/* * Enhanced Direct Memory Access (EDMA3) Controller * * (C) Copyright 2014 * Texas Instruments Incorporated, <www.ti.com> * * Author: Ivan Khoronzhuk <ivan.khoronzhuk@ti.com> * * SPDX-License-Identifier: GPL-2.0+ */ #include <asm/io.h> #include <common.h> #include <dma.h> #include <dm/device.h> #include <asm/omap_common.h> #include <asm/ti-common/ti-edma3.h> #define EDMA3_SL_BASE(slot) (0x4000 + ((slot) << 5)) #define EDMA3_SL_MAX_NUM 512 #define EDMA3_SLOPT_FIFO_WIDTH_MASK (0x7 << 8) #define EDMA3_QCHMAP(ch) 0x0200 + ((ch) << 2) #define EDMA3_CHMAP_PARSET_MASK 0x1ff #define EDMA3_CHMAP_PARSET_SHIFT 0x5 #define EDMA3_CHMAP_TRIGWORD_SHIFT 0x2 #define EDMA3_QEMCR 0x314 #define EDMA3_IPR 0x1068 #define EDMA3_IPRH 0x106c #define EDMA3_ICR 0x1070 #define EDMA3_ICRH 0x1074 #define EDMA3_QEECR 0x1088 #define EDMA3_QEESR 0x108c #define EDMA3_QSECR 0x1094 struct ti_edma3_priv { u32 base; }; /** * qedma3_start - start qdma on a channel * @base: base address of edma * @cfg: pinter to struct edma3_channel_config where you can set * the slot number to associate with, the chnum, which corresponds * your quick channel number 0-7, complete code - transfer complete code * and trigger slot word - which has to correspond to the word number in * edma3_slot_layout struct for generating event. * */ void qedma3_start(u32 base, struct edma3_channel_config *cfg) { u32 qchmap; /* Clear the pending int bit */ if (cfg->complete_code < 32) __raw_writel(1 << cfg->complete_code, base + EDMA3_ICR); else __raw_writel(1 << cfg->complete_code, base + EDMA3_ICRH); /* Map parameter set and trigger word 7 to quick channel */ qchmap = ((EDMA3_CHMAP_PARSET_MASK & cfg->slot) << EDMA3_CHMAP_PARSET_SHIFT) | (cfg->trigger_slot_word << EDMA3_CHMAP_TRIGWORD_SHIFT); __raw_writel(qchmap, base + EDMA3_QCHMAP(cfg->chnum)); /* Clear missed event if set*/ __raw_writel(1 << cfg->chnum, base + EDMA3_QSECR); __raw_writel(1 << cfg->chnum, base + EDMA3_QEMCR); /* Enable qdma channel event */ __raw_writel(1 << cfg->chnum, base + EDMA3_QEESR); } /** * edma3_set_dest - set initial DMA destination address in parameter RAM slot * @base: base address of edma * @slot: parameter RAM slot being configured * @dst: physical address of destination (memory, controller FIFO, etc) * @addressMode: INCR, except in very rare cases * @width: ignored unless @addressMode is FIFO, else specifies the * width to use when addressing the fifo (e.g. W8BIT, W32BIT) * * Note that the destination address is modified during the DMA transfer * according to edma3_set_dest_index(). */ void edma3_set_dest(u32 base, int slot, u32 dst, enum edma3_address_mode mode, enum edma3_fifo_width width) { u32 opt; struct edma3_slot_layout *rg; rg = (struct edma3_slot_layout *)(base + EDMA3_SL_BASE(slot)); opt = __raw_readl(&rg->opt); if (mode == FIFO) opt = (opt & EDMA3_SLOPT_FIFO_WIDTH_MASK) | (EDMA3_SLOPT_DST_ADDR_CONST_MODE | EDMA3_SLOPT_FIFO_WIDTH_SET(width)); else opt &= ~EDMA3_SLOPT_DST_ADDR_CONST_MODE; __raw_writel(opt, &rg->opt); __raw_writel(dst, &rg->dst); } /** * edma3_set_dest_index - configure DMA destination address indexing * @base: base address of edma * @slot: parameter RAM slot being configured * @bidx: byte offset between destination arrays in a frame * @cidx: byte offset between destination frames in a block * * Offsets are specified to support either contiguous or discontiguous * memory transfers, or repeated access to a hardware register, as needed. * When accessing hardware registers, both offsets are normally zero. */ void edma3_set_dest_index(u32 base, unsigned slot, int bidx, int cidx) { u32 src_dst_bidx; u32 src_dst_cidx; struct edma3_slot_layout *rg; rg = (struct edma3_slot_layout *)(base + EDMA3_SL_BASE(slot)); src_dst_bidx = __raw_readl(&rg->src_dst_bidx); src_dst_cidx = __raw_readl(&rg->src_dst_cidx); __raw_writel((src_dst_bidx & 0x0000ffff) | (bidx << 16), &rg->src_dst_bidx); __raw_writel((src_dst_cidx & 0x0000ffff) | (cidx << 16), &rg->src_dst_cidx); } /** * edma3_set_dest_addr - set destination address for slot only */ void edma3_set_dest_addr(u32 base, int slot, u32 dst) { struct edma3_slot_layout *rg; rg = (struct edma3_slot_layout *)(base + EDMA3_SL_BASE(slot)); __raw_writel(dst, &rg->dst); } /** * edma3_set_src - set initial DMA source address in parameter RAM slot * @base: base address of edma * @slot: parameter RAM slot being configured * @src_port: physical address of source (memory, controller FIFO, etc) * @mode: INCR, except in very rare cases * @width: ignored unless @addressMode is FIFO, else specifies the * width to use when addressing the fifo (e.g. W8BIT, W32BIT) * * Note that the source address is modified during the DMA transfer * according to edma3_set_src_index(). */ void edma3_set_src(u32 base, int slot, u32 src, enum edma3_address_mode mode, enum edma3_fifo_width width) { u32 opt; struct edma3_slot_layout *rg; rg = (struct edma3_slot_layout *)(base + EDMA3_SL_BASE(slot)); opt = __raw_readl(&rg->opt); if (mode == FIFO) opt = (opt & EDMA3_SLOPT_FIFO_WIDTH_MASK) | (EDMA3_SLOPT_DST_ADDR_CONST_MODE | EDMA3_SLOPT_FIFO_WIDTH_SET(width)); else opt &= ~EDMA3_SLOPT_DST_ADDR_CONST_MODE; __raw_writel(opt, &rg->opt); __raw_writel(src, &rg->src); } /** * edma3_set_src_index - configure DMA source address indexing * @base: base address of edma * @slot: parameter RAM slot being configured * @bidx: byte offset between source arrays in a frame * @cidx: byte offset between source frames in a block * * Offsets are specified to support either contiguous or discontiguous * memory transfers, or repeated access to a hardware register, as needed. * When accessing hardware registers, both offsets are normally zero. */ void edma3_set_src_index(u32 base, unsigned slot, int bidx, int cidx) { u32 src_dst_bidx; u32 src_dst_cidx; struct edma3_slot_layout *rg; rg = (struct edma3_slot_layout *)(base + EDMA3_SL_BASE(slot)); src_dst_bidx = __raw_readl(&rg->src_dst_bidx); src_dst_cidx = __raw_readl(&rg->src_dst_cidx); __raw_writel((src_dst_bidx & 0xffff0000) | bidx, &rg->src_dst_bidx); __raw_writel((src_dst_cidx & 0xffff0000) | cidx, &rg->src_dst_cidx); } /** * edma3_set_src_addr - set source address for slot only */ void edma3_set_src_addr(u32 base, int slot, u32 src) { struct edma3_slot_layout *rg; rg = (struct edma3_slot_layout *)(base + EDMA3_SL_BASE(slot)); __raw_writel(src, &rg->src); } /** * edma3_set_transfer_params - configure DMA transfer parameters * @base: base address of edma * @slot: parameter RAM slot being configured * @acnt: how many bytes per array (at least one) * @bcnt: how many arrays per frame (at least one) * @ccnt: how many frames per block (at least one) * @bcnt_rld: used only for A-Synchronized transfers; this specifies * the value to reload into bcnt when it decrements to zero * @sync_mode: ASYNC or ABSYNC * * See the EDMA3 documentation to understand how to configure and link * transfers using the fields in PaRAM slots. If you are not doing it * all at once with edma3_write_slot(), you will use this routine * plus two calls each for source and destination, setting the initial * address and saying how to index that address. * * An example of an A-Synchronized transfer is a serial link using a * single word shift register. In that case, @acnt would be equal to * that word size; the serial controller issues a DMA synchronization * event to transfer each word, and memory access by the DMA transfer * controller will be word-at-a-time. * * An example of an AB-Synchronized transfer is a device using a FIFO. * In that case, @acnt equals the FIFO width and @bcnt equals its depth. * The controller with the FIFO issues DMA synchronization events when * the FIFO threshold is reached, and the DMA transfer controller will * transfer one frame to (or from) the FIFO. It will probably use * efficient burst modes to access memory. */ void edma3_set_transfer_params(u32 base, int slot, int acnt, int bcnt, int ccnt, u16 bcnt_rld, enum edma3_sync_dimension sync_mode) { u32 opt; u32 link_bcntrld; struct edma3_slot_layout *rg; rg = (struct edma3_slot_layout *)(base + EDMA3_SL_BASE(slot)); link_bcntrld = __raw_readl(&rg->link_bcntrld); __raw_writel((bcnt_rld << 16) | (0x0000ffff & link_bcntrld), &rg->link_bcntrld); opt = __raw_readl(&rg->opt); if (sync_mode == ASYNC) __raw_writel(opt & ~EDMA3_SLOPT_AB_SYNC, &rg->opt); else __raw_writel(opt | EDMA3_SLOPT_AB_SYNC, &rg->opt); /* Set the acount, bcount, ccount registers */ __raw_writel((bcnt << 16) | (acnt & 0xffff), &rg->a_b_cnt); __raw_writel(0xffff & ccnt, &rg->ccnt); } /** * edma3_write_slot - write parameter RAM data for slot * @base: base address of edma * @slot: number of parameter RAM slot being modified * @param: data to be written into parameter RAM slot * * Use this to assign all parameters of a transfer at once. This * allows more efficient setup of transfers than issuing multiple * calls to set up those parameters in small pieces, and provides * complete control over all transfer options. */ void edma3_write_slot(u32 base, int slot, struct edma3_slot_layout *param) { int i; u32 *p = (u32 *)param; u32 *addr = (u32 *)(base + EDMA3_SL_BASE(slot)); for (i = 0; i < sizeof(struct edma3_slot_layout)/4; i += 4) __raw_writel(*p++, addr++); } /** * edma3_read_slot - read parameter RAM data from slot * @base: base address of edma * @slot: number of parameter RAM slot being copied * @param: where to store copy of parameter RAM data * * Use this to read data from a parameter RAM slot, perhaps to * save them as a template for later reuse. */ void edma3_read_slot(u32 base, int slot, struct edma3_slot_layout *param) { int i; u32 *p = (u32 *)param; u32 *addr = (u32 *)(base + EDMA3_SL_BASE(slot)); for (i = 0; i < sizeof(struct edma3_slot_layout)/4; i += 4) *p++ = __raw_readl(addr++); } void edma3_slot_configure(u32 base, int slot, struct edma3_slot_config *cfg) { struct edma3_slot_layout *rg; rg = (struct edma3_slot_layout *)(base + EDMA3_SL_BASE(slot)); __raw_writel(cfg->opt, &rg->opt); __raw_writel(cfg->src, &rg->src); __raw_writel((cfg->bcnt << 16) | (cfg->acnt & 0xffff), &rg->a_b_cnt); __raw_writel(cfg->dst, &rg->dst); __raw_writel((cfg->dst_bidx << 16) | (cfg->src_bidx & 0xffff), &rg->src_dst_bidx); __raw_writel((cfg->bcntrld << 16) | (cfg->link & 0xffff), &rg->link_bcntrld); __raw_writel((cfg->dst_cidx << 16) | (cfg->src_cidx & 0xffff), &rg->src_dst_cidx); __raw_writel(0xffff & cfg->ccnt, &rg->ccnt); } /** * edma3_check_for_transfer - check if transfer coplete by checking * interrupt pending bit. Clear interrupt pending bit if complete. * @base: base address of edma * @cfg: pinter to struct edma3_channel_config which was passed * to qedma3_start when you started qdma channel * * Return 0 if complete, 1 if not. */ int edma3_check_for_transfer(u32 base, struct edma3_channel_config *cfg) { u32 inum; u32 ipr_base; u32 icr_base; if (cfg->complete_code < 32) { ipr_base = base + EDMA3_IPR; icr_base = base + EDMA3_ICR; inum = 1 << cfg->complete_code; } else { ipr_base = base + EDMA3_IPRH; icr_base = base + EDMA3_ICRH; inum = 1 << (cfg->complete_code - 32); } /* check complete interrupt */ if (!(__raw_readl(ipr_base) & inum)) return 1; /* clean up the pending int bit */ __raw_writel(inum, icr_base); return 0; } /** * qedma3_stop - stops dma on the channel passed * @base: base address of edma * @cfg: pinter to struct edma3_channel_config which was passed * to qedma3_start when you started qdma channel */ void qedma3_stop(u32 base, struct edma3_channel_config *cfg) { /* Disable qdma channel event */ __raw_writel(1 << cfg->chnum, base + EDMA3_QEECR); /* clean up the interrupt indication */ if (cfg->complete_code < 32) __raw_writel(1 << cfg->complete_code, base + EDMA3_ICR); else __raw_writel(1 << cfg->complete_code, base + EDMA3_ICRH); /* Clear missed event if set*/ __raw_writel(1 << cfg->chnum, base + EDMA3_QSECR); __raw_writel(1 << cfg->chnum, base + EDMA3_QEMCR); /* Clear the channel map */ __raw_writel(0, base + EDMA3_QCHMAP(cfg->chnum)); } void __edma3_transfer(unsigned long edma3_base_addr, unsigned int edma_slot_num, void *dst, void *src, size_t len) { struct edma3_slot_config slot; struct edma3_channel_config edma_channel; int b_cnt_value = 1; int rem_bytes = 0; int a_cnt_value = len; unsigned int addr = (unsigned int) (dst); unsigned int max_acnt = 0x7FFFU; if (len > max_acnt) { b_cnt_value = (len / max_acnt); rem_bytes = (len % max_acnt); a_cnt_value = max_acnt; } slot.opt = 0; slot.src = ((unsigned int) src); slot.acnt = a_cnt_value; slot.bcnt = b_cnt_value; slot.ccnt = 1; slot.src_bidx = a_cnt_value; slot.dst_bidx = a_cnt_value; slot.src_cidx = 0; slot.dst_cidx = 0; slot.link = EDMA3_PARSET_NULL_LINK; slot.bcntrld = 0; slot.opt = EDMA3_SLOPT_TRANS_COMP_INT_ENB | EDMA3_SLOPT_COMP_CODE(0) | EDMA3_SLOPT_STATIC | EDMA3_SLOPT_AB_SYNC; edma3_slot_configure(edma3_base_addr, edma_slot_num, &slot); edma_channel.slot = edma_slot_num; edma_channel.chnum = 0; edma_channel.complete_code = 0; /* set event trigger to dst update */ edma_channel.trigger_slot_word = EDMA3_TWORD(dst); qedma3_start(edma3_base_addr, &edma_channel); edma3_set_dest_addr(edma3_base_addr, edma_channel.slot, addr); while (edma3_check_for_transfer(edma3_base_addr, &edma_channel)) ; qedma3_stop(edma3_base_addr, &edma_channel); if (rem_bytes != 0) { slot.opt = 0; slot.src = (b_cnt_value * max_acnt) + ((unsigned int) src); slot.acnt = rem_bytes; slot.bcnt = 1; slot.ccnt = 1; slot.src_bidx = rem_bytes; slot.dst_bidx = rem_bytes; slot.src_cidx = 0; slot.dst_cidx = 0; slot.link = EDMA3_PARSET_NULL_LINK; slot.bcntrld = 0; slot.opt = EDMA3_SLOPT_TRANS_COMP_INT_ENB | EDMA3_SLOPT_COMP_CODE(0) | EDMA3_SLOPT_STATIC | EDMA3_SLOPT_AB_SYNC; edma3_slot_configure(edma3_base_addr, edma_slot_num, &slot); edma_channel.slot = edma_slot_num; edma_channel.chnum = 0; edma_channel.complete_code = 0; /* set event trigger to dst update */ edma_channel.trigger_slot_word = EDMA3_TWORD(dst); qedma3_start(edma3_base_addr, &edma_channel); edma3_set_dest_addr(edma3_base_addr, edma_channel.slot, addr + (max_acnt * b_cnt_value)); while (edma3_check_for_transfer(edma3_base_addr, &edma_channel)) ; qedma3_stop(edma3_base_addr, &edma_channel); } } #ifndef CONFIG_DMA void edma3_transfer(unsigned long edma3_base_addr, unsigned int edma_slot_num, void *dst, void *src, size_t len) { __edma3_transfer(edma3_base_addr, edma_slot_num, dst, src, len); } #else static int ti_edma3_transfer(struct udevice *dev, int direction, void *dst, void *src, size_t len) { struct ti_edma3_priv *priv = dev_get_priv(dev); /* enable edma3 clocks */ enable_edma3_clocks(); switch (direction) { case DMA_MEM_TO_MEM: __edma3_transfer(priv->base, 1, dst, src, len); break; default: error("Transfer type not implemented in DMA driver\n"); break; } /* disable edma3 clocks */ disable_edma3_clocks(); return 0; } static int ti_edma3_ofdata_to_platdata(struct udevice *dev) { struct ti_edma3_priv *priv = dev_get_priv(dev); priv->base = dev_get_addr(dev); return 0; } static int ti_edma3_probe(struct udevice *dev) { struct dma_dev_priv *uc_priv = dev_get_uclass_priv(dev); uc_priv->supported = DMA_SUPPORTS_MEM_TO_MEM; return 0; } static const struct dma_ops ti_edma3_ops = { .transfer = ti_edma3_transfer, }; static const struct udevice_id ti_edma3_ids[] = { { .compatible = "ti,edma3" }, { } }; U_BOOT_DRIVER(ti_edma3) = { .name = "ti_edma3", .id = UCLASS_DMA, .of_match = ti_edma3_ids, .ops = &ti_edma3_ops, .ofdata_to_platdata = ti_edma3_ofdata_to_platdata, .probe = ti_edma3_probe, .priv_auto_alloc_size = sizeof(struct ti_edma3_priv), }; #endif /* CONFIG_DMA */