); } static void *alloc_priv(int size, uint flags) { void *priv; if (flags & DM_FLAG_ALLOC_PRIV_DMA) { priv = memalign(ARCH_DMA_MINALIGN, size); if (priv) { memset(priv, '\0', size); /* * Ensure that the zero bytes are flushed to memory. * This prevents problems if the driver uses this as * both an input and an output buffer: * * 1. Zeroes written to buffer (here) and sit in the * cache * 2. Driver issues a read command to DMA * 3. CPU runs out of cache space and evicts some cache * data in the buffer, writing zeroes to RAM from * the memset() above * 4. DMA completes * 5. Buffer now has some DMA data and some zeroes * 6. Data being read is now incorrect * * To prevent this, ensure that the cache is clean * within this range at the start. The driver can then * use normal flush-after-write, invalidate-before-read * procedures. * * TODO(sjg@chromium.org): Drop this microblaze * exception. */ #ifndef CONFIG_MICROBLAZE flush_dcache_range((ulong)priv, (ulong)priv + size); #endif } } else { priv = calloc(1, size); } return priv; } int device_probe(struct udevice *dev) { const struct driver *drv; int size = 0; int ret; int seq; if (!dev) return -EINVAL; if (dev->flags & DM_FLAG_ACTIVATED) return 0; drv = dev->driver; assert(drv); /* Allocate private data if requested and not reentered */ if (drv->priv_auto_alloc_size && !dev->priv) { dev->priv = alloc_priv(drv->priv_auto_alloc_size, drv->flags); if (!dev->priv) { ret = -ENOMEM; goto fail; } } /* Allocate private data if requested and not reentered */ size = dev->uclass->uc_drv->per_device_auto_alloc_size; if (size && !dev->uclass_priv) { dev->uclass_priv = calloc(1, size); if (!dev->uclass_priv) { ret = -ENOMEM; goto fail; } } /* Ensure all parents are probed */ if (dev->parent) { size = dev->parent->driver->per_child_auto_alloc_size; if (!size) { size = dev->parent->uclass->uc_drv-> per_child_auto_alloc_size; } if (size && !dev->parent_priv) { dev->parent_priv = alloc_priv(size, drv->flags); if (!dev->parent_priv) { ret = -ENOMEM; goto fail; } } ret = device_probe(dev->parent); if (ret) goto fail; /* * The device might have already been probed during * the call to device_probe() on its parent device * (e.g. PCI bridge devices). Test the flags again * so that we don't mess up the device. */ if (dev->flags & DM_FLAG_ACTIVATED) return 0; } seq = uclass_resolve_seq(dev); if (seq < 0) { ret = seq; goto fail; } dev->seq = seq; dev->flags |= DM_FLAG_ACTIVATED; /* * Process pinctrl for everything except the root device, and * continue regardless of the result of pinctrl. Don't process pinctrl * settings for pinctrl devices since the device may not yet be * probed. */ if (dev->parent && device_get_uclass_id(dev) != UCLASS_PINCTRL) pinctrl_select_state(dev, "default"); ret = uclass_pre_probe_device(dev); if (ret) goto fail; if (dev->parent && dev->parent->driver->child_pre_probe) { ret = dev->parent->driver->child_pre_probe(dev); if (ret) goto fail; } if (drv->ofdata_to_platdata && dev_of_offset(dev) >= 0) { ret = drv->ofdata_to_platdata(dev); if (ret) goto fail; } if (drv->probe) { ret = drv->probe(dev); if (ret) { dev->flags &= ~DM_FLAG_ACTIVATED; goto fail; } } ret = uclass_post_probe_device(dev); if (ret) goto fail_uclass; if (dev->parent && device_get_uclass_id(dev) == UCLASS_PINCTRL) pinctrl_select_state(dev, "default"); return 0; fail_uclass: if (device_remove(dev, DM_REMOVE_NORMAL)) { dm_warn("%s: Device '%s' failed to remove on error path\n", __func__, dev->name); } fail: dev->flags &= ~DM_FLAG_ACTIVATED; dev->seq = -1; device_free(dev); return ret; } void *dev_get_platdata(struct udevice *dev) { if (!dev) { dm_warn("%s: null device\n", __func__); return NULL; } return dev->platdata; } void *dev_get_parent_platdata(struct udevice *dev) { if (!dev) { dm_warn("%s: null device\n", __func__); return NULL; } return dev->parent_platdata; } void *dev_get_uclass_platdata(struct udevice *dev) { if (!dev) { dm_warn("%s: null device\n", __func__); return NULL; } return dev->uclass_platdata; } void *dev_get_priv(struct udevice *dev) { if (!dev) { dm_warn("%s: null device\n", __func__); return NULL; } return dev->priv; } void *dev_get_uclass_priv(struct udevice *dev) { if (!dev) { dm_warn("%s: null device\n", __func__); return NULL; } return dev->uclass_priv; } void *dev_get_parent_priv(struct udevice *dev) { if (!dev) { dm_warn("%s: null device\n", __func__); return NULL; } return dev->parent_priv; } static int device_get_device_tail(struct udevice *dev, int ret, struct udevice **devp) { if (ret) return ret; ret = device_probe(dev); if (ret) return ret; *devp = dev; return 0; } int device_get_child(struct udevice *parent, int index, struct udevice **devp) { struct udevice *dev; list_for_each_entry(dev, &parent->child_head, sibling_node) { if (!index--) return device_get_device_tail(dev, 0, devp); } return -ENODEV; } int device_find_child_by_seq(struct udevice *parent, int seq_or_req_seq, bool find_req_seq, struct udevice **devp) { struct udevice *dev; *devp = NULL; if (seq_or_req_seq == -1) return -ENODEV; list_for_each_entry(dev, &parent->child_head, sibling_node) { if ((find_req_seq ? dev->req_seq : dev->seq) == seq_or_req_seq) { *devp = dev; return 0; } } return -ENODEV; } int device_get_child_by_seq(struct udevice *parent, int seq, struct udevice **devp) { struct udevice *dev; int ret; *devp = NULL; ret = device_find_child_by_seq(parent, seq, false, &dev); if (ret == -ENODEV) { /* * We didn't find it in probed devices. See if there is one * that will request this seq if probed. */ ret = device_find_child_by_seq(parent, seq, true, &dev); } return device_get_device_tail(dev, ret, devp); } int device_find_child_by_of_offset(struct udevice *parent, int of_offset, struct udevice **devp) { struct udevice *dev; *devp = NULL; list_for_each_entry(dev, &parent->child_head, sibling_node) { if (dev_of_offset(dev) == of_offset) { *devp = dev; return 0; } } return -ENODEV; } int device_get_child_by_of_offset(struct udevice *parent, int node, struct udevice **devp) { struct udevice *dev; int ret; *devp = NULL; ret = device_find_child_by_of_offset(parent, node, &dev); return device_get_device_tail(dev, ret, devp); } static struct udevice *_device_find_global_by_of_offset(struct udevice *parent, int of_offset) { struct udevice *dev, *found; if (dev_of_offset(parent) == of_offset) return parent; list_for_each_entry(dev, &parent->child_head, sibling_node) { found = _device_find_global_by_of_offset(dev, of_offset); if (found) return found; } return NULL; } int device_get_global_by_of_offset(int of_offset, struct udevice **devp) { struct udevice *dev; dev = _device_find_global_by_of_offset(gd->dm_root, of_offset); return device_get_device_tail(dev, dev ? 0 : -ENOENT, devp); } int device_find_first_child(struct udevice *parent, struct udevice **devp) { if (list_empty(&parent->child_head)) { *devp = NULL; } else { *devp = list_first_entry(&parent->child_head, struct udevice, sibling_node); } return 0; } int device_find_next_child(struct udevice **devp) { struct udevice *dev = *devp; struct udevice *parent = dev->parent; if (list_is_last(&dev->sibling_node, &parent->child_head)) { *devp = NULL; } else { *devp = list_entry(dev->sibling_node.next, struct udevice, sibling_node); } return 0; } struct udevice *dev_get_parent(struct udevice *child) { return child->parent; } ulong dev_get_driver_data(struct udevice *dev) { return dev->driver_data; } const void *dev_get_driver_ops(struct udevice *dev) { if (!dev || !dev->driver->ops) return NULL; return dev->driver->ops; } enum uclass_id device_get_uclass_id(struct udevice *dev) { return dev->uclass->uc_drv->id; } const char *dev_get_uclass_name(struct udevice *dev) { if (!dev) return NULL; return dev->uclass->uc_drv->name; } bool device_has_children(struct udevice *dev) { return !list_empty(&dev->child_head); } bool device_has_active_children(struct udevice *dev) { struct udevice *child; for (device_find_first_child(dev, &child); child; device_find_next_child(&child)) { if (device_active(child)) return true; } return false; } bool device_is_last_sibling(struct udevice *dev) { struct udevice *parent = dev->parent; if (!parent) return false; return list_is_last(&dev->sibling_node, &parent->child_head); } void device_set_name_alloced(struct udevice *dev) { dev->flags |= DM_FLAG_NAME_ALLOCED; } int device_set_name(struct udevice *dev, const char *name) { name = strdup(name); if (!name) return -ENOMEM; dev->name = name; device_set_name_alloced(dev); return 0; } bool of_device_is_compatible(struct udevice *dev, const char *compat) { const void *fdt = gd->fdt_blob; return !fdt_node_check_compatible(fdt, dev_of_offset(dev), compat); } bool of_machine_is_compatible(const char *compat) { const void *fdt = gd->fdt_blob; return !fdt_node_check_compatible(fdt, 0, compat); }