/* * Copyright Altera Corporation (C) 2012-2015 * * SPDX-License-Identifier: BSD-3-Clause */ #include #include #include #include #include "sequencer.h" #include "sequencer_auto.h" #include "sequencer_auto_ac_init.h" #include "sequencer_auto_inst_init.h" #include "sequencer_defines.h" static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs = (struct socfpga_sdr_rw_load_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800); static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs = (struct socfpga_sdr_rw_load_jump_manager *)(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00); static struct socfpga_sdr_reg_file *sdr_reg_file = (struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS; static struct socfpga_sdr_scc_mgr *sdr_scc_mgr = (struct socfpga_sdr_scc_mgr *)(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00); static struct socfpga_phy_mgr_cmd *phy_mgr_cmd = (struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS; static struct socfpga_phy_mgr_cfg *phy_mgr_cfg = (struct socfpga_phy_mgr_cfg *)(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40); static struct socfpga_data_mgr *data_mgr = (struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS; static struct socfpga_sdr_ctrl *sdr_ctrl = (struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS; #define DELTA_D 1 /* * In order to reduce ROM size, most of the selectable calibration steps are * decided at compile time based on the user's calibration mode selection, * as captured by the STATIC_CALIB_STEPS selection below. * * However, to support simulation-time selection of fast simulation mode, where * we skip everything except the bare minimum, we need a few of the steps to * be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the * check, which is based on the rtl-supplied value, or we dynamically compute * the value to use based on the dynamically-chosen calibration mode */ #define DLEVEL 0 #define STATIC_IN_RTL_SIM 0 #define STATIC_SKIP_DELAY_LOOPS 0 #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \ STATIC_SKIP_DELAY_LOOPS) /* calibration steps requested by the rtl */ uint16_t dyn_calib_steps; /* * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option * instead of static, we use boolean logic to select between * non-skip and skip values * * The mask is set to include all bits when not-skipping, but is * zero when skipping */ uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */ #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \ ((non_skip_value) & skip_delay_mask) struct gbl_type *gbl; struct param_type *param; uint32_t curr_shadow_reg; static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, uint32_t write_group, uint32_t use_dm, uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks); static void set_failing_group_stage(uint32_t group, uint32_t stage, uint32_t substage) { /* * Only set the global stage if there was not been any other * failing group */ if (gbl->error_stage == CAL_STAGE_NIL) { gbl->error_substage = substage; gbl->error_stage = stage; gbl->error_group = group; } } static void reg_file_set_group(u16 set_group) { clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16); } static void reg_file_set_stage(u8 set_stage) { clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff); } static void reg_file_set_sub_stage(u8 set_sub_stage) { set_sub_stage &= 0xff; clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8); } /** * phy_mgr_initialize() - Initialize PHY Manager * * Initialize PHY Manager. */ static void phy_mgr_initialize(void) { u32 ratio; debug("%s:%d\n", __func__, __LINE__); /* Calibration has control over path to memory */ /* * In Hard PHY this is a 2-bit control: * 0: AFI Mux Select * 1: DDIO Mux Select */ writel(0x3, &phy_mgr_cfg->mux_sel); /* USER memory clock is not stable we begin initialization */ writel(0, &phy_mgr_cfg->reset_mem_stbl); /* USER calibration status all set to zero */ writel(0, &phy_mgr_cfg->cal_status); writel(0, &phy_mgr_cfg->cal_debug_info); /* Init params only if we do NOT skip calibration. */ if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) return; ratio = RW_MGR_MEM_DQ_PER_READ_DQS / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; param->read_correct_mask_vg = (1 << ratio) - 1; param->write_correct_mask_vg = (1 << ratio) - 1; param->read_correct_mask = (1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1; param->write_correct_mask = (1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1; ratio = RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH; param->dm_correct_mask = (1 << ratio) - 1; } /** * set_rank_and_odt_mask() - Set Rank and ODT mask * @rank: Rank mask * @odt_mode: ODT mode, OFF or READ_WRITE * * Set Rank and ODT mask (On-Die Termination). */ static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode) { u32 odt_mask_0 = 0; u32 odt_mask_1 = 0; u32 cs_and_odt_mask; if (odt_mode == RW_MGR_ODT_MODE_OFF) { odt_mask_0 = 0x0; odt_mask_1 = 0x0; } else { /* RW_MGR_ODT_MODE_READ_WRITE */ switch (RW_MGR_MEM_NUMBER_OF_RANKS) { case 1: /* 1 Rank */ /* Read: ODT = 0 ; Write: ODT = 1 */ odt_mask_0 = 0x0; odt_mask_1 = 0x1; break; case 2: /* 2 Ranks */ if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) { /* * - Dual-Slot , Single-Rank (1 CS per DIMM) * OR * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM) * * Since MEM_NUMBER_OF_RANKS is 2, they * are both single rank with 2 CS each * (special for RDIMM). * * Read: Turn on ODT on the opposite rank * Write: Turn on ODT on all ranks */ odt_mask_0 = 0x3 & ~(1 << rank); odt_mask_1 = 0x3; } else { /* * - Single-Slot , Dual-Rank (2 CS per DIMM) * * Read: Turn on ODT off on all ranks * Write: Turn on ODT on active rank */ odt_mask_0 = 0x0; odt_mask_1 = 0x3 & (1 << rank); } break; case 4: /* 4 Ranks */ /* Read: * ----------+-----------------------+ * | ODT | * Read From +-----------------------+ * Rank | 3 | 2 | 1 | 0 | * ----------+-----+-----+-----+-----+ * 0 | 0 | 1 | 0 | 0 | * 1 | 1 | 0 | 0 | 0 | * 2 | 0 | 0 | 0 | 1 | * 3 | 0 | 0 | 1 | 0 | * ----------+-----+-----+-----+-----+ * * Write: * ----------+-----------------------+ * | ODT | * Write To +-----------------------+ * Rank | 3 | 2 | 1 | 0 | * ----------+-----+-----+-----+-----+ * 0 | 0 | 1 | 0 | 1 | * 1 | 1 | 0 | 1 | 0 | * 2 | 0 | 1 | 0 | 1 | * 3 | 1 | 0 | 1 | 0 | * ----------+-----+-----+-----+-----+ */ switch (rank) { case 0: odt_mask_0 = 0x4; odt_mask_1 = 0x5; break; case 1: odt_mask_0 = 0x8; odt_mask_1 = 0xA; break; case 2: odt_mask_0 = 0x1; odt_mask_1 = 0x5; break; case 3: odt_mask_0 = 0x2; odt_mask_1 = 0xA; break; } break; } } cs_and_odt_mask = (0xFF & ~(1 << rank)) | ((0xFF & odt_mask_0) << 8) | ((0xFF & odt_mask_1) << 16); writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); } /** * scc_mgr_set() - Set SCC Manager register * @off: Base offset in SCC Manager space * @grp: Read/Write group * @val: Value to be set * * This function sets the SCC Manager (Scan Chain Control Manager) register. */ static void scc_mgr_set(u32 off, u32 grp, u32 val) { writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2)); } /** * scc_mgr_initialize() - Initialize SCC Manager registers * * Initialize SCC Manager registers. */ static void scc_mgr_initialize(void) { /* * Clear register file for HPS. 16 (2^4) is the size of the * full register file in the scc mgr: * RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + * MEM_IF_READ_DQS_WIDTH - 1); */ int i; for (i = 0; i < 16; i++) { debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n", __func__, __LINE__, i); scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, 0, i); } } static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase) { scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase); } static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay) { scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay); } static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase) { scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase); } static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay) { scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay); } static void scc_mgr_set_dqs_io_in_delay(uint32_t delay) { scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, delay); } static void scc_mgr_set_dq_in_delay(uint32_t dq_in_group, uint32_t delay) { scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay); } static void scc_mgr_set_dq_out1_delay(uint32_t dq_in_group, uint32_t delay) { scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay); } static void scc_mgr_set_dqs_out1_delay(uint32_t delay) { scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS, delay); } static void scc_mgr_set_dm_out1_delay(uint32_t dm, uint32_t delay) { scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + dm, delay); } /* load up dqs config settings */ static void scc_mgr_load_dqs(uint32_t dqs) { writel(dqs, &sdr_scc_mgr->dqs_ena); } /* load up dqs io config settings */ static void scc_mgr_load_dqs_io(void) { writel(0, &sdr_scc_mgr->dqs_io_ena); } /* load up dq config settings */ static void scc_mgr_load_dq(uint32_t dq_in_group) { writel(dq_in_group, &sdr_scc_mgr->dq_ena); } /* load up dm config settings */ static void scc_mgr_load_dm(uint32_t dm) { writel(dm, &sdr_scc_mgr->dm_ena); } /** * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks * @off: Base offset in SCC Manager space * @grp: Read/Write group * @val: Value to be set * @update: If non-zero, trigger SCC Manager update for all ranks * * This function sets the SCC Manager (Scan Chain Control Manager) register * and optionally triggers the SCC update for all ranks. */ static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val, const int update) { u32 r; for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) { scc_mgr_set(off, grp, val); if (update || (r == 0)) { writel(grp, &sdr_scc_mgr->dqs_ena); writel(0, &sdr_scc_mgr->update); } } } static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase) { /* * USER although the h/w doesn't support different phases per * shadow register, for simplicity our scc manager modeling * keeps different phase settings per shadow reg, and it's * important for us to keep them in sync to match h/w. * for efficiency, the scan chain update should occur only * once to sr0. */ scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase, 0); } static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, uint32_t phase) { /* * USER although the h/w doesn't support different phases per * shadow register, for simplicity our scc manager modeling * keeps different phase settings per shadow reg, and it's * important for us to keep them in sync to match h/w. * for efficiency, the scan chain update should occur only * once to sr0. */ scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase, 0); } static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, uint32_t delay) { /* * In shadow register mode, the T11 settings are stored in * registers in the core, which are updated by the DQS_ENA * signals. Not issuing the SCC_MGR_UPD command allows us to * save lots of rank switching overhead, by calling * select_shadow_regs_for_update with update_scan_chains * set to 0. */ scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay, 1); writel(0, &sdr_scc_mgr->update); } /** * scc_mgr_set_oct_out1_delay() - Set OCT output delay * @write_group: Write group * @delay: Delay value * * This function sets the OCT output delay in SCC manager. */ static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay) { const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH; const int base = write_group * ratio; int i; /* * Load the setting in the SCC manager * Although OCT affects only write data, the OCT delay is controlled * by the DQS logic block which is instantiated once per read group. * For protocols where a write group consists of multiple read groups, * the setting must be set multiple times. */ for (i = 0; i < ratio; i++) scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay); } /** * scc_mgr_set_hhp_extras() - Set HHP extras. * * Load the fixed setting in the SCC manager HHP extras. */ static void scc_mgr_set_hhp_extras(void) { /* * Load the fixed setting in the SCC manager * bits: 0:0 = 1'b1 - DQS bypass * bits: 1:1 = 1'b1 - DQ bypass * bits: 4:2 = 3'b001 - rfifo_mode * bits: 6:5 = 2'b01 - rfifo clock_select * bits: 7:7 = 1'b0 - separate gating from ungating setting * bits: 8:8 = 1'b0 - separate OE from Output delay setting */ const u32 value = (0 << 8) | (0 << 7) | (1 << 5) | (1 << 2) | (1 << 1) | (1 << 0); const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_HHP_GLOBALS_OFFSET | SCC_MGR_HHP_EXTRAS_OFFSET; debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n", __func__, __LINE__); writel(value, addr); debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n", __func__, __LINE__); } /** * scc_mgr_zero_all() - Zero all DQS config * * Zero all DQS config. */ static void scc_mgr_zero_all(void) { int i, r; /* * USER Zero all DQS config settings, across all groups and all * shadow registers */ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) { for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { /* * The phases actually don't exist on a per-rank basis, * but there's no harm updating them several times, so * let's keep the code simple. */ scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE); scc_mgr_set_dqs_en_phase(i, 0); scc_mgr_set_dqs_en_delay(i, 0); } for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { scc_mgr_set_dqdqs_output_phase(i, 0); /* Arria V/Cyclone V don't have out2. */ scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE); } } /* Multicast to all DQS group enables. */ writel(0xff, &sdr_scc_mgr->dqs_ena); writel(0, &sdr_scc_mgr->update); } /** * scc_set_bypass_mode() - Set bypass mode and trigger SCC update * @write_group: Write group * * Set bypass mode and trigger SCC update. */ static void scc_set_bypass_mode(const u32 write_group) { /* Multicast to all DQ enables. */ writel(0xff, &sdr_scc_mgr->dq_ena); writel(0xff, &sdr_scc_mgr->dm_ena); /* Update current DQS IO enable. */ writel(0, &sdr_scc_mgr->dqs_io_ena); /* Update the DQS logic. */ writel(write_group, &sdr_scc_mgr->dqs_ena); /* Hit update. */ writel(0, &sdr_scc_mgr->update); } /** * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group * @write_group: Write group * * Load DQS settings for Write Group, do not trigger SCC update. */ static void scc_mgr_load_dqs_for_write_group(const u32 write_group) { const int ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH; const int base = write_group * ratio; int i; /* * Load the setting in the SCC manager * Although OCT affects only write data, the OCT delay is controlled * by the DQS logic block which is instantiated once per read group. * For protocols where a write group consists of multiple read groups, * the setting must be set multiple times. */ for (i = 0; i < ratio; i++) writel(base + i, &sdr_scc_mgr->dqs_ena); } /** * scc_mgr_zero_group() - Zero all configs for a group * * Zero DQ, DM, DQS and OCT configs for a group. */ static void scc_mgr_zero_group(const u32 write_group, const int out_only) { int i, r; for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) { /* Zero all DQ config settings. */ for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { scc_mgr_set_dq_out1_delay(i, 0); if (!out_only) scc_mgr_set_dq_in_delay(i, 0); } /* Multicast to all DQ enables. */ writel(0xff, &sdr_scc_mgr->dq_ena); /* Zero all DM config settings. */ for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) scc_mgr_set_dm_out1_delay(i, 0); /* Multicast to all DM enables. */ writel(0xff, &sdr_scc_mgr->dm_ena); /* Zero all DQS IO settings. */ if (!out_only) scc_mgr_set_dqs_io_in_delay(0); /* Arria V/Cyclone V don't have out2. */ scc_mgr_set_dqs_out1_delay(IO_DQS_OUT_RESERVE); scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE); scc_mgr_load_dqs_for_write_group(write_group); /* Multicast to all DQS IO enables (only 1 in total). */ writel(0, &sdr_scc_mgr->dqs_io_ena); /* Hit update to zero everything. */ writel(0, &sdr_scc_mgr->update); } } /* * apply and load a particular input delay for the DQ pins in a group * group_bgn is the index of the first dq pin (in the write group) */ static void scc_mgr_apply_group_dq_in_delay(uint32_t group_bgn, uint32_t delay) { uint32_t i, p; for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { scc_mgr_set_dq_in_delay(p, delay); scc_mgr_load_dq(p); } } /** * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group * @delay: Delay value * * Apply and load a particular output delay for the DQ pins in a group. */ static void scc_mgr_apply_group_dq_out1_delay(const u32 delay) { int i; for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { scc_mgr_set_dq_out1_delay(i, delay); scc_mgr_load_dq(i); } } /* apply and load a particular output delay for the DM pins in a group */ static void scc_mgr_apply_group_dm_out1_delay(uint32_t delay1) { uint32_t i; for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) { scc_mgr_set_dm_out1_delay(i, delay1); scc_mgr_load_dm(i); } } /* apply and load delay on both DQS and OCT out1 */ static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, uint32_t delay) { scc_mgr_set_dqs_out1_delay(delay); scc_mgr_load_dqs_io(); scc_mgr_set_oct_out1_delay(write_group, delay); scc_mgr_load_dqs_for_write_group(write_group); } /** * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT * @write_group: Write group * @delay: Delay value * * Apply a delay to the entire output side: DQ, DM, DQS, OCT. */ static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group, const u32 delay) { u32 i, new_delay; /* DQ shift */ for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) scc_mgr_load_dq(i); /* DM shift */ for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) scc_mgr_load_dm(i); /* DQS shift */ new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay; if (new_delay > IO_IO_OUT2_DELAY_MAX) { debug_cond(DLEVEL == 1, "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", __func__, __LINE__, write_group, delay, new_delay, IO_IO_OUT2_DELAY_MAX, new_delay - IO_IO_OUT2_DELAY_MAX); new_delay -= IO_IO_OUT2_DELAY_MAX; scc_mgr_set_dqs_out1_delay(new_delay); } scc_mgr_load_dqs_io(); /* OCT shift */ new_delay = READ_SCC_OCT_OUT2_DELAY + delay; if (new_delay > IO_IO_OUT2_DELAY_MAX) { debug_cond(DLEVEL == 1, "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n", __func__, __LINE__, write_group, delay, new_delay, IO_IO_OUT2_DELAY_MAX, new_delay - IO_IO_OUT2_DELAY_MAX); new_delay -= IO_IO_OUT2_DELAY_MAX; scc_mgr_set_oct_out1_delay(write_group, new_delay); } scc_mgr_load_dqs_for_write_group(write_group); } /** * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks * @write_group: Write group * @delay: Delay value * * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks. */ static void scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group, const u32 delay) { int r; for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) { scc_mgr_apply_group_all_out_delay_add(write_group, delay); writel(0, &sdr_scc_mgr->update); } } /** * set_jump_as_return() - Return instruction optimization * * Optimization used to recover some slots in ddr3 inst_rom could be * applied to other protocols if we wanted to */ static void set_jump_as_return(void) { /* * To save space, we replace return with jump to special shared * RETURN instruction so we set the counter to large value so that * we always jump. */ writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0); writel(RW_MGR_RETURN, &sdr_rw_load_jump_mgr_regs->load_jump_add0); } /* * should always use constants as argument to ensure all computations are * performed at compile time */ static void delay_for_n_mem_clocks(const uint32_t clocks) { uint32_t afi_clocks; uint8_t inner = 0; uint8_t outer = 0; uint16_t c_loop = 0; debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks); afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO; /* scale (rounding up) to get afi clocks */ /* * Note, we don't bother accounting for being off a little bit * because of a few extra instructions in outer loops * Note, the loops have a test at the end, and do the test before * the decrement, and so always perform the loop * 1 time more than the counter value */ if (afi_clocks == 0) { ; } else if (afi_clocks <= 0x100) { inner = afi_clocks-1; outer = 0; c_loop = 0; } else if (afi_clocks <= 0x10000) { inner = 0xff; outer = (afi_clocks-1) >> 8; c_loop = 0; } else { inner = 0xff; outer = 0xff; c_loop = (afi_clocks-1) >> 16; } /* * rom instructions are structured as follows: * * IDLE_LOOP2: jnz cntr0, TARGET_A * IDLE_LOOP1: jnz cntr1, TARGET_B * return * * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and * TARGET_B is set to IDLE_LOOP2 as well * * if we have no outer loop, though, then we can use IDLE_LOOP1 only, * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely * * a little confusing, but it helps save precious space in the inst_rom * and sequencer rom and keeps the delays more accurate and reduces * overhead */ if (afi_clocks <= 0x100) { writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), &sdr_rw_load_mgr_regs->load_cntr1); writel(RW_MGR_IDLE_LOOP1, &sdr_rw_load_jump_mgr_regs->load_jump_add1); writel(RW_MGR_IDLE_LOOP1, SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET); } else { writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner), &sdr_rw_load_mgr_regs->load_cntr0); writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer), &sdr_rw_load_mgr_regs->load_cntr1); writel(RW_MGR_IDLE_LOOP2, &sdr_rw_load_jump_mgr_regs->load_jump_add0); writel(RW_MGR_IDLE_LOOP2, &sdr_rw_load_jump_mgr_regs->load_jump_add1); /* hack to get around compiler not being smart enough */ if (afi_clocks <= 0x10000) { /* only need to run once */ writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET); } else { do { writel(RW_MGR_IDLE_LOOP2, SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET); } while (c_loop-- != 0); } } debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks); } /** * rw_mgr_mem_init_load_regs() - Load instruction registers * @cntr0: Counter 0 value * @cntr1: Counter 1 value * @cntr2: Counter 2 value * @jump: Jump instruction value * * Load instruction registers. */ static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump) { uint32_t grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; /* Load counters */ writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0), &sdr_rw_load_mgr_regs->load_cntr0); writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1), &sdr_rw_load_mgr_regs->load_cntr1); writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2), &sdr_rw_load_mgr_regs->load_cntr2); /* Load jump address */ writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0); writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1); writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2); /* Execute count instruction */ writel(jump, grpaddr); } /** * rw_mgr_mem_load_user() - Load user calibration values * @fin1: Final instruction 1 * @fin2: Final instruction 2 * @precharge: If 1, precharge the banks at the end * * Load user calibration values and optionally precharge the banks. */ static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2, const int precharge) { u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; u32 r; for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { if (param->skip_ranks[r]) { /* request to skip the rank */ continue; } /* set rank */ set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); /* precharge all banks ... */ if (precharge) writel(RW_MGR_PRECHARGE_ALL, grpaddr); /* * USER Use Mirror-ed commands for odd ranks if address * mirrorring is on */ if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) { set_jump_as_return(); writel(RW_MGR_MRS2_MIRR, grpaddr); delay_for_n_mem_clocks(4); set_jump_as_return(); writel(RW_MGR_MRS3_MIRR, grpaddr); delay_for_n_mem_clocks(4); set_jump_as_return(); writel(RW_MGR_MRS1_MIRR, grpaddr); delay_for_n_mem_clocks(4); set_jump_as_return(); writel(fin1, grpaddr); } else { set_jump_as_return(); writel(RW_MGR_MRS2, grpaddr); delay_for_n_mem_clocks(4); set_jump_as_return(); writel(RW_MGR_MRS3, grpaddr); delay_for_n_mem_clocks(4); set_jump_as_return(); writel(RW_MGR_MRS1, grpaddr); set_jump_as_return(); writel(fin2, grpaddr); } if (precharge) continue; set_jump_as_return(); writel(RW_MGR_ZQCL, grpaddr); /* tZQinit = tDLLK = 512 ck cycles */ delay_for_n_mem_clocks(512); } } /** * rw_mgr_mem_initialize() - Initialize RW Manager * * Initialize RW Manager. */ static void rw_mgr_mem_initialize(void) { debug("%s:%d\n", __func__, __LINE__); /* The reset / cke part of initialization is broadcasted to all ranks */ writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_SET_CS_AND_ODT_MASK_OFFSET); /* * Here's how you load register for a loop * Counters are located @ 0x800 * Jump address are located @ 0xC00 * For both, registers 0 to 3 are selected using bits 3 and 2, like * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C * I know this ain't pretty, but Avalon bus throws away the 2 least * significant bits */ /* Start with memory RESET activated */ /* tINIT = 200us */ /* * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles * If a and b are the number of iteration in 2 nested loops * it takes the following number of cycles to complete the operation: * number_of_cycles = ((2 + n) * a + 2) * b * where n is the number of instruction in the inner loop * One possible solution is n = 0 , a = 256 , b = 106 => a = FF, * b = 6A */ rw_mgr_mem_init_load_regs(SEQ_TINIT_CNTR0_VAL, SEQ_TINIT_CNTR1_VAL, SEQ_TINIT_CNTR2_VAL, RW_MGR_INIT_RESET_0_CKE_0); /* Indicate that memory is stable. */ writel(1, &phy_mgr_cfg->reset_mem_stbl); /* * transition the RESET to high * Wait for 500us */ /* * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles * If a and b are the number of iteration in 2 nested loops * it takes the following number of cycles to complete the operation * number_of_cycles = ((2 + n) * a + 2) * b * where n is the number of instruction in the inner loop * One possible solution is n = 2 , a = 131 , b = 256 => a = 83, * b = FF */ rw_mgr_mem_init_load_regs(SEQ_TRESET_CNTR0_VAL, SEQ_TRESET_CNTR1_VAL, SEQ_TRESET_CNTR2_VAL, RW_MGR_INIT_RESET_1_CKE_0); /* Bring up clock enable. */ /* tXRP < 250 ck cycles */ delay_for_n_mem_clocks(250); rw_mgr_mem_load_user(RW_MGR_MRS0_DLL_RESET_MIRR, RW_MGR_MRS0_DLL_RESET, 0); } /* * At the end of calibration we have to program the user settings in, and * USER hand off the memory to the user. */ static void rw_mgr_mem_handoff(void) { rw_mgr_mem_load_user(RW_MGR_MRS0_USER_MIRR, RW_MGR_MRS0_USER, 1); /* * USER need to wait tMOD (12CK or 15ns) time before issuing * other commands, but we will have plenty of NIOS cycles before * actual handoff so its okay. */ } /** * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns * @rank_bgn: Rank number * @group: Read/Write Group * @all_ranks: Test all ranks * * Performs a guaranteed read on the patterns we are going to use during a * read test to ensure memory works. */ static int rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group, const u32 all_ranks) { const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; const u32 addr_offset = (group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS) << 2; const u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : (rank_bgn + NUM_RANKS_PER_SHADOW_REG); const u32 shift_ratio = RW_MGR_MEM_DQ_PER_READ_DQS / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS; const u32 correct_mask_vg = param->read_correct_mask_vg; u32 tmp_bit_chk, base_rw_mgr, bit_chk; int vg, r; int ret = 0; bit_chk = param->read_correct_mask; for (r = rank_bgn; r < rank_end; r++) { /* Request to skip the rank */ if (param->skip_ranks[r]) continue; /* Set rank */ set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); /* Load up a constant bursts of read commands */ writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); writel(RW_MGR_GUARANTEED_READ, &sdr_rw_load_jump_mgr_regs->load_jump_add0); writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); writel(RW_MGR_GUARANTEED_READ_CONT, &sdr_rw_load_jump_mgr_regs->load_jump_add1); tmp_bit_chk = 0; for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1; vg >= 0; vg--) { /* Reset the FIFOs to get pointers to known state. */ writel(0, &phy_mgr_cmd->fifo_reset); writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RESET_READ_DATAPATH_OFFSET); writel(RW_MGR_GUARANTEED_READ, addr + addr_offset + (vg << 2)); base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); tmp_bit_chk <<= shift_ratio; tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr; } bit_chk &= tmp_bit_chk; } writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); if (bit_chk != param->read_correct_mask) ret = -EIO; debug_cond(DLEVEL == 1, "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n", __func__, __LINE__, group, bit_chk, param->read_correct_mask, ret); return ret; } /** * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test * @rank_bgn: Rank number * @all_ranks: Test all ranks * * Load up the patterns we are going to use during a read test. */ static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn, const int all_ranks) { const u32 rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : (rank_bgn + NUM_RANKS_PER_SHADOW_REG); u32 r; debug("%s:%d\n", __func__, __LINE__); for (r = rank_bgn; r < rank_end; r++) { if (param->skip_ranks[r]) /* request to skip the rank */ continue; /* set rank */ set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); /* Load up a constant bursts */ writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0); writel(RW_MGR_GUARANTEED_WRITE_WAIT0, &sdr_rw_load_jump_mgr_regs->load_jump_add0); writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1); writel(RW_MGR_GUARANTEED_WRITE_WAIT1, &sdr_rw_load_jump_mgr_regs->load_jump_add1); writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2); writel(RW_MGR_GUARANTEED_WRITE_WAIT2, &sdr_rw_load_jump_mgr_regs->load_jump_add2); writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3); writel(RW_MGR_GUARANTEED_WRITE_WAIT3, &sdr_rw_load_jump_mgr_regs->load_jump_add3); writel(RW_MGR_GUARANTEED_WRITE, SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET); } set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); } /* * try a read and see if it returns correct data back. has dummy reads * inserted into the mix used to align dqs enable. has more thorough checks * than the regular read test. */ static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group, uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, uint32_t all_groups, uint32_t all_ranks) { uint32_t r, vg; uint32_t correct_mask_vg; uint32_t tmp_bit_chk; uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : (rank_bgn + NUM_RANKS_PER_SHADOW_REG); uint32_t addr; uint32_t base_rw_mgr; *bit_chk = param->read_correct_mask; correct_mask_vg = param->read_correct_mask_vg; uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION); for (r = rank_bgn; r < rank_end; r++) { if (param->skip_ranks[r]) /* request to skip the rank */ continue; /* set rank */ set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1); writel(RW_MGR_READ_B2B_WAIT1, &sdr_rw_load_jump_mgr_regs->load_jump_add1); writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2); writel(RW_MGR_READ_B2B_WAIT2, &sdr_rw_load_jump_mgr_regs->load_jump_add2); if (quick_read_mode) writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0); /* need at least two (1+1) reads to capture failures */ else if (all_groups) writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0); else writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0); writel(RW_MGR_READ_B2B, &sdr_rw_load_jump_mgr_regs->load_jump_add0); if (all_groups) writel(RW_MGR_MEM_IF_READ_DQS_WIDTH * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1, &sdr_rw_load_mgr_regs->load_cntr3); else writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3); writel(RW_MGR_READ_B2B, &sdr_rw_load_jump_mgr_regs->load_jump_add3); tmp_bit_chk = 0; for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) { /* reset the fifos to get pointers to known state */ writel(0, &phy_mgr_cmd->fifo_reset); writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RESET_READ_DATAPATH_OFFSET); tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS); if (all_groups) addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_ALL_GROUPS_OFFSET; else addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; writel(RW_MGR_READ_B2B, addr + ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + vg) << 2)); base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS); tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); if (vg == 0) break; } *bit_chk &= tmp_bit_chk; } addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; writel(RW_MGR_CLEAR_DQS_ENABLE, addr + (group << 2)); if (all_correct) { set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ALL,%u) =>\ (%u == %u) => %lu", __func__, __LINE__, group, all_groups, *bit_chk, param->read_correct_mask, (long unsigned int)(*bit_chk == param->read_correct_mask)); return *bit_chk == param->read_correct_mask; } else { set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); debug_cond(DLEVEL == 2, "%s:%d read_test(%u,ONE,%u) =>\ (%u != %lu) => %lu\n", __func__, __LINE__, group, all_groups, *bit_chk, (long unsigned int)0, (long unsigned int)(*bit_chk != 0x00)); return *bit_chk != 0x00; } } static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group, uint32_t num_tries, uint32_t all_correct, uint32_t *bit_chk, uint32_t all_groups) { return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct, bit_chk, all_groups, 1); } static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v) { writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy); (*v)++; } static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v) { uint32_t i; for (i = 0; i < VFIFO_SIZE-1; i++) rw_mgr_incr_vfifo(grp, v); } static int find_vfifo_read(uint32_t grp, uint32_t *bit_chk) { uint32_t v; uint32_t fail_cnt = 0; uint32_t test_status; for (v = 0; v < VFIFO_SIZE; ) { debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo %u\n", __func__, __LINE__, v); test_status = rw_mgr_mem_calibrate_read_test_all_ranks (grp, 1, PASS_ONE_BIT, bit_chk, 0); if (!test_status) { fail_cnt++; if (fail_cnt == 2) break; } /* fiddle with FIFO */ rw_mgr_incr_vfifo(grp, &v); } if (v >= VFIFO_SIZE) { /* no failing read found!! Something must have gone wrong */ debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: vfifo failed\n", __func__, __LINE__); return 0; } else { return v; } } /** * sdr_find_phase() - Find DQS enable phase * @working: If 1, look for working phase, if 0, look for non-working phase * @grp: Read/Write group * @v: VFIFO value * @work: Working window position * @i: Iterator * @p: DQS Phase Iterator * @max_working_cnt: Counter * * Find working or non-working DQS enable phase setting. */ static int sdr_find_phase(int working, const u32 grp, u32 *v, u32 *work, u32 *i, u32 *p, u32 *max_working_cnt) { u32 ret, bit_chk; const u32 end = VFIFO_SIZE + (working ? 0 : 1); for (; *i < end; (*i)++) { if (working) *p = 0; for (; *p <= IO_DQS_EN_PHASE_MAX; (*p)++) { scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, PASS_ONE_BIT, &bit_chk, 0); if (ret) (*max_working_cnt)++; if (!working) ret = !ret; if (ret) return 0; *work += IO_DELAY_PER_OPA_TAP; } if (*p > IO_DQS_EN_PHASE_MAX) { /* Fiddle with FIFO. */ rw_mgr_incr_vfifo(grp, v); if (!working) *p = 0; } } return -EINVAL; } static int sdr_working_phase(uint32_t grp, uint32_t dtaps_per_ptap, uint32_t *work_bgn, uint32_t *v, uint32_t *d, uint32_t *p, uint32_t *i, uint32_t *max_working_cnt) { int ret; *work_bgn = 0; for (*d = 0; *d <= dtaps_per_ptap; (*d)++) { *i = 0; scc_mgr_set_dqs_en_delay_all_ranks(grp, *d); ret = sdr_find_phase(1, grp, v, work_bgn, i, p, max_working_cnt); if (!ret) return 0; *work_bgn += IO_DELAY_PER_DQS_EN_DCHAIN_TAP; } /* Cannot find working solution */ debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n", __func__, __LINE__); return -EINVAL; } static void sdr_backup_phase(uint32_t grp, uint32_t *work_bgn, uint32_t *v, uint32_t *d, uint32_t *p, uint32_t *max_working_cnt) { uint32_t found_begin = 0; uint32_t tmp_delay; u32 bit_chk; /* Special case code for backing up a phase */ if (*p == 0) { *p = IO_DQS_EN_PHASE_MAX; rw_mgr_decr_vfifo(grp, v); } else { (*p)--; } tmp_delay = *work_bgn - IO_DELAY_PER_OPA_TAP; scc_mgr_set_dqs_en_phase_all_ranks(grp, *p); for (*d = 0; *d <= IO_DQS_EN_DELAY_MAX && tmp_delay < *work_bgn; (*d)++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { scc_mgr_set_dqs_en_delay_all_ranks(grp, *d); if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { found_begin = 1; *work_bgn = tmp_delay; break; } } /* We have found a working dtap before the ptap found above */ if (found_begin == 1) (*max_working_cnt)++; /* * Restore VFIFO to old state before we decremented it * (if needed). */ (*p)++; if (*p > IO_DQS_EN_PHASE_MAX) { *p = 0; rw_mgr_incr_vfifo(grp, v); } scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); } static int sdr_nonworking_phase(uint32_t grp, uint32_t *work_bgn, uint32_t *v, uint32_t *d, uint32_t *p, uint32_t *i, uint32_t *max_working_cnt, uint32_t *work_end) { int ret; (*p)++; *work_end += IO_DELAY_PER_OPA_TAP; if (*p > IO_DQS_EN_PHASE_MAX) { /* Fiddle with FIFO. */ *p = 0; rw_mgr_incr_vfifo(grp, v); } ret = sdr_find_phase(0, grp, v, work_end, i, p, max_working_cnt); if (ret) { /* Cannot see edge of failing read. */ debug_cond(DLEVEL == 2, "%s:%d: end: failed\n", __func__, __LINE__); } return ret; } /** * sdr_find_window_center() - Find center of the working DQS window. * @grp: Read/Write group * @work_bgn: First working settings * @work_end: Last working settings * @val: VFIFO value * * Find center of the working DQS enable window. */ static int sdr_find_window_center(const u32 grp, const u32 work_bgn, const u32 work_end, const u32 val) { u32 bit_chk, work_mid, v = val; int tmp_delay = 0; int i, p, d; work_mid = (work_bgn + work_end) / 2; debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n", work_bgn, work_end, work_mid); /* Get the middle delay to be less than a VFIFO delay */ tmp_delay = (IO_DQS_EN_PHASE_MAX + 1) * IO_DELAY_PER_OPA_TAP; debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay); work_mid %= tmp_delay; debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid); tmp_delay = rounddown(work_mid, IO_DELAY_PER_OPA_TAP); if (tmp_delay > IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP) tmp_delay = IO_DQS_EN_PHASE_MAX * IO_DELAY_PER_OPA_TAP; p = tmp_delay / IO_DELAY_PER_OPA_TAP; debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay); d = DIV_ROUND_UP(work_mid - tmp_delay, IO_DELAY_PER_DQS_EN_DCHAIN_TAP); if (d > IO_DQS_EN_DELAY_MAX) d = IO_DQS_EN_DELAY_MAX; tmp_delay += d * IO_DELAY_PER_DQS_EN_DCHAIN_TAP; debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay); scc_mgr_set_dqs_en_phase_all_ranks(grp, p); scc_mgr_set_dqs_en_delay_all_ranks(grp, d); /* * push vfifo until we can successfully calibrate. We can do this * because the largest possible margin in 1 VFIFO cycle. */ for (i = 0; i < VFIFO_SIZE; i++) { debug_cond(DLEVEL == 2, "find_dqs_en_phase: center: vfifo=%u\n", v); if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { debug_cond(DLEVEL == 2, "%s:%d center: found: vfifo=%u ptap=%u dtap=%u\n", __func__, __LINE__, v, p, d); return 0; } /* Fiddle with FIFO. */ rw_mgr_incr_vfifo(grp, &v); } debug_cond(DLEVEL == 2, "%s:%d center: failed.\n", __func__, __LINE__); return -EINVAL; } /* find a good dqs enable to use */ static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp) { uint32_t v, d, p, i; uint32_t max_working_cnt; uint32_t bit_chk; uint32_t dtaps_per_ptap; uint32_t work_bgn, work_end; uint32_t found_passing_read, found_failing_read, initial_failing_dtap; debug("%s:%d %u\n", __func__, __LINE__, grp); reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); scc_mgr_set_dqs_en_delay_all_ranks(grp, 0); scc_mgr_set_dqs_en_phase_all_ranks(grp, 0); /* ************************************************************** */ /* * Step 0 : Determine number of delay taps for each phase tap * */ dtaps_per_ptap = IO_DELAY_PER_OPA_TAP/IO_DELAY_PER_DQS_EN_DCHAIN_TAP; /* ********************************************************* */ /* * Step 1 : First push vfifo until we get a failing read * */ v = find_vfifo_read(grp, &bit_chk); max_working_cnt = 0; /* ******************************************************** */ /* * step 2: find first working phase, increment in ptaps * */ work_bgn = 0; if (sdr_working_phase(grp, dtaps_per_ptap, &work_bgn, &v, &d, &p, &i, &max_working_cnt)) return 0; work_end = work_bgn; /* * If d is 0 then the working window covers a phase tap and * we can follow the old procedure otherwise, we've found the beginning, * and we need to increment the dtaps until we find the end. */ if (d == 0) { /* ********************************************************* */ /* * step 3a: if we have room, back off by one and increment in dtaps * */ sdr_backup_phase(grp, &work_bgn, &v, &d, &p, &max_working_cnt); /* ********************************************************* */ /* * step 4a: go forward from working phase to non working phase, increment in ptaps * */ if (sdr_nonworking_phase(grp, &work_bgn, &v, &d, &p, &i, &max_working_cnt, &work_end)) return 0; /* ********************************************************* */ /* * step 5a: back off one from last, increment in dtaps * */ /* Special case code for backing up a phase */ if (p == 0) { p = IO_DQS_EN_PHASE_MAX; rw_mgr_decr_vfifo(grp, &v); } else { p = p - 1; } work_end -= IO_DELAY_PER_OPA_TAP; scc_mgr_set_dqs_en_phase_all_ranks(grp, p); /* * The actual increment of dtaps is done outside of the if/else loop to share code */ d = 0; debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p: \ vfifo=%u ptap=%u\n", __func__, __LINE__, v, p); } else { /* ******************************************************* */ /* * step 3-5b: Find the right edge of the window using delay taps * */ debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase:vfifo=%u \ ptap=%u dtap=%u bgn=%u\n", __func__, __LINE__, v, p, d, work_bgn); work_end = work_bgn; /* * The actual increment of dtaps is done outside of the if/else loop to share code */ /* Only here to counterbalance a subtract later on which is not needed if this branch of the algorithm is taken */ max_working_cnt++; } /* The dtap increment to find the failing edge is done here */ for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) { debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ end-2: dtap=%u\n", __func__, __LINE__, d); scc_mgr_set_dqs_en_delay_all_ranks(grp, d); if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { break; } } /* Go back to working dtap */ if (d != 0) work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP; debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: v/p/d: vfifo=%u \ ptap=%u dtap=%u end=%u\n", __func__, __LINE__, v, p, d-1, work_end); if (work_end < work_bgn) { /* nil range */ debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: end-2: \ failed\n", __func__, __LINE__); return 0; } debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: found range [%u,%u]\n", __func__, __LINE__, work_bgn, work_end); /* *************************************************************** */ /* * * We need to calculate the number of dtaps that equal a ptap * * To do that we'll back up a ptap and re-find the edge of the * * window using dtaps */ debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: calculate dtaps_per_ptap \ for tracking\n", __func__, __LINE__); /* Special case code for backing up a phase */ if (p == 0) { p = IO_DQS_EN_PHASE_MAX; rw_mgr_decr_vfifo(grp, &v); debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ cycle/phase: v=%u p=%u\n", __func__, __LINE__, v, p); } else { p = p - 1; debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: backedup \ phase only: v=%u p=%u", __func__, __LINE__, v, p); } scc_mgr_set_dqs_en_phase_all_ranks(grp, p); /* * Increase dtap until we first see a passing read (in case the * window is smaller than a ptap), * and then a failing read to mark the edge of the window again */ /* Find a passing read */ debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find passing read\n", __func__, __LINE__); found_passing_read = 0; found_failing_read = 0; initial_failing_dtap = d; for (; d <= IO_DQS_EN_DELAY_MAX; d++) { debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: testing \ read d=%u\n", __func__, __LINE__, d); scc_mgr_set_dqs_en_delay_all_ranks(grp, d); if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { found_passing_read = 1; break; } } if (found_passing_read) { /* Find a failing read */ debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: find failing \ read\n", __func__, __LINE__); for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) { debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: \ testing read d=%u\n", __func__, __LINE__, d); scc_mgr_set_dqs_en_delay_all_ranks(grp, d); if (!rw_mgr_mem_calibrate_read_test_all_ranks (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) { found_failing_read = 1; break; } } } else { debug_cond(DLEVEL == 1, "%s:%d find_dqs_en_phase: failed to \ calculate dtaps", __func__, __LINE__); debug_cond(DLEVEL == 1, "per ptap. Fall back on static value\n"); } /* * The dynamically calculated dtaps_per_ptap is only valid if we * found a passing/failing read. If we didn't, it means d hit the max * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its * statically calculated value. */ if (found_passing_read && found_failing_read) dtaps_per_ptap = d - initial_failing_dtap; writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap); debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: dtaps_per_ptap=%u \ - %u = %u", __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap); /* ******************************************** */ /* * step 6: Find the centre of the window * */ if (sdr_find_window_centre(grp, work_bgn, work_end, v)) return 0; /* FIXME: Old code, return 0 means failure :-( */ return 1; } /* per-bit deskew DQ and center */ static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, uint32_t write_group, uint32_t read_group, uint32_t test_bgn, uint32_t use_read_test, uint32_t update_fom) { uint32_t i, p, d, min_index; /* * Store these as signed since there are comparisons with * signed numbers. */ uint32_t bit_chk; uint32_t sticky_bit_chk; int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS]; int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS]; int32_t mid; int32_t orig_mid_min, mid_min; int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, final_dqs_en; int32_t dq_margin, dqs_margin; uint32_t stop; uint32_t temp_dq_in_delay1, temp_dq_in_delay2; uint32_t addr; debug("%s:%d: %u %u", __func__, __LINE__, read_group, test_bgn); addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_DQS_IN_DELAY_OFFSET; start_dqs = readl(addr + (read_group << 2)); if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) start_dqs_en = readl(addr + ((read_group << 2) - IO_DQS_EN_DELAY_OFFSET)); /* set the left and right edge of each bit to an illegal value */ /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */ sticky_bit_chk = 0; for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { left_edge[i] = IO_IO_IN_DELAY_MAX + 1; right_edge[i] = IO_IO_IN_DELAY_MAX + 1; } /* Search for the left edge of the window for each bit */ for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) { scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d); writel(0, &sdr_scc_mgr->update); /* * Stop searching when the read test doesn't pass AND when * we've seen a passing read on every bit. */ if (use_read_test) { stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, &bit_chk, 0, 0); } else { rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0, PASS_ONE_BIT, &bit_chk, 0); bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * (read_group - (write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); stop = (bit_chk == 0); } sticky_bit_chk = sticky_bit_chk | bit_chk; stop = stop && (sticky_bit_chk == param->read_correct_mask); debug_cond(DLEVEL == 2, "%s:%d vfifo_center(left): dtap=%u => %u == %u \ && %u", __func__, __LINE__, d, sticky_bit_chk, param->read_correct_mask, stop); if (stop == 1) { break; } else { for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { if (bit_chk & 1) { /* Remember a passing test as the left_edge */ left_edge[i] = d; } else { /* If a left edge has not been seen yet, then a future passing test will mark this edge as the right edge */ if (left_edge[i] == IO_IO_IN_DELAY_MAX + 1) { right_edge[i] = -(d + 1); } } bit_chk = bit_chk >> 1; } } } /* Reset DQ delay chains to 0 */ scc_mgr_apply_group_dq_in_delay(test_bgn, 0); sticky_bit_chk = 0; for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) { debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ %d right_edge[%u]: %d\n", __func__, __LINE__, i, left_edge[i], i, right_edge[i]); /* * Check for cases where we haven't found the left edge, * which makes our assignment of the the right edge invalid. * Reset it to the illegal value. */ if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && ( right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { right_edge[i] = IO_IO_IN_DELAY_MAX + 1; debug_cond(DLEVEL == 2, "%s:%d vfifo_center: reset \ right_edge[%u]: %d\n", __func__, __LINE__, i, right_edge[i]); } /* * Reset sticky bit (except for bits where we have seen * both the left and right edge). */ sticky_bit_chk = sticky_bit_chk << 1; if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) && (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) { sticky_bit_chk = sticky_bit_chk | 1; } if (i == 0) break; } /* Search for the right edge of the window for each bit */ for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) { scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs); if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { uint32_t delay = d + start_dqs_en; if (delay > IO_DQS_EN_DELAY_MAX) delay = IO_DQS_EN_DELAY_MAX; scc_mgr_set_dqs_en_delay(read_group, delay); } scc_mgr_load_dqs(read_group); writel(0, &sdr_scc_mgr->update); /* * Stop searching when the read test doesn't pass AND when * we've seen a passing read on every bit. */ if (use_read_test) { stop = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT, &bit_chk, 0, 0); } else { rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0, PASS_ONE_BIT, &bit_chk, 0); bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS * (read_group - (write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH))); stop = (bit_chk == 0); } sticky_bit_chk = sticky_bit_chk | bit_chk; stop = stop && (sticky_bit_chk == param->read_correct_mask); debug_cond(DLEVEL == 2, "%s:%d vfifo_center(right): dtap=%u => %u == \ %u && %u", __func__, __LINE__, d, sticky_bit_chk, param->read_correct_mask, stop); if (stop == 1) { break; } else { for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { if (bit_chk & 1) { /* Remember a passing test as the right_edge */ right_edge[i] = d; } else { if (d != 0) { /* If a right edge has not been seen yet, then a future passing test will mark this edge as the left edge */ if (right_edge[i] == IO_IO_IN_DELAY_MAX + 1) { left_edge[i] = -(d + 1); } } else { /* d = 0 failed, but it passed when testing the left edge, so it must be marginal, set it to -1 */ if (right_edge[i] == IO_IO_IN_DELAY_MAX + 1 && left_edge[i] != IO_IO_IN_DELAY_MAX + 1) { right_edge[i] = -1; } /* If a right edge has not been seen yet, then a future passing test will mark this edge as the left edge */ else if (right_edge[i] == IO_IO_IN_DELAY_MAX + 1) { left_edge[i] = -(d + 1); } } } debug_cond(DLEVEL == 2, "%s:%d vfifo_center[r,\ d=%u]: ", __func__, __LINE__, d); debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d ", (int)(bit_chk & 1), i, left_edge[i]); debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, right_edge[i]); bit_chk = bit_chk >> 1; } } } /* Check that all bits have a window */ for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { debug_cond(DLEVEL == 2, "%s:%d vfifo_center: left_edge[%u]: \ %d right_edge[%u]: %d", __func__, __LINE__, i, left_edge[i], i, right_edge[i]); if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i] == IO_IO_IN_DELAY_MAX + 1)) { /* * Restore delay chain settings before letting the loop * in rw_mgr_mem_calibrate_vfifo to retry different * dqs/ck relationships. */ scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs); if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { scc_mgr_set_dqs_en_delay(read_group, start_dqs_en); } scc_mgr_load_dqs(read_group); writel(0, &sdr_scc_mgr->update); debug_cond(DLEVEL == 1, "%s:%d vfifo_center: failed to \ find edge [%u]: %d %d", __func__, __LINE__, i, left_edge[i], right_edge[i]); if (use_read_test) { set_failing_group_stage(read_group * RW_MGR_MEM_DQ_PER_READ_DQS + i, CAL_STAGE_VFIFO, CAL_SUBSTAGE_VFIFO_CENTER); } else { set_failing_group_stage(read_group * RW_MGR_MEM_DQ_PER_READ_DQS + i, CAL_STAGE_VFIFO_AFTER_WRITES, CAL_SUBSTAGE_VFIFO_CENTER); } return 0; } } /* Find middle of window for each DQ bit */ mid_min = left_edge[0] - right_edge[0]; min_index = 0; for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) { mid = left_edge[i] - right_edge[i]; if (mid < mid_min) { mid_min = mid; min_index = i; } } /* * -mid_min/2 represents the amount that we need to move DQS. * If mid_min is odd and positive we'll need to add one to * make sure the rounding in further calculations is correct * (always bias to the right), so just add 1 for all positive values. */ if (mid_min > 0) mid_min++; mid_min = mid_min / 2; debug_cond(DLEVEL == 1, "%s:%d vfifo_center: mid_min=%d (index=%u)\n", __func__, __LINE__, mid_min, min_index); /* Determine the amount we can change DQS (which is -mid_min) */ orig_mid_min = mid_min; new_dqs = start_dqs - mid_min; if (new_dqs > IO_DQS_IN_DELAY_MAX) new_dqs = IO_DQS_IN_DELAY_MAX; else if (new_dqs < 0) new_dqs = 0; mid_min = start_dqs - new_dqs; debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n", mid_min, new_dqs); if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX; else if (start_dqs_en - mid_min < 0) mid_min += start_dqs_en - mid_min; } new_dqs = start_dqs - mid_min; debug_cond(DLEVEL == 1, "vfifo_center: start_dqs=%d start_dqs_en=%d \ new_dqs=%d mid_min=%d\n", start_dqs, IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, new_dqs, mid_min); /* Initialize data for export structures */ dqs_margin = IO_IO_IN_DELAY_MAX + 1; dq_margin = IO_IO_IN_DELAY_MAX + 1; /* add delay to bring centre of all DQ windows to the same "level" */ for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) { /* Use values before divide by 2 to reduce round off error */ shift_dq = (left_edge[i] - right_edge[i] - (left_edge[min_index] - right_edge[min_index]))/2 + (orig_mid_min - mid_min); debug_cond(DLEVEL == 2, "vfifo_center: before: \ shift_dq[%u]=%d\n", i, shift_dq); addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_IN_DELAY_OFFSET; temp_dq_in_delay1 = readl(addr + (p << 2)); temp_dq_in_delay2 = readl(addr + (i << 2)); if (shift_dq + (int32_t)temp_dq_in_delay1 > (int32_t)IO_IO_IN_DELAY_MAX) { shift_dq = (int32_t)IO_IO_IN_DELAY_MAX - temp_dq_in_delay2; } else if (shift_dq + (int32_t)temp_dq_in_delay1 < 0) { shift_dq = -(int32_t)temp_dq_in_delay1; } debug_cond(DLEVEL == 2, "vfifo_center: after: \ shift_dq[%u]=%d\n", i, shift_dq); final_dq[i] = temp_dq_in_delay1 + shift_dq; scc_mgr_set_dq_in_delay(p, final_dq[i]); scc_mgr_load_dq(p); debug_cond(DLEVEL == 2, "vfifo_center: margin[%u]=[%d,%d]\n", i, left_edge[i] - shift_dq + (-mid_min), right_edge[i] + shift_dq - (-mid_min)); /* To determine values for export structures */ if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) dq_margin = left_edge[i] - shift_dq + (-mid_min); if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) dqs_margin = right_edge[i] + shift_dq - (-mid_min); } final_dqs = new_dqs; if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) final_dqs_en = start_dqs_en - mid_min; /* Move DQS-en */ if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) { scc_mgr_set_dqs_en_delay(read_group, final_dqs_en); scc_mgr_load_dqs(read_group); } /* Move DQS */ scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs); scc_mgr_load_dqs(read_group); debug_cond(DLEVEL == 2, "%s:%d vfifo_center: dq_margin=%d \ dqs_margin=%d", __func__, __LINE__, dq_margin, dqs_margin); /* * Do not remove this line as it makes sure all of our decisions * have been applied. Apply the update bit. */ writel(0, &sdr_scc_mgr->update); return (dq_margin >= 0) && (dqs_margin >= 0); } /** * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device * @rw_group: Read/Write Group * @phase: DQ/DQS phase * * Because initially no communication ca be reliably performed with the memory * device, the sequencer uses a guaranteed write mechanism to write data into * the memory device. */ static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group, const u32 phase) { int ret; /* Set a particular DQ/DQS phase. */ scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase); debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n", __func__, __LINE__, rw_group, phase); /* * Altera EMI_RM 2015.05.04 :: Figure 1-25 * Load up the patterns used by read calibration using the * current DQDQS phase. */ rw_mgr_mem_calibrate_read_load_patterns(0, 1); if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ) return 0; /* * Altera EMI_RM 2015.05.04 :: Figure 1-26 * Back-to-Back reads of the patterns used for calibration. */ ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1); if (ret) debug_cond(DLEVEL == 1, "%s:%d Guaranteed read test failed: g=%u p=%u\n", __func__, __LINE__, rw_group, phase); return ret; } /** * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration * @rw_group: Read/Write Group * @test_bgn: Rank at which the test begins * * DQS enable calibration ensures reliable capture of the DQ signal without * glitches on the DQS line. */ static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group, const u32 test_bgn) { /* * Altera EMI_RM 2015.05.04 :: Figure 1-27 * DQS and DQS Eanble Signal Relationships. */ /* We start at zero, so have one less dq to devide among */ const u32 delay_step = IO_IO_IN_DELAY_MAX / (RW_MGR_MEM_DQ_PER_READ_DQS - 1); int found; u32 i, p, d, r; debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn); /* Try different dq_in_delays since the DQ path is shorter than DQS. */ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) { for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++, d += delay_step) { debug_cond(DLEVEL == 1, "%s:%d: g=%u r=%u i=%u p=%u d=%u\n", __func__, __LINE__, rw_group, r, i, p, d); scc_mgr_set_dq_in_delay(p, d); scc_mgr_load_dq(p); } writel(0, &sdr_scc_mgr->update); } /* * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different * dq_in_delay values */ found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group); debug_cond(DLEVEL == 1, "%s:%d: g=%u found=%u; Reseting delay chain to zero\n", __func__, __LINE__, rw_group, found); for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) { scc_mgr_apply_group_dq_in_delay(test_bgn, 0); writel(0, &sdr_scc_mgr->update); } if (!found) return -EINVAL; return 0; } /** * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS * @rw_group: Read/Write Group * @test_bgn: Rank at which the test begins * @use_read_test: Perform a read test * @update_fom: Update FOM * * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads * within a group. */ static int rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn, const int use_read_test, const int update_fom) { int ret, grp_calibrated; u32 rank_bgn, sr; /* * Altera EMI_RM 2015.05.04 :: Figure 1-28 * Read per-bit deskew can be done on a per shadow register basis. */ grp_calibrated = 1; for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { /* Check if this set of ranks should be skipped entirely. */ if (param->skip_shadow_regs[sr]) continue; ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group, rw_group, test_bgn, use_read_test, update_fom); if (ret) continue; grp_calibrated = 0; } if (!grp_calibrated) return -EIO; return 0; } /** * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO * @rw_group: Read/Write Group * @test_bgn: Rank at which the test begins * * Stage 1: Calibrate the read valid prediction FIFO. * * This function implements UniPHY calibration Stage 1, as explained in * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages". * * - read valid prediction will consist of finding: * - DQS enable phase and DQS enable delay (DQS Enable Calibration) * - DQS input phase and DQS input delay (DQ/DQS Centering) * - we also do a per-bit deskew on the DQ lines. */ static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn) { uint32_t p, d; uint32_t dtaps_per_ptap; uint32_t failed_substage; int ret; debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn); /* Update info for sims */ reg_file_set_group(rw_group); reg_file_set_stage(CAL_STAGE_VFIFO); reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ); failed_substage = CAL_SUBSTAGE_GUARANTEED_READ; /* USER Determine number of delay taps for each phase tap. */ dtaps_per_ptap = DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DQS_EN_DCHAIN_TAP) - 1; for (d = 0; d <= dtaps_per_ptap; d += 2) { /* * In RLDRAMX we may be messing the delay of pins in * the same write rw_group but outside of the current read * the rw_group, but that's ok because we haven't calibrated * output side yet. */ if (d > 0) { scc_mgr_apply_group_all_out_delay_add_all_ranks( rw_group, d); } for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++) { /* 1) Guaranteed Write */ ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p); if (ret) break; /* 2) DQS Enable Calibration */ ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group, test_bgn); if (ret) { failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE; continue; } /* 3) Centering DQ/DQS */ /* * If doing read after write calibration, do not update * FOM now. Do it then. */ ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 1, 0); if (ret) { failed_substage = CAL_SUBSTAGE_VFIFO_CENTER; continue; } /* All done. */ goto cal_done_ok; } } /* Calibration Stage 1 failed. */ set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage); return 0; /* Calibration Stage 1 completed OK. */ cal_done_ok: /* * Reset the delay chains back to zero if they have moved > 1 * (check for > 1 because loop will increase d even when pass in * first case). */ if (d > 2) scc_mgr_zero_group(rw_group, 1); return 1; } /* VFIFO Calibration -- Read Deskew Calibration after write deskew */ static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, uint32_t test_bgn) { uint32_t rank_bgn, sr; uint32_t grp_calibrated; uint32_t write_group; debug("%s:%d %u %u", __func__, __LINE__, read_group, test_bgn); /* update info for sims */ reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES); reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER); write_group = read_group; /* update info for sims */ reg_file_set_group(read_group); grp_calibrated = 1; /* Read per-bit deskew can be done on a per shadow register basis */ for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) { /* Determine if this set of ranks should be skipped entirely */ if (!param->skip_shadow_regs[sr]) { /* This is the last calibration round, update FOM here */ if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, write_group, read_group, test_bgn, 0, 1)) { grp_calibrated = 0; } } } if (grp_calibrated == 0) { set_failing_group_stage(write_group, CAL_STAGE_VFIFO_AFTER_WRITES, CAL_SUBSTAGE_VFIFO_CENTER); return 0; } return 1; } /* Calibrate LFIFO to find smallest read latency */ static uint32_t rw_mgr_mem_calibrate_lfifo(void) { uint32_t found_one; uint32_t bit_chk; debug("%s:%d\n", __func__, __LINE__); /* update info for sims */ reg_file_set_stage(CAL_STAGE_LFIFO); reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY); /* Load up the patterns used by read calibration for all ranks */ rw_mgr_mem_calibrate_read_load_patterns(0, 1); found_one = 0; do { writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u", __func__, __LINE__, gbl->curr_read_lat); if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS, PASS_ALL_BITS, &bit_chk, 1)) { break; } found_one = 1; /* reduce read latency and see if things are working */ /* correctly */ gbl->curr_read_lat--; } while (gbl->curr_read_lat > 0); /* reset the fifos to get pointers to known state */ writel(0, &phy_mgr_cmd->fifo_reset); if (found_one) { /* add a fudge factor to the read latency that was determined */ gbl->curr_read_lat += 2; writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); debug_cond(DLEVEL == 2, "%s:%d lfifo: success: using \ read_lat=%u\n", __func__, __LINE__, gbl->curr_read_lat); return 1; } else { set_failing_group_stage(0xff, CAL_STAGE_LFIFO, CAL_SUBSTAGE_READ_LATENCY); debug_cond(DLEVEL == 2, "%s:%d lfifo: failed at initial \ read_lat=%u\n", __func__, __LINE__, gbl->curr_read_lat); return 0; } } /* * issue write test command. * two variants are provided. one that just tests a write pattern and * another that tests datamask functionality. */ static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, uint32_t test_dm) { uint32_t mcc_instruction; uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES) && ENABLE_SUPER_QUICK_CALIBRATION); uint32_t rw_wl_nop_cycles; uint32_t addr; /* * Set counter and jump addresses for the right * number of NOP cycles. * The number of supported NOP cycles can range from -1 to infinity * Three different cases are handled: * * 1. For a number of NOP cycles greater than 0, the RW Mgr looping * mechanism will be used to insert the right number of NOPs * * 2. For a number of NOP cycles equals to 0, the micro-instruction * issuing the write command will jump straight to the * micro-instruction that turns on DQS (for DDRx), or outputs write * data (for RLD), skipping * the NOP micro-instruction all together * * 3. A number of NOP cycles equal to -1 indicates that DQS must be * turned on in the same micro-instruction that issues the write * command. Then we need * to directly jump to the micro-instruction that sends out the data * * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters * (2 and 3). One jump-counter (0) is used to perform multiple * write-read operations. * one counter left to issue this command in "multiple-group" mode */ rw_wl_nop_cycles = gbl->rw_wl_nop_cycles; if (rw_wl_nop_cycles == -1) { /* * CNTR 2 - We want to execute the special write operation that * turns on DQS right away and then skip directly to the * instruction that sends out the data. We set the counter to a * large number so that the jump is always taken. */ writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); /* CNTR 3 - Not used */ if (test_dm) { mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1; writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA, &sdr_rw_load_jump_mgr_regs->load_jump_add2); writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, &sdr_rw_load_jump_mgr_regs->load_jump_add3); } else { mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0_WL_1; writel(RW_MGR_LFSR_WR_RD_BANK_0_DATA, &sdr_rw_load_jump_mgr_regs->load_jump_add2); writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, &sdr_rw_load_jump_mgr_regs->load_jump_add3); } } else if (rw_wl_nop_cycles == 0) { /* * CNTR 2 - We want to skip the NOP operation and go straight * to the DQS enable instruction. We set the counter to a large * number so that the jump is always taken. */ writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2); /* CNTR 3 - Not used */ if (test_dm) { mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS, &sdr_rw_load_jump_mgr_regs->load_jump_add2); } else { mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; writel(RW_MGR_LFSR_WR_RD_BANK_0_DQS, &sdr_rw_load_jump_mgr_regs->load_jump_add2); } } else { /* * CNTR 2 - In this case we want to execute the next instruction * and NOT take the jump. So we set the counter to 0. The jump * address doesn't count. */ writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2); writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2); /* * CNTR 3 - Set the nop counter to the number of cycles we * need to loop for, minus 1. */ writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3); if (test_dm) { mcc_instruction = RW_MGR_LFSR_WR_RD_DM_BANK_0; writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP, &sdr_rw_load_jump_mgr_regs->load_jump_add3); } else { mcc_instruction = RW_MGR_LFSR_WR_RD_BANK_0; writel(RW_MGR_LFSR_WR_RD_BANK_0_NOP, &sdr_rw_load_jump_mgr_regs->load_jump_add3); } } writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RESET_READ_DATAPATH_OFFSET); if (quick_write_mode) writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0); else writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0); writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0); /* * CNTR 1 - This is used to ensure enough time elapses * for read data to come back. */ writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1); if (test_dm) { writel(RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT, &sdr_rw_load_jump_mgr_regs->load_jump_add1); } else { writel(RW_MGR_LFSR_WR_RD_BANK_0_WAIT, &sdr_rw_load_jump_mgr_regs->load_jump_add1); } addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET; writel(mcc_instruction, addr + (group << 2)); } /* Test writes, can check for a single bit pass or multiple bit pass */ static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, uint32_t write_group, uint32_t use_dm, uint32_t all_correct, uint32_t *bit_chk, uint32_t all_ranks) { uint32_t r; uint32_t correct_mask_vg; uint32_t tmp_bit_chk; uint32_t vg; uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : (rank_bgn + NUM_RANKS_PER_SHADOW_REG); uint32_t addr_rw_mgr; uint32_t base_rw_mgr; *bit_chk = param->write_correct_mask; correct_mask_vg = param->write_correct_mask_vg; for (r = rank_bgn; r < rank_end; r++) { if (param->skip_ranks[r]) { /* request to skip the rank */ continue; } /* set rank */ set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE); tmp_bit_chk = 0; addr_rw_mgr = SDR_PHYGRP_RWMGRGRP_ADDRESS; for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS-1; ; vg--) { /* reset the fifos to get pointers to known state */ writel(0, &phy_mgr_cmd->fifo_reset); tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_WRITE_DQS / RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); rw_mgr_mem_calibrate_write_test_issue(write_group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS+vg, use_dm); base_rw_mgr = readl(addr_rw_mgr); tmp_bit_chk = tmp_bit_chk | (correct_mask_vg & ~(base_rw_mgr)); if (vg == 0) break; } *bit_chk &= tmp_bit_chk; } if (all_correct) { set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); debug_cond(DLEVEL == 2, "write_test(%u,%u,ALL) : %u == \ %u => %lu", write_group, use_dm, *bit_chk, param->write_correct_mask, (long unsigned int)(*bit_chk == param->write_correct_mask)); return *bit_chk == param->write_correct_mask; } else { set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF); debug_cond(DLEVEL == 2, "write_test(%u,%u,ONE) : %u != ", write_group, use_dm, *bit_chk); debug_cond(DLEVEL == 2, "%lu" " => %lu", (long unsigned int)0, (long unsigned int)(*bit_chk != 0)); return *bit_chk != 0x00; } } /* * center all windows. do per-bit-deskew to possibly increase size of * certain windows. */ static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, uint32_t write_group, uint32_t test_bgn) { uint32_t i, p, min_index; int32_t d; /* * Store these as signed since there are comparisons with * signed numbers. */ uint32_t bit_chk; uint32_t sticky_bit_chk; int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; int32_t right_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS]; int32_t mid; int32_t mid_min, orig_mid_min; int32_t new_dqs, start_dqs, shift_dq; int32_t dq_margin, dqs_margin, dm_margin; uint32_t stop; uint32_t temp_dq_out1_delay; uint32_t addr; debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn); dm_margin = 0; addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; start_dqs = readl(addr + (RW_MGR_MEM_DQ_PER_WRITE_DQS << 2)); /* per-bit deskew */ /* * set the left and right edge of each bit to an illegal value * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value. */ sticky_bit_chk = 0; for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; } /* Search for the left edge of the window for each bit */ for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) { scc_mgr_apply_group_dq_out1_delay(write_group, d); writel(0, &sdr_scc_mgr->update); /* * Stop searching when the read test doesn't pass AND when * we've seen a passing read on every bit. */ stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0, PASS_ONE_BIT, &bit_chk, 0); sticky_bit_chk = sticky_bit_chk | bit_chk; stop = stop && (sticky_bit_chk == param->write_correct_mask); debug_cond(DLEVEL == 2, "write_center(left): dtap=%d => %u \ == %u && %u [bit_chk= %u ]\n", d, sticky_bit_chk, param->write_correct_mask, stop, bit_chk); if (stop == 1) { break; } else { for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { if (bit_chk & 1) { /* * Remember a passing test as the * left_edge. */ left_edge[i] = d; } else { /* * If a left edge has not been seen * yet, then a future passing test will * mark this edge as the right edge. */ if (left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) { right_edge[i] = -(d + 1); } } debug_cond(DLEVEL == 2, "write_center[l,d=%d):", d); debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", (int)(bit_chk & 1), i, left_edge[i]); debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, right_edge[i]); bit_chk = bit_chk >> 1; } } } /* Reset DQ delay chains to 0 */ scc_mgr_apply_group_dq_out1_delay(0); sticky_bit_chk = 0; for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) { debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ %d right_edge[%u]: %d\n", __func__, __LINE__, i, left_edge[i], i, right_edge[i]); /* * Check for cases where we haven't found the left edge, * which makes our assignment of the the right edge invalid. * Reset it to the illegal value. */ if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) && (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) { right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1; debug_cond(DLEVEL == 2, "%s:%d write_center: reset \ right_edge[%u]: %d\n", __func__, __LINE__, i, right_edge[i]); } /* * Reset sticky bit (except for bits where we have * seen the left edge). */ sticky_bit_chk = sticky_bit_chk << 1; if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) sticky_bit_chk = sticky_bit_chk | 1; if (i == 0) break; } /* Search for the right edge of the window for each bit */ for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) { scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, d + start_dqs); writel(0, &sdr_scc_mgr->update); /* * Stop searching when the read test doesn't pass AND when * we've seen a passing read on every bit. */ stop = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0, PASS_ONE_BIT, &bit_chk, 0); sticky_bit_chk = sticky_bit_chk | bit_chk; stop = stop && (sticky_bit_chk == param->write_correct_mask); debug_cond(DLEVEL == 2, "write_center (right): dtap=%u => %u == \ %u && %u\n", d, sticky_bit_chk, param->write_correct_mask, stop); if (stop == 1) { if (d == 0) { for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { /* d = 0 failed, but it passed when testing the left edge, so it must be marginal, set it to -1 */ if (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1 && left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1) { right_edge[i] = -1; } } } break; } else { for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { if (bit_chk & 1) { /* * Remember a passing test as * the right_edge. */ right_edge[i] = d; } else { if (d != 0) { /* * If a right edge has not * been seen yet, then a future * passing test will mark this * edge as the left edge. */ if (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) left_edge[i] = -(d + 1); } else { /* * d = 0 failed, but it passed * when testing the left edge, * so it must be marginal, set * it to -1. */ if (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1 && left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1) right_edge[i] = -1; /* * If a right edge has not been * seen yet, then a future * passing test will mark this * edge as the left edge. */ else if (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) left_edge[i] = -(d + 1); } } debug_cond(DLEVEL == 2, "write_center[r,d=%d):", d); debug_cond(DLEVEL == 2, "bit_chk_test=%d left_edge[%u]: %d", (int)(bit_chk & 1), i, left_edge[i]); debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i, right_edge[i]); bit_chk = bit_chk >> 1; } } } /* Check that all bits have a window */ for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { debug_cond(DLEVEL == 2, "%s:%d write_center: left_edge[%u]: \ %d right_edge[%u]: %d", __func__, __LINE__, i, left_edge[i], i, right_edge[i]); if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) || (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) { set_failing_group_stage(test_bgn + i, CAL_STAGE_WRITES, CAL_SUBSTAGE_WRITES_CENTER); return 0; } } /* Find middle of window for each DQ bit */ mid_min = left_edge[0] - right_edge[0]; min_index = 0; for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) { mid = left_edge[i] - right_edge[i]; if (mid < mid_min) { mid_min = mid; min_index = i; } } /* * -mid_min/2 represents the amount that we need to move DQS. * If mid_min is odd and positive we'll need to add one to * make sure the rounding in further calculations is correct * (always bias to the right), so just add 1 for all positive values. */ if (mid_min > 0) mid_min++; mid_min = mid_min / 2; debug_cond(DLEVEL == 1, "%s:%d write_center: mid_min=%d\n", __func__, __LINE__, mid_min); /* Determine the amount we can change DQS (which is -mid_min) */ orig_mid_min = mid_min; new_dqs = start_dqs; mid_min = 0; debug_cond(DLEVEL == 1, "%s:%d write_center: start_dqs=%d new_dqs=%d \ mid_min=%d\n", __func__, __LINE__, start_dqs, new_dqs, mid_min); /* Initialize data for export structures */ dqs_margin = IO_IO_OUT1_DELAY_MAX + 1; dq_margin = IO_IO_OUT1_DELAY_MAX + 1; /* add delay to bring centre of all DQ windows to the same "level" */ for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) { /* Use values before divide by 2 to reduce round off error */ shift_dq = (left_edge[i] - right_edge[i] - (left_edge[min_index] - right_edge[min_index]))/2 + (orig_mid_min - mid_min); debug_cond(DLEVEL == 2, "%s:%d write_center: before: shift_dq \ [%u]=%d\n", __func__, __LINE__, i, shift_dq); addr = SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_IO_OUT1_DELAY_OFFSET; temp_dq_out1_delay = readl(addr + (i << 2)); if (shift_dq + (int32_t)temp_dq_out1_delay > (int32_t)IO_IO_OUT1_DELAY_MAX) { shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX - temp_dq_out1_delay; } else if (shift_dq + (int32_t)temp_dq_out1_delay < 0) { shift_dq = -(int32_t)temp_dq_out1_delay; } debug_cond(DLEVEL == 2, "write_center: after: shift_dq[%u]=%d\n", i, shift_dq); scc_mgr_set_dq_out1_delay(i, temp_dq_out1_delay + shift_dq); scc_mgr_load_dq(i); debug_cond(DLEVEL == 2, "write_center: margin[%u]=[%d,%d]\n", i, left_edge[i] - shift_dq + (-mid_min), right_edge[i] + shift_dq - (-mid_min)); /* To determine values for export structures */ if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) dq_margin = left_edge[i] - shift_dq + (-mid_min); if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) dqs_margin = right_edge[i] + shift_dq - (-mid_min); } /* Move DQS */ scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); writel(0, &sdr_scc_mgr->update); /* Centre DM */ debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__); /* * set the left and right edge of each bit to an illegal value, * use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value, */ left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1; int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1; int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1; int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1; int32_t win_best = 0; /* Search for the/part of the window with DM shift */ for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) { scc_mgr_apply_group_dm_out1_delay(d); writel(0, &sdr_scc_mgr->update); if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, PASS_ALL_BITS, &bit_chk, 0)) { /* USE Set current end of the window */ end_curr = -d; /* * If a starting edge of our window has not been seen * this is our current start of the DM window. */ if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) bgn_curr = -d; /* * If current window is bigger than best seen. * Set best seen to be current window. */ if ((end_curr-bgn_curr+1) > win_best) { win_best = end_curr-bgn_curr+1; bgn_best = bgn_curr; end_best = end_curr; } } else { /* We just saw a failing test. Reset temp edge */ bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; end_curr = IO_IO_OUT1_DELAY_MAX + 1; } } /* Reset DM delay chains to 0 */ scc_mgr_apply_group_dm_out1_delay(0); /* * Check to see if the current window nudges up aganist 0 delay. * If so we need to continue the search by shifting DQS otherwise DQS * search begins as a new search. */ if (end_curr != 0) { bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; end_curr = IO_IO_OUT1_DELAY_MAX + 1; } /* Search for the/part of the window with DQS shifts */ for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) { /* * Note: This only shifts DQS, so are we limiting ourselve to * width of DQ unnecessarily. */ scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, d + new_dqs); writel(0, &sdr_scc_mgr->update); if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1, PASS_ALL_BITS, &bit_chk, 0)) { /* USE Set current end of the window */ end_curr = d; /* * If a beginning edge of our window has not been seen * this is our current begin of the DM window. */ if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) bgn_curr = d; /* * If current window is bigger than best seen. Set best * seen to be current window. */ if ((end_curr-bgn_curr+1) > win_best) { win_best = end_curr-bgn_curr+1; bgn_best = bgn_curr; end_best = end_curr; } } else { /* We just saw a failing test. Reset temp edge */ bgn_curr = IO_IO_OUT1_DELAY_MAX + 1; end_curr = IO_IO_OUT1_DELAY_MAX + 1; /* Early exit optimization: if ther remaining delay chain space is less than already seen largest window we can exit */ if ((win_best-1) > (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) { break; } } } /* assign left and right edge for cal and reporting; */ left_edge[0] = -1*bgn_best; right_edge[0] = end_best; debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n", __func__, __LINE__, left_edge[0], right_edge[0]); /* Move DQS (back to orig) */ scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs); /* Move DM */ /* Find middle of window for the DM bit */ mid = (left_edge[0] - right_edge[0]) / 2; /* only move right, since we are not moving DQS/DQ */ if (mid < 0) mid = 0; /* dm_marign should fail if we never find a window */ if (win_best == 0) dm_margin = -1; else dm_margin = left_edge[0] - mid; scc_mgr_apply_group_dm_out1_delay(mid); writel(0, &sdr_scc_mgr->update); debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d mid=%d \ dm_margin=%d\n", __func__, __LINE__, left_edge[0], right_edge[0], mid, dm_margin); /* Export values */ gbl->fom_out += dq_margin + dqs_margin; debug_cond(DLEVEL == 2, "%s:%d write_center: dq_margin=%d \ dqs_margin=%d dm_margin=%d\n", __func__, __LINE__, dq_margin, dqs_margin, dm_margin); /* * Do not remove this line as it makes sure all of our * decisions have been applied. */ writel(0, &sdr_scc_mgr->update); return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0); } /* calibrate the write operations */ static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, uint32_t test_bgn) { /* update info for sims */ debug("%s:%d %u %u\n", __func__, __LINE__, g, test_bgn); reg_file_set_stage(CAL_STAGE_WRITES); reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER); reg_file_set_group(g); if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) { set_failing_group_stage(g, CAL_STAGE_WRITES, CAL_SUBSTAGE_WRITES_CENTER); return 0; } return 1; } /** * mem_precharge_and_activate() - Precharge all banks and activate * * Precharge all banks and activate row 0 in bank "000..." and bank "111...". */ static void mem_precharge_and_activate(void) { int r; for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) { /* Test if the rank should be skipped. */ if (param->skip_ranks[r]) continue; /* Set rank. */ set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF); /* Precharge all banks. */ writel(RW_MGR_PRECHARGE_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET); writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0); writel(RW_MGR_ACTIVATE_0_AND_1_WAIT1, &sdr_rw_load_jump_mgr_regs->load_jump_add0); writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1); writel(RW_MGR_ACTIVATE_0_AND_1_WAIT2, &sdr_rw_load_jump_mgr_regs->load_jump_add1); /* Activate rows. */ writel(RW_MGR_ACTIVATE_0_AND_1, SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET); } } /** * mem_init_latency() - Configure memory RLAT and WLAT settings * * Configure memory RLAT and WLAT parameters. */ static void mem_init_latency(void) { /* * For AV/CV, LFIFO is hardened and always runs at full rate * so max latency in AFI clocks, used here, is correspondingly * smaller. */ const u32 max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) - 1; u32 rlat, wlat; debug("%s:%d\n", __func__, __LINE__); /* * Read in write latency. * WL for Hard PHY does not include additive latency. */ wlat = readl(&data_mgr->t_wl_add); wlat += readl(&data_mgr->mem_t_add); gbl->rw_wl_nop_cycles = wlat - 1; /* Read in readl latency. */ rlat = readl(&data_mgr->t_rl_add); /* Set a pretty high read latency initially. */ gbl->curr_read_lat = rlat + 16; if (gbl->curr_read_lat > max_latency) gbl->curr_read_lat = max_latency; writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); /* Advertise write latency. */ writel(wlat, &phy_mgr_cfg->afi_wlat); } /** * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings * * Set VFIFO and LFIFO to instant-on settings in skip calibration mode. */ static void mem_skip_calibrate(void) { uint32_t vfifo_offset; uint32_t i, j, r; debug("%s:%d\n", __func__, __LINE__); /* Need to update every shadow register set used by the interface */ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) { /* * Set output phase alignment settings appropriate for * skip calibration. */ for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { scc_mgr_set_dqs_en_phase(i, 0); #if IO_DLL_CHAIN_LENGTH == 6 scc_mgr_set_dqdqs_output_phase(i, 6); #else scc_mgr_set_dqdqs_output_phase(i, 7); #endif /* * Case:33398 * * Write data arrives to the I/O two cycles before write * latency is reached (720 deg). * -> due to bit-slip in a/c bus * -> to allow board skew where dqs is longer than ck * -> how often can this happen!? * -> can claim back some ptaps for high freq * support if we can relax this, but i digress... * * The write_clk leads mem_ck by 90 deg * The minimum ptap of the OPA is 180 deg * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay * The write_clk is always delayed by 2 ptaps * * Hence, to make DQS aligned to CK, we need to delay * DQS by: * (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH)) * * Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) * gives us the number of ptaps, which simplies to: * * (1.25 * IO_DLL_CHAIN_LENGTH - 2) */ scc_mgr_set_dqdqs_output_phase(i, 1.25 * IO_DLL_CHAIN_LENGTH - 2); } writel(0xff, &sdr_scc_mgr->dqs_ena); writel(0xff, &sdr_scc_mgr->dqs_io_ena); for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) { writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_GROUP_COUNTER_OFFSET); } writel(0xff, &sdr_scc_mgr->dq_ena); writel(0xff, &sdr_scc_mgr->dm_ena); writel(0, &sdr_scc_mgr->update); } /* Compensate for simulation model behaviour */ for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { scc_mgr_set_dqs_bus_in_delay(i, 10); scc_mgr_load_dqs(i); } writel(0, &sdr_scc_mgr->update); /* * ArriaV has hard FIFOs that can only be initialized by incrementing * in sequencer. */ vfifo_offset = CALIB_VFIFO_OFFSET; for (j = 0; j < vfifo_offset; j++) writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy); writel(0, &phy_mgr_cmd->fifo_reset); /* * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal * setting from generation-time constant. */ gbl->curr_read_lat = CALIB_LFIFO_OFFSET; writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat); } /** * mem_calibrate() - Memory calibration entry point. * * Perform memory calibration. */ static uint32_t mem_calibrate(void) { uint32_t i; uint32_t rank_bgn, sr; uint32_t write_group, write_test_bgn; uint32_t read_group, read_test_bgn; uint32_t run_groups, current_run; uint32_t failing_groups = 0; uint32_t group_failed = 0; const u32 rwdqs_ratio = RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH; debug("%s:%d\n", __func__, __LINE__); /* Initialize the data settings */ gbl->error_substage = CAL_SUBSTAGE_NIL; gbl->error_stage = CAL_STAGE_NIL; gbl->error_group = 0xff; gbl->fom_in = 0; gbl->fom_out = 0; /* Initialize WLAT and RLAT. */ mem_init_latency(); /* Initialize bit slips. */ mem_precharge_and_activate(); for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) { writel(i, SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_GROUP_COUNTER_OFFSET); /* Only needed once to set all groups, pins, DQ, DQS, DM. */ if (i == 0) scc_mgr_set_hhp_extras(); scc_set_bypass_mode(i); } /* Calibration is skipped. */ if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) { /* * Set VFIFO and LFIFO to instant-on settings in skip * calibration mode. */ mem_skip_calibrate(); /* * Do not remove this line as it makes sure all of our * decisions have been applied. */ writel(0, &sdr_scc_mgr->update); return 1; } /* Calibration is not skipped. */ for (i = 0; i < NUM_CALIB_REPEAT; i++) { /* * Zero all delay chain/phase settings for all * groups and all shadow register sets. */ scc_mgr_zero_all(); run_groups = ~param->skip_groups; for (write_group = 0, write_test_bgn = 0; write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++, write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) { /* Initialize the group failure */ group_failed = 0; current_run = run_groups & ((1 << RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1); run_groups = run_groups >> RW_MGR_NUM_DQS_PER_WRITE_GROUP; if (current_run == 0) continue; writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS | SCC_MGR_GROUP_COUNTER_OFFSET); scc_mgr_zero_group(write_group, 0); for (read_group = write_group * rwdqs_ratio, read_test_bgn = 0; read_group < (write_group + 1) * rwdqs_ratio; read_group++, read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO) continue; /* Calibrate the VFIFO */ if (rw_mgr_mem_calibrate_vfifo(read_group, read_test_bgn)) continue; if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) return 0; /* The group failed, we're done. */ goto grp_failed; } /* Calibrate the output side */ for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS; rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) { if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) continue; /* Not needed in quick mode! */ if (STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) continue; /* * Determine if this set of ranks * should be skipped entirely. */ if (param->skip_shadow_regs[sr]) continue; /* Calibrate WRITEs */ if (rw_mgr_mem_calibrate_writes(rank_bgn, write_group, write_test_bgn)) continue; group_failed = 1; if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) return 0; } /* Some group failed, we're done. */ if (group_failed) goto grp_failed; for (read_group = write_group * rwdqs_ratio, read_test_bgn = 0; read_group < (write_group + 1) * rwdqs_ratio; read_group++, read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) { if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) continue; if (rw_mgr_mem_calibrate_vfifo_end(read_group, read_test_bgn)) continue; if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_SWEEP_ALL_GROUPS)) return 0; /* The group failed, we're done. */ goto grp_failed; } /* No group failed, continue as usual. */ continue; grp_failed: /* A group failed, increment the counter. */ failing_groups++; } /* * USER If there are any failing groups then report * the failure. */ if (failing_groups != 0) return 0; if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO) continue; /* * If we're skipping groups as part of debug, * don't calibrate LFIFO. */ if (param->skip_groups != 0) continue; /* Calibrate the LFIFO */ if (!rw_mgr_mem_calibrate_lfifo()) return 0; } /* * Do not remove this line as it makes sure all of our decisions * have been applied. */ writel(0, &sdr_scc_mgr->update); return 1; } /** * run_mem_calibrate() - Perform memory calibration * * This function triggers the entire memory calibration procedure. */ static int run_mem_calibrate(void) { int pass; debug("%s:%d\n", __func__, __LINE__); /* Reset pass/fail status shown on afi_cal_success/fail */ writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status); /* Stop tracking manager. */ clrbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); phy_mgr_initialize(); rw_mgr_mem_initialize(); /* Perform the actual memory calibration. */ pass = mem_calibrate(); mem_precharge_and_activate(); writel(0, &phy_mgr_cmd->fifo_reset); /* Handoff. */ rw_mgr_mem_handoff(); /* * In Hard PHY this is a 2-bit control: * 0: AFI Mux Select * 1: DDIO Mux Select */ writel(0x2, &phy_mgr_cfg->mux_sel); /* Start tracking manager. */ setbits_le32(&sdr_ctrl->ctrl_cfg, 1 << 22); return pass; } /** * debug_mem_calibrate() - Report result of memory calibration * @pass: Value indicating whether calibration passed or failed * * This function reports the results of the memory calibration * and writes debug information into the register file. */ static void debug_mem_calibrate(int pass) { uint32_t debug_info; if (pass) { printf("%s: CALIBRATION PASSED\n", __FILE__); gbl->fom_in /= 2; gbl->fom_out /= 2; if (gbl->fom_in > 0xff) gbl->fom_in = 0xff; if (gbl->fom_out > 0xff) gbl->fom_out = 0xff; /* Update the FOM in the register file */ debug_info = gbl->fom_in; debug_info |= gbl->fom_out << 8; writel(debug_info, &sdr_reg_file->fom); writel(debug_info, &phy_mgr_cfg->cal_debug_info); writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status); } else { printf("%s: CALIBRATION FAILED\n", __FILE__); debug_info = gbl->error_stage; debug_info |= gbl->error_substage << 8; debug_info |= gbl->error_group << 16; writel(debug_info, &sdr_reg_file->failing_stage); writel(debug_info, &phy_mgr_cfg->cal_debug_info); writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status); /* Update the failing group/stage in the register file */ debug_info = gbl->error_stage; debug_info |= gbl->error_substage << 8; debug_info |= gbl->error_group << 16; writel(debug_info, &sdr_reg_file->failing_stage); } printf("%s: Calibration complete\n", __FILE__); } /** * hc_initialize_rom_data() - Initialize ROM data * * Initialize ROM data. */ static void hc_initialize_rom_data(void) { u32 i, addr; addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET; for (i = 0; i < ARRAY_SIZE(inst_rom_init); i++) writel(inst_rom_init[i], addr + (i << 2)); addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET; for (i = 0; i < ARRAY_SIZE(ac_rom_init); i++) writel(ac_rom_init[i], addr + (i << 2)); } /** * initialize_reg_file() - Initialize SDR register file * * Initialize SDR register file. */ static void initialize_reg_file(void) { /* Initialize the register file with the correct data */ writel(REG_FILE_INIT_SEQ_SIGNATURE, &sdr_reg_file->signature); writel(0, &sdr_reg_file->debug_data_addr); writel(0, &sdr_reg_file->cur_stage); writel(0, &sdr_reg_file->fom); writel(0, &sdr_reg_file->failing_stage); writel(0, &sdr_reg_file->debug1); writel(0, &sdr_reg_file->debug2); } /** * initialize_hps_phy() - Initialize HPS PHY * * Initialize HPS PHY. */ static void initialize_hps_phy(void) { uint32_t reg; /* * Tracking also gets configured here because it's in the * same register. */ uint32_t trk_sample_count = 7500; uint32_t trk_long_idle_sample_count = (10 << 16) | 100; /* * Format is number of outer loops in the 16 MSB, sample * count in 16 LSB. */ reg = 0; reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2); reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1); reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1); reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1); reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0); reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1); /* * This field selects the intrinsic latency to RDATA_EN/FULL path. * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. */ reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0); reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET( trk_sample_count); writel(reg, &sdr_ctrl->phy_ctrl0); reg = 0; reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET( trk_sample_count >> SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH); reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET( trk_long_idle_sample_count); writel(reg, &sdr_ctrl->phy_ctrl1); reg = 0; reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET( trk_long_idle_sample_count >> SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH); writel(reg, &sdr_ctrl->phy_ctrl2); } /** * initialize_tracking() - Initialize tracking * * Initialize the register file with usable initial data. */ static void initialize_tracking(void) { /* * Initialize the register file with the correct data. * Compute usable version of value in case we skip full * computation later. */ writel(DIV_ROUND_UP(IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP) - 1, &sdr_reg_file->dtaps_per_ptap); /* trk_sample_count */ writel(7500, &sdr_reg_file->trk_sample_count); /* longidle outer loop [15:0] */ writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle); /* * longidle sample count [31:24] * trfc, worst case of 933Mhz 4Gb [23:16] * trcd, worst case [15:8] * vfifo wait [7:0] */ writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0), &sdr_reg_file->delays); /* mux delay */ writel((RW_MGR_IDLE << 24) | (RW_MGR_ACTIVATE_1 << 16) | (RW_MGR_SGLE_READ << 8) | (RW_MGR_PRECHARGE_ALL << 0), &sdr_reg_file->trk_rw_mgr_addr); writel(RW_MGR_MEM_IF_READ_DQS_WIDTH, &sdr_reg_file->trk_read_dqs_width); /* trefi [7:0] */ writel((RW_MGR_REFRESH_ALL << 24) | (1000 << 0), &sdr_reg_file->trk_rfsh); } int sdram_calibration_full(void) { struct param_type my_param; struct gbl_type my_gbl; uint32_t pass; memset(&my_param, 0, sizeof(my_param)); memset(&my_gbl, 0, sizeof(my_gbl)); param = &my_param; gbl = &my_gbl; /* Set the calibration enabled by default */ gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT; /* * Only sweep all groups (regardless of fail state) by default * Set enabled read test by default. */ #if DISABLE_GUARANTEED_READ gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ; #endif /* Initialize the register file */ initialize_reg_file(); /* Initialize any PHY CSR */ initialize_hps_phy(); scc_mgr_initialize(); initialize_tracking(); printf("%s: Preparing to start memory calibration\n", __FILE__); debug("%s:%d\n", __func__, __LINE__); debug_cond(DLEVEL == 1, "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ", RW_MGR_MEM_NUMBER_OF_RANKS, RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM, RW_MGR_MEM_DQ_PER_READ_DQS, RW_MGR_MEM_DQ_PER_WRITE_DQS, RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS, RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS); debug_cond(DLEVEL == 1, "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ", RW_MGR_MEM_IF_READ_DQS_WIDTH, RW_MGR_MEM_IF_WRITE_DQS_WIDTH, RW_MGR_MEM_DATA_WIDTH, RW_MGR_MEM_DATA_MASK_WIDTH, IO_DELAY_PER_OPA_TAP, IO_DELAY_PER_DCHAIN_TAP); debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u", IO_DELAY_PER_DQS_EN_DCHAIN_TAP, IO_DLL_CHAIN_LENGTH); debug_cond(DLEVEL == 1, "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ", IO_DQS_EN_PHASE_MAX, IO_DQDQS_OUT_PHASE_MAX, IO_DQS_EN_DELAY_MAX, IO_DQS_IN_DELAY_MAX); debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ", IO_IO_IN_DELAY_MAX, IO_IO_OUT1_DELAY_MAX, IO_IO_OUT2_DELAY_MAX); debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n", IO_DQS_IN_RESERVE, IO_DQS_OUT_RESERVE); hc_initialize_rom_data(); /* update info for sims */ reg_file_set_stage(CAL_STAGE_NIL); reg_file_set_group(0); /* * Load global needed for those actions that require * some dynamic calibration support. */ dyn_calib_steps = STATIC_CALIB_STEPS; /* * Load global to allow dynamic selection of delay loop settings * based on calibration mode. */ if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) skip_delay_mask = 0xff; else skip_delay_mask = 0x0; pass = run_mem_calibrate(); debug_mem_calibrate(pass); return pass; }