/* * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include <common.h> #if (CONFIG_COMMANDS & CFG_CMD_NET) && defined(CONFIG_NET_MULTI) \ && defined(CONFIG_TULIP) #include <malloc.h> #include <net.h> #include <pci.h> #undef DEBUG #undef DEBUG_SROM #undef DEBUG_SROM2 #undef UPDATE_SROM /* PCI Registers. */ #define PCI_CFDA_PSM 0x43 #define CFRV_RN 0x000000f0 /* Revision Number */ #define WAKEUP 0x00 /* Power Saving Wakeup */ #define SLEEP 0x80 /* Power Saving Sleep Mode */ #define DC2114x_BRK 0x0020 /* CFRV break between DC21142 & DC21143 */ /* Ethernet chip registers. */ #define DE4X5_BMR 0x000 /* Bus Mode Register */ #define DE4X5_TPD 0x008 /* Transmit Poll Demand Reg */ #define DE4X5_RRBA 0x018 /* RX Ring Base Address Reg */ #define DE4X5_TRBA 0x020 /* TX Ring Base Address Reg */ #define DE4X5_STS 0x028 /* Status Register */ #define DE4X5_OMR 0x030 /* Operation Mode Register */ #define DE4X5_SICR 0x068 /* SIA Connectivity Register */ #define DE4X5_APROM 0x048 /* Ethernet Address PROM */ /* Register bits. */ #define BMR_SWR 0x00000001 /* Software Reset */ #define STS_TS 0x00700000 /* Transmit Process State */ #define STS_RS 0x000e0000 /* Receive Process State */ #define OMR_ST 0x00002000 /* Start/Stop Transmission Command */ #define OMR_SR 0x00000002 /* Start/Stop Receive */ #define OMR_PS 0x00040000 /* Port Select */ #define OMR_SDP 0x02000000 /* SD Polarity - MUST BE ASSERTED */ #define OMR_PM 0x00000080 /* Pass All Multicast */ /* Descriptor bits. */ #define R_OWN 0x80000000 /* Own Bit */ #define RD_RER 0x02000000 /* Receive End Of Ring */ #define RD_LS 0x00000100 /* Last Descriptor */ #define RD_ES 0x00008000 /* Error Summary */ #define TD_TER 0x02000000 /* Transmit End Of Ring */ #define T_OWN 0x80000000 /* Own Bit */ #define TD_LS 0x40000000 /* Last Segment */ #define TD_FS 0x20000000 /* First Segment */ #define TD_ES 0x00008000 /* Error Summary */ #define TD_SET 0x08000000 /* Setup Packet */ /* The EEPROM commands include the alway-set leading bit. */ #define SROM_WRITE_CMD 5 #define SROM_READ_CMD 6 #define SROM_ERASE_CMD 7 #define SROM_HWADD 0x0014 /* Hardware Address offset in SROM */ #define SROM_RD 0x00004000 /* Read from Boot ROM */ #define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */ #define EE_WRITE_0 0x4801 #define EE_WRITE_1 0x4805 #define EE_DATA_READ 0x08 /* EEPROM chip data out. */ #define SROM_SR 0x00000800 /* Select Serial ROM when set */ #define DT_IN 0x00000004 /* Serial Data In */ #define DT_CLK 0x00000002 /* Serial ROM Clock */ #define DT_CS 0x00000001 /* Serial ROM Chip Select */ #define POLL_DEMAND 1 #define RESET_DE4X5(dev) {\ int i;\ i=INL(dev, DE4X5_BMR);\ udelay(1000);\ OUTL(dev, i | BMR_SWR, DE4X5_BMR);\ udelay(1000);\ OUTL(dev, i, DE4X5_BMR);\ udelay(1000);\ for (i=0;i<5;i++) {INL(dev, DE4X5_BMR); udelay(10000);}\ udelay(1000);\ } #define START_DE4X5(dev) {\ s32 omr; \ omr = INL(dev, DE4X5_OMR);\ omr |= OMR_ST | OMR_SR;\ OUTL(dev, omr, DE4X5_OMR); /* Enable the TX and/or RX */\ } #define STOP_DE4X5(dev) {\ s32 omr; \ omr = INL(dev, DE4X5_OMR);\ omr &= ~(OMR_ST|OMR_SR);\ OUTL(dev, omr, DE4X5_OMR); /* Disable the TX and/or RX */ \ } #define NUM_RX_DESC PKTBUFSRX #define NUM_TX_DESC 1 /* Number of TX descriptors */ #define RX_BUFF_SZ PKTSIZE_ALIGN #define TOUT_LOOP 1000000 #define SETUP_FRAME_LEN 192 #define ETH_ALEN 6 struct de4x5_desc { volatile s32 status; u32 des1; u32 buf; u32 next; }; static struct de4x5_desc rx_ring[NUM_RX_DESC]; /* RX descriptor ring */ static struct de4x5_desc tx_ring[NUM_TX_DESC]; /* TX descriptor ring */ static int rx_new; /* RX descriptor ring pointer */ static int tx_new; /* TX descriptor ring pointer */ static char rxRingSize; static char txRingSize; static void sendto_srom(struct eth_device* dev, u_int command, u_long addr); static int getfrom_srom(struct eth_device* dev, u_long addr); static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr, int cmd, int cmd_len); static int do_read_eeprom(struct eth_device *dev, u_long ioaddr, int location, int addr_len); static int read_srom(struct eth_device *dev, u_long ioaddr, int index); #ifdef UPDATE_SROM static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value); static void update_srom(struct eth_device *dev, bd_t *bis); #endif static void read_hw_addr(struct eth_device* dev, bd_t * bis); static void send_setup_frame(struct eth_device* dev, bd_t * bis); static int dc21x4x_init(struct eth_device* dev, bd_t* bis); static int dc21x4x_send(struct eth_device* dev, volatile void *packet, int length); static int dc21x4x_recv(struct eth_device* dev); static void dc21x4x_halt(struct eth_device* dev); #ifdef CONFIG_TULIP_SELECT_MEDIA extern void dc21x4x_select_media(struct eth_device* dev); #endif #define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a) static int INL(struct eth_device* dev, u_long addr) { return le32_to_cpu(*(volatile u_long *)(addr + dev->iobase)); } static void OUTL(struct eth_device* dev, int command, u_long addr) { *(volatile u_long *)(addr + dev->iobase) = cpu_to_le32(command); } static struct pci_device_id supported[] = { { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST }, { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142 }, { } }; int dc21x4x_initialize(bd_t *bis) { int idx=0; int card_number = 0; int cfrv; unsigned char timer; pci_dev_t devbusfn; unsigned int iobase; unsigned short status; struct eth_device* dev; while(1) { devbusfn = pci_find_devices(supported, idx++); if (devbusfn == -1) { break; } /* Get the chip configuration revision register. */ pci_read_config_dword(devbusfn, PCI_REVISION_ID, &cfrv); if ((cfrv & CFRV_RN) < DC2114x_BRK ) { printf("Error: The chip is not DC21143.\n"); continue; } pci_read_config_word(devbusfn, PCI_COMMAND, &status); status |= #ifdef CONFIG_TULIP_USE_IO PCI_COMMAND_IO | #else PCI_COMMAND_MEMORY | #endif PCI_COMMAND_MASTER; pci_write_config_word(devbusfn, PCI_COMMAND, status); pci_read_config_word(devbusfn, PCI_COMMAND, &status); if (!(status & PCI_COMMAND_IO)) { printf("Error: Can not enable I/O access.\n"); continue; } if (!(status & PCI_COMMAND_IO)) { printf("Error: Can not enable I/O access.\n"); continue; } if (!(status & PCI_COMMAND_MASTER)) { printf("Error: Can not enable Bus Mastering.\n"); continue; } /* Check the latency timer for values >= 0x60. */ pci_read_config_byte(devbusfn, PCI_LATENCY_TIMER, &timer); if (timer < 0x60) { pci_write_config_byte(devbusfn, PCI_LATENCY_TIMER, 0x60); } #ifdef CONFIG_TULIP_USE_IO /* read BAR for memory space access */ pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_0, &iobase); iobase &= PCI_BASE_ADDRESS_IO_MASK; #else /* read BAR for memory space access */ pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_1, &iobase); iobase &= PCI_BASE_ADDRESS_MEM_MASK; #endif #ifdef DEBUG printf("dc21x4x: DEC 21142 PCI Device @0x%x\n", iobase); #endif dev = (struct eth_device*) malloc(sizeof *dev); sprintf(dev->name, "dc21x4x#%d", card_number); #ifdef CONFIG_TULIP_USE_IO dev->iobase = pci_io_to_phys(devbusfn, iobase); #else dev->iobase = pci_mem_to_phys(devbusfn, iobase); #endif dev->priv = (void*) devbusfn; dev->init = dc21x4x_init; dev->halt = dc21x4x_halt; dev->send = dc21x4x_send; dev->recv = dc21x4x_recv; /* Ensure we're not sleeping. */ pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP); udelay(10 * 1000); read_hw_addr(dev, bis); eth_register(dev); card_number++; } return card_number; } static int dc21x4x_init(struct eth_device* dev, bd_t* bis) { int i; int devbusfn = (int) dev->priv; /* Ensure we're not sleeping. */ pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP); RESET_DE4X5(dev); if ((INL(dev, DE4X5_STS) & (STS_TS | STS_RS)) != 0) { printf("Error: Cannot reset ethernet controller.\n"); return 0; } #ifdef CONFIG_TULIP_SELECT_MEDIA dc21x4x_select_media(dev); #else OUTL(dev, OMR_SDP | OMR_PS | OMR_PM, DE4X5_OMR); #endif for (i = 0; i < NUM_RX_DESC; i++) { rx_ring[i].status = cpu_to_le32(R_OWN); rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ); rx_ring[i].buf = cpu_to_le32(phys_to_bus((u32) NetRxPackets[i])); rx_ring[i].next = 0; } for (i=0; i < NUM_TX_DESC; i++) { tx_ring[i].status = 0; tx_ring[i].des1 = 0; tx_ring[i].buf = 0; tx_ring[i].next = 0; } rxRingSize = NUM_RX_DESC; txRingSize = NUM_TX_DESC; /* Write the end of list marker to the descriptor lists. */ rx_ring[rxRingSize - 1].des1 |= cpu_to_le32(RD_RER); tx_ring[txRingSize - 1].des1 |= cpu_to_le32(TD_TER); /* Tell the adapter where the TX/RX rings are located. */ OUTL(dev, phys_to_bus((u32) &rx_ring), DE4X5_RRBA); OUTL(dev, phys_to_bus((u32) &tx_ring), DE4X5_TRBA); START_DE4X5(dev); tx_new = 0; rx_new = 0; send_setup_frame(dev, bis); return 1; } static int dc21x4x_send(struct eth_device* dev, volatile void *packet, int length) { int status = -1; int i; if (length <= 0) { printf("%s: bad packet size: %d\n", dev->name, length); goto Done; } for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) { if (i >= TOUT_LOOP) { printf("%s: tx error buffer not ready\n", dev->name); goto Done; } } tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) packet)); tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_LS | TD_FS | length); tx_ring[tx_new].status = cpu_to_le32(T_OWN); OUTL(dev, POLL_DEMAND, DE4X5_TPD); for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) { if (i >= TOUT_LOOP) { printf(".%s: tx buffer not ready\n", dev->name); goto Done; } } if (le32_to_cpu(tx_ring[tx_new].status) & TD_ES) { #if 0 /* test-only */ printf("TX error status = 0x%08X\n", le32_to_cpu(tx_ring[tx_new].status)); #endif goto Done; } status = length; Done: return status; } static int dc21x4x_recv(struct eth_device* dev) { s32 status; int length = 0; for ( ; ; ) { status = (s32)le32_to_cpu(rx_ring[rx_new].status); if (status & R_OWN) { break; } if (status & RD_LS) { /* Valid frame status. */ if (status & RD_ES) { /* There was an error. */ printf("RX error status = 0x%08X\n", status); } else { /* A valid frame received. */ length = (le32_to_cpu(rx_ring[rx_new].status) >> 16); /* Pass the packet up to the protocol * layers. */ NetReceive(NetRxPackets[rx_new], length - 4); } /* Change buffer ownership for this frame, back * to the adapter. */ rx_ring[rx_new].status = cpu_to_le32(R_OWN); } /* Update entry information. */ rx_new = (rx_new + 1) % rxRingSize; } return length; } static void dc21x4x_halt(struct eth_device* dev) { int devbusfn = (int) dev->priv; STOP_DE4X5(dev); OUTL(dev, 0, DE4X5_SICR); pci_write_config_byte(devbusfn, PCI_CFDA_PSM, SLEEP); } static void send_setup_frame(struct eth_device* dev, bd_t *bis) { int i; char setup_frame[SETUP_FRAME_LEN]; char *pa = &setup_frame[0]; memset(pa, 0xff, SETUP_FRAME_LEN); for (i = 0; i < ETH_ALEN; i++) { *(pa + (i & 1)) = dev->enetaddr[i]; if (i & 0x01) { pa += 4; } } for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) { if (i >= TOUT_LOOP) { printf("%s: tx error buffer not ready\n", dev->name); goto Done; } } tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) &setup_frame[0])); tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_SET| SETUP_FRAME_LEN); tx_ring[tx_new].status = cpu_to_le32(T_OWN); OUTL(dev, POLL_DEMAND, DE4X5_TPD); for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) { if (i >= TOUT_LOOP) { printf("%s: tx buffer not ready\n", dev->name); goto Done; } } if (le32_to_cpu(tx_ring[tx_new].status) != 0x7FFFFFFF) { printf("TX error status2 = 0x%08X\n", le32_to_cpu(tx_ring[tx_new].status)); } Done: return; } /* SROM Read and write routines. */ static void sendto_srom(struct eth_device* dev, u_int command, u_long addr) { OUTL(dev, command, addr); udelay(1); } static int getfrom_srom(struct eth_device* dev, u_long addr) { s32 tmp; tmp = INL(dev, addr); udelay(1); return tmp; } /* Note: this routine returns extra data bits for size detection. */ static int do_read_eeprom(struct eth_device *dev, u_long ioaddr, int location, int addr_len) { int i; unsigned retval = 0; int read_cmd = location | (SROM_READ_CMD << addr_len); sendto_srom(dev, SROM_RD | SROM_SR, ioaddr); sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr); #ifdef DEBUG_SROM printf(" EEPROM read at %d ", location); #endif /* Shift the read command bits out. */ for (i = 4 + addr_len; i >= 0; i--) { short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0; sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval, ioaddr); udelay(10); sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval | DT_CLK, ioaddr); udelay(10); #ifdef DEBUG_SROM2 printf("%X", getfrom_srom(dev, ioaddr) & 15); #endif retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0); } sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr); #ifdef DEBUG_SROM2 printf(" :%X:", getfrom_srom(dev, ioaddr) & 15); #endif for (i = 16; i > 0; i--) { sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr); udelay(10); #ifdef DEBUG_SROM2 printf("%X", getfrom_srom(dev, ioaddr) & 15); #endif retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0); sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr); udelay(10); } /* Terminate the EEPROM access. */ sendto_srom(dev, SROM_RD | SROM_SR, ioaddr); #ifdef DEBUG_SROM2 printf(" EEPROM value at %d is %5.5x.\n", location, retval); #endif return retval; } /* This executes a generic EEPROM command, typically a write or write enable. It returns the data output from the EEPROM, and thus may also be used for reads. */ static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr, int cmd, int cmd_len) { unsigned retval = 0; #ifdef DEBUG_SROM printf(" EEPROM op 0x%x: ", cmd); #endif sendto_srom(dev,SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr); /* Shift the command bits out. */ do { short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0; sendto_srom(dev,dataval, ioaddr); udelay(10); #ifdef DEBUG_SROM2 printf("%X", getfrom_srom(dev,ioaddr) & 15); #endif sendto_srom(dev,dataval | DT_CLK, ioaddr); udelay(10); retval = (retval << 1) | ((getfrom_srom(dev,ioaddr) & EE_DATA_READ) ? 1 : 0); } while (--cmd_len >= 0); sendto_srom(dev,SROM_RD | SROM_SR | DT_CS, ioaddr); /* Terminate the EEPROM access. */ sendto_srom(dev,SROM_RD | SROM_SR, ioaddr); #ifdef DEBUG_SROM printf(" EEPROM result is 0x%5.5x.\n", retval); #endif return retval; } static int read_srom(struct eth_device *dev, u_long ioaddr, int index) { int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6; return do_eeprom_cmd(dev, ioaddr, (((SROM_READ_CMD << ee_addr_size) | index) << 16) | 0xffff, 3 + ee_addr_size + 16); } #ifdef UPDATE_SROM static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value) { int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6; int i; unsigned short newval; udelay(10*1000); /* test-only */ #ifdef DEBUG_SROM printf("ee_addr_size=%d.\n", ee_addr_size); printf("Writing new entry 0x%4.4x to offset %d.\n", new_value, index); #endif /* Enable programming modes. */ do_eeprom_cmd(dev, ioaddr, (0x4f << (ee_addr_size-4)), 3+ee_addr_size); /* Do the actual write. */ do_eeprom_cmd(dev, ioaddr, (((SROM_WRITE_CMD<<ee_addr_size)|index) << 16) | new_value, 3 + ee_addr_size + 16); /* Poll for write finished. */ sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr); for (i = 0; i < 10000; i++) /* Typical 2000 ticks */ if (getfrom_srom(dev, ioaddr) & EE_DATA_READ) break; #ifdef DEBUG_SROM printf(" Write finished after %d ticks.\n", i); #endif /* Disable programming. */ do_eeprom_cmd(dev, ioaddr, (0x40 << (ee_addr_size-4)), 3 + ee_addr_size); /* And read the result. */ newval = do_eeprom_cmd(dev, ioaddr, (((SROM_READ_CMD<<ee_addr_size)|index) << 16) | 0xffff, 3 + ee_addr_size + 16); #ifdef DEBUG_SROM printf(" New value at offset %d is %4.4x.\n", index, newval); #endif return 1; } #endif static void read_hw_addr(struct eth_device *dev, bd_t *bis) { u_short tmp, *p = (short *)(&dev->enetaddr[0]); int i, j = 0; for (i = 0; i < (ETH_ALEN >> 1); i++) { tmp = read_srom(dev, DE4X5_APROM, ((SROM_HWADD >> 1) + i)); *p = le16_to_cpu(tmp); j += *p++; } if ((j == 0) || (j == 0x2fffd)) { memset (dev->enetaddr, 0, ETH_ALEN); #ifdef DEBUG printf("Warning: can't read HW address from SROM.\n"); #endif goto Done; } return; Done: #ifdef UPDATE_SROM update_srom(dev, bis); #endif return; } #ifdef UPDATE_SROM static void update_srom(struct eth_device *dev, bd_t *bis) { int i; static unsigned short eeprom[0x40] = { 0x140b, 0x6610, 0x0000, 0x0000, /* 00 */ 0x0000, 0x0000, 0x0000, 0x0000, /* 04 */ 0x00a3, 0x0103, 0x0000, 0x0000, /* 08 */ 0x0000, 0x1f00, 0x0000, 0x0000, /* 0c */ 0x0108, 0x038d, 0x0000, 0x0000, /* 10 */ 0xe078, 0x0001, 0x0040, 0x0018, /* 14 */ 0x0000, 0x0000, 0x0000, 0x0000, /* 18 */ 0x0000, 0x0000, 0x0000, 0x0000, /* 1c */ 0x0000, 0x0000, 0x0000, 0x0000, /* 20 */ 0x0000, 0x0000, 0x0000, 0x0000, /* 24 */ 0x0000, 0x0000, 0x0000, 0x0000, /* 28 */ 0x0000, 0x0000, 0x0000, 0x0000, /* 2c */ 0x0000, 0x0000, 0x0000, 0x0000, /* 30 */ 0x0000, 0x0000, 0x0000, 0x0000, /* 34 */ 0x0000, 0x0000, 0x0000, 0x0000, /* 38 */ 0x0000, 0x0000, 0x0000, 0x4e07, /* 3c */ }; /* Ethernet Addr... */ eeprom[0x0a] = ((bis->bi_enetaddr[1] & 0xff) << 8) | (bis->bi_enetaddr[0] & 0xff); eeprom[0x0b] = ((bis->bi_enetaddr[3] & 0xff) << 8) | (bis->bi_enetaddr[2] & 0xff); eeprom[0x0c] = ((bis->bi_enetaddr[5] & 0xff) << 8) | (bis->bi_enetaddr[4] & 0xff); for (i=0; i<0x40; i++) { write_srom(dev, DE4X5_APROM, i, eeprom[i]); } } #endif #endif