/* * (C) Copyright 2012-2013, Xilinx, Michal Simek * * (C) Copyright 2012 * Joe Hershberger <joe.hershberger@ni.com> * * SPDX-License-Identifier: GPL-2.0+ */ #include <common.h> #include <console.h> #include <asm/io.h> #include <fs.h> #include <zynqpl.h> #include <linux/sizes.h> #include <asm/arch/hardware.h> #include <asm/arch/sys_proto.h> #define DEVCFG_CTRL_PCFG_PROG_B 0x40000000 #define DEVCFG_ISR_FATAL_ERROR_MASK 0x00740040 #define DEVCFG_ISR_ERROR_FLAGS_MASK 0x00340840 #define DEVCFG_ISR_RX_FIFO_OV 0x00040000 #define DEVCFG_ISR_DMA_DONE 0x00002000 #define DEVCFG_ISR_PCFG_DONE 0x00000004 #define DEVCFG_STATUS_DMA_CMD_Q_F 0x80000000 #define DEVCFG_STATUS_DMA_CMD_Q_E 0x40000000 #define DEVCFG_STATUS_DMA_DONE_CNT_MASK 0x30000000 #define DEVCFG_STATUS_PCFG_INIT 0x00000010 #define DEVCFG_MCTRL_PCAP_LPBK 0x00000010 #define DEVCFG_MCTRL_RFIFO_FLUSH 0x00000002 #define DEVCFG_MCTRL_WFIFO_FLUSH 0x00000001 #ifndef CONFIG_SYS_FPGA_WAIT #define CONFIG_SYS_FPGA_WAIT CONFIG_SYS_HZ/100 /* 10 ms */ #endif #ifndef CONFIG_SYS_FPGA_PROG_TIME #define CONFIG_SYS_FPGA_PROG_TIME (CONFIG_SYS_HZ * 4) /* 4 s */ #endif #define DUMMY_WORD 0xffffffff /* Xilinx binary format header */ static const u32 bin_format[] = { DUMMY_WORD, /* Dummy words */ DUMMY_WORD, DUMMY_WORD, DUMMY_WORD, DUMMY_WORD, DUMMY_WORD, DUMMY_WORD, DUMMY_WORD, 0x000000bb, /* Sync word */ 0x11220044, /* Sync word */ DUMMY_WORD, DUMMY_WORD, 0xaa995566, /* Sync word */ }; #define SWAP_NO 1 #define SWAP_DONE 2 /* * Load the whole word from unaligned buffer * Keep in your mind that it is byte loading on little-endian system */ static u32 load_word(const void *buf, u32 swap) { u32 word = 0; u8 *bitc = (u8 *)buf; int p; if (swap == SWAP_NO) { for (p = 0; p < 4; p++) { word <<= 8; word |= bitc[p]; } } else { for (p = 3; p >= 0; p--) { word <<= 8; word |= bitc[p]; } } return word; } static u32 check_header(const void *buf) { u32 i, pattern; int swap = SWAP_NO; u32 *test = (u32 *)buf; debug("%s: Let's check bitstream header\n", __func__); /* Checking that passing bin is not a bitstream */ for (i = 0; i < ARRAY_SIZE(bin_format); i++) { pattern = load_word(&test[i], swap); /* * Bitstreams in binary format are swapped * compare to regular bistream. * Do not swap dummy word but if swap is done assume * that parsing buffer is binary format */ if ((__swab32(pattern) != DUMMY_WORD) && (__swab32(pattern) == bin_format[i])) { pattern = __swab32(pattern); swap = SWAP_DONE; debug("%s: data swapped - let's swap\n", __func__); } debug("%s: %d/%x: pattern %x/%x bin_format\n", __func__, i, (u32)&test[i], pattern, bin_format[i]); if (pattern != bin_format[i]) { debug("%s: Bitstream is not recognized\n", __func__); return 0; } } debug("%s: Found bitstream header at %x %s swapinng\n", __func__, (u32)buf, swap == SWAP_NO ? "without" : "with"); return swap; } static void *check_data(u8 *buf, size_t bsize, u32 *swap) { u32 word, p = 0; /* possition */ /* Because buf doesn't need to be aligned let's read it by chars */ for (p = 0; p < bsize; p++) { word = load_word(&buf[p], SWAP_NO); debug("%s: word %x %x/%x\n", __func__, word, p, (u32)&buf[p]); /* Find the first bitstream dummy word */ if (word == DUMMY_WORD) { debug("%s: Found dummy word at position %x/%x\n", __func__, p, (u32)&buf[p]); *swap = check_header(&buf[p]); if (*swap) { /* FIXME add full bitstream checking here */ return &buf[p]; } } /* Loop can be huge - support CTRL + C */ if (ctrlc()) return NULL; } return NULL; } static int zynq_dma_transfer(u32 srcbuf, u32 srclen, u32 dstbuf, u32 dstlen) { unsigned long ts; u32 isr_status; /* Set up the transfer */ writel((u32)srcbuf, &devcfg_base->dma_src_addr); writel(dstbuf, &devcfg_base->dma_dst_addr); writel(srclen, &devcfg_base->dma_src_len); writel(dstlen, &devcfg_base->dma_dst_len); isr_status = readl(&devcfg_base->int_sts); /* Polling the PCAP_INIT status for Set */ ts = get_timer(0); while (!(isr_status & DEVCFG_ISR_DMA_DONE)) { if (isr_status & DEVCFG_ISR_ERROR_FLAGS_MASK) { debug("%s: Error: isr = 0x%08X\n", __func__, isr_status); debug("%s: Write count = 0x%08X\n", __func__, readl(&devcfg_base->write_count)); debug("%s: Read count = 0x%08X\n", __func__, readl(&devcfg_base->read_count)); return FPGA_FAIL; } if (get_timer(ts) > CONFIG_SYS_FPGA_PROG_TIME) { printf("%s: Timeout wait for DMA to complete\n", __func__); return FPGA_FAIL; } isr_status = readl(&devcfg_base->int_sts); } debug("%s: DMA transfer is done\n", __func__); /* Clear out the DMA status */ writel(DEVCFG_ISR_DMA_DONE, &devcfg_base->int_sts); return FPGA_SUCCESS; } static int zynq_dma_xfer_init(bitstream_type bstype) { u32 status, control, isr_status; unsigned long ts; /* Clear loopback bit */ clrbits_le32(&devcfg_base->mctrl, DEVCFG_MCTRL_PCAP_LPBK); if (bstype != BIT_PARTIAL) { zynq_slcr_devcfg_disable(); /* Setting PCFG_PROG_B signal to high */ control = readl(&devcfg_base->ctrl); writel(control | DEVCFG_CTRL_PCFG_PROG_B, &devcfg_base->ctrl); /* Setting PCFG_PROG_B signal to low */ writel(control & ~DEVCFG_CTRL_PCFG_PROG_B, &devcfg_base->ctrl); /* Polling the PCAP_INIT status for Reset */ ts = get_timer(0); while (readl(&devcfg_base->status) & DEVCFG_STATUS_PCFG_INIT) { if (get_timer(ts) > CONFIG_SYS_FPGA_WAIT) { printf("%s: Timeout wait for INIT to clear\n", __func__); return FPGA_FAIL; } } /* Setting PCFG_PROG_B signal to high */ writel(control | DEVCFG_CTRL_PCFG_PROG_B, &devcfg_base->ctrl); /* Polling the PCAP_INIT status for Set */ ts = get_timer(0); while (!(readl(&devcfg_base->status) & DEVCFG_STATUS_PCFG_INIT)) { if (get_timer(ts) > CONFIG_SYS_FPGA_WAIT) { printf("%s: Timeout wait for INIT to set\n", __func__); return FPGA_FAIL; } } } isr_status = readl(&devcfg_base->int_sts); /* Clear it all, so if Boot ROM comes back, it can proceed */ writel(0xFFFFFFFF, &devcfg_base->int_sts); if (isr_status & DEVCFG_ISR_FATAL_ERROR_MASK) { debug("%s: Fatal errors in PCAP 0x%X\n", __func__, isr_status); /* If RX FIFO overflow, need to flush RX FIFO first */ if (isr_status & DEVCFG_ISR_RX_FIFO_OV) { writel(DEVCFG_MCTRL_RFIFO_FLUSH, &devcfg_base->mctrl); writel(0xFFFFFFFF, &devcfg_base->int_sts); } return FPGA_FAIL; } status = readl(&devcfg_base->status); debug("%s: Status = 0x%08X\n", __func__, status); if (status & DEVCFG_STATUS_DMA_CMD_Q_F) { debug("%s: Error: device busy\n", __func__); return FPGA_FAIL; } debug("%s: Device ready\n", __func__); if (!(status & DEVCFG_STATUS_DMA_CMD_Q_E)) { if (!(readl(&devcfg_base->int_sts) & DEVCFG_ISR_DMA_DONE)) { /* Error state, transfer cannot occur */ debug("%s: ISR indicates error\n", __func__); return FPGA_FAIL; } else { /* Clear out the status */ writel(DEVCFG_ISR_DMA_DONE, &devcfg_base->int_sts); } } if (status & DEVCFG_STATUS_DMA_DONE_CNT_MASK) { /* Clear the count of completed DMA transfers */ writel(DEVCFG_STATUS_DMA_DONE_CNT_MASK, &devcfg_base->status); } return FPGA_SUCCESS; } static u32 *zynq_align_dma_buffer(u32 *buf, u32 len, u32 swap) { u32 *new_buf; u32 i; if ((u32)buf != ALIGN((u32)buf, ARCH_DMA_MINALIGN)) { new_buf = (u32 *)ALIGN((u32)buf, ARCH_DMA_MINALIGN); /* * This might be dangerous but permits to flash if * ARCH_DMA_MINALIGN is greater than header size */ if (new_buf > buf) { debug("%s: Aligned buffer is after buffer start\n", __func__); new_buf -= ARCH_DMA_MINALIGN; } printf("%s: Align buffer at %x to %x(swap %d)\n", __func__, (u32)buf, (u32)new_buf, swap); for (i = 0; i < (len/4); i++) new_buf[i] = load_word(&buf[i], swap); buf = new_buf; } else if (swap != SWAP_DONE) { /* For bitstream which are aligned */ u32 *new_buf = (u32 *)buf; printf("%s: Bitstream is not swapped(%d) - swap it\n", __func__, swap); for (i = 0; i < (len/4); i++) new_buf[i] = load_word(&buf[i], swap); } return buf; } static int zynq_validate_bitstream(xilinx_desc *desc, const void *buf, size_t bsize, u32 blocksize, u32 *swap, bitstream_type *bstype) { u32 *buf_start; u32 diff; buf_start = check_data((u8 *)buf, blocksize, swap); if (!buf_start) return FPGA_FAIL; /* Check if data is postpone from start */ diff = (u32)buf_start - (u32)buf; if (diff) { printf("%s: Bitstream is not validated yet (diff %x)\n", __func__, diff); return FPGA_FAIL; } if ((u32)buf < SZ_1M) { printf("%s: Bitstream has to be placed up to 1MB (%x)\n", __func__, (u32)buf); return FPGA_FAIL; } if (zynq_dma_xfer_init(*bstype)) return FPGA_FAIL; return 0; } static int zynq_load(xilinx_desc *desc, const void *buf, size_t bsize, bitstream_type bstype) { unsigned long ts; /* Timestamp */ u32 isr_status, swap; /* * send bsize inplace of blocksize as it was not a bitstream * in chunks */ if (zynq_validate_bitstream(desc, buf, bsize, bsize, &swap, &bstype)) return FPGA_FAIL; buf = zynq_align_dma_buffer((u32 *)buf, bsize, swap); debug("%s: Source = 0x%08X\n", __func__, (u32)buf); debug("%s: Size = %zu\n", __func__, bsize); /* flush(clean & invalidate) d-cache range buf */ flush_dcache_range((u32)buf, (u32)buf + roundup(bsize, ARCH_DMA_MINALIGN)); if (zynq_dma_transfer((u32)buf | 1, bsize >> 2, 0xffffffff, 0)) return FPGA_FAIL; isr_status = readl(&devcfg_base->int_sts); /* Check FPGA configuration completion */ ts = get_timer(0); while (!(isr_status & DEVCFG_ISR_PCFG_DONE)) { if (get_timer(ts) > CONFIG_SYS_FPGA_WAIT) { printf("%s: Timeout wait for FPGA to config\n", __func__); return FPGA_FAIL; } isr_status = readl(&devcfg_base->int_sts); } debug("%s: FPGA config done\n", __func__); if (bstype != BIT_PARTIAL) zynq_slcr_devcfg_enable(); return FPGA_SUCCESS; } #if defined(CONFIG_CMD_FPGA_LOADFS) static int zynq_loadfs(xilinx_desc *desc, const void *buf, size_t bsize, fpga_fs_info *fsinfo) { unsigned long ts; /* Timestamp */ u32 isr_status, swap; u32 partialbit = 0; loff_t blocksize, actread; loff_t pos = 0; int fstype; char *interface, *dev_part, *filename; blocksize = fsinfo->blocksize; interface = fsinfo->interface; dev_part = fsinfo->dev_part; filename = fsinfo->filename; fstype = fsinfo->fstype; if (fs_set_blk_dev(interface, dev_part, fstype)) return FPGA_FAIL; if (fs_read(filename, (u32) buf, pos, blocksize, &actread) < 0) return FPGA_FAIL; if (zynq_validate_bitstream(desc, buf, bsize, blocksize, &swap, &partialbit)) return FPGA_FAIL; dcache_disable(); do { buf = zynq_align_dma_buffer((u32 *)buf, blocksize, swap); if (zynq_dma_transfer((u32)buf | 1, blocksize >> 2, 0xffffffff, 0)) return FPGA_FAIL; bsize -= blocksize; pos += blocksize; if (fs_set_blk_dev(interface, dev_part, fstype)) return FPGA_FAIL; if (bsize > blocksize) { if (fs_read(filename, (u32) buf, pos, blocksize, &actread) < 0) return FPGA_FAIL; } else { if (fs_read(filename, (u32) buf, pos, bsize, &actread) < 0) return FPGA_FAIL; } } while (bsize > blocksize); buf = zynq_align_dma_buffer((u32 *)buf, blocksize, swap); if (zynq_dma_transfer((u32)buf | 1, bsize >> 2, 0xffffffff, 0)) return FPGA_FAIL; dcache_enable(); isr_status = readl(&devcfg_base->int_sts); /* Check FPGA configuration completion */ ts = get_timer(0); while (!(isr_status & DEVCFG_ISR_PCFG_DONE)) { if (get_timer(ts) > CONFIG_SYS_FPGA_WAIT) { printf("%s: Timeout wait for FPGA to config\n", __func__); return FPGA_FAIL; } isr_status = readl(&devcfg_base->int_sts); } debug("%s: FPGA config done\n", __func__); if (!partialbit) zynq_slcr_devcfg_enable(); return FPGA_SUCCESS; } #endif struct xilinx_fpga_op zynq_op = { .load = zynq_load, #if defined(CONFIG_CMD_FPGA_LOADFS) .loadfs = zynq_loadfs, #endif };