/* * Copyright (C) ST-Ericsson SA 2010 * * Basic U-Boot I2C interface for STn8500/DB8500 * Author: Michael Brandt <Michael.Brandt@stericsson.com> for ST-Ericsson * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * Only 7-bit I2C device addresses are supported. */ #include <common.h> #include <i2c.h> #include "u8500_i2c.h" #include <asm/io.h> #include <asm/arch/clock.h> #define U8500_I2C_ENDAD_COUNTER (CONFIG_SYS_HZ/100) /* I2C bus timeout */ #define U8500_I2C_FIFO_FLUSH_COUNTER 500000 /* flush "timeout" */ #define U8500_I2C_SCL_FREQ 100000 /* I2C bus clock freq */ #define U8500_I2C_INPUT_FREQ 48000000 /* Input clock freq */ #define TX_FIFO_THRESHOLD 0x4 #define RX_FIFO_THRESHOLD 0x4 #define SLAVE_SETUP_TIME 14 /* Slave data setup time, 250ns for 48MHz i2c_clk */ #define WRITE_FIELD(var, mask, shift, value) \ (var = ((var & ~(mask)) | ((value) << (shift)))) static unsigned int bus_initialized[CONFIG_SYS_U8500_I2C_BUS_MAX]; static unsigned int i2c_bus_num; static unsigned int i2c_bus_speed[] = { CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SPEED }; static struct u8500_i2c_regs *i2c_dev[] = { (struct u8500_i2c_regs *)CONFIG_SYS_U8500_I2C0_BASE, (struct u8500_i2c_regs *)CONFIG_SYS_U8500_I2C1_BASE, (struct u8500_i2c_regs *)CONFIG_SYS_U8500_I2C2_BASE, (struct u8500_i2c_regs *)CONFIG_SYS_U8500_I2C3_BASE, }; static struct { int periph; int pcken; int kcken; } i2c_clock_bits[] = { {3, 3, 3}, /* I2C0 */ {1, 2, 2}, /* I2C1 */ {1, 6, 6}, /* I2C2 */ {2, 0, 0}, /* I2C3 */ }; static void i2c_set_bit(void *reg, u32 mask) { writel(readl(reg) | mask, reg); } static void i2c_clr_bit(void *reg, u32 mask) { writel(readl(reg) & ~mask, reg); } static void i2c_write_field(void *reg, u32 mask, uint shift, u32 value) { writel((readl(reg) & ~mask) | (value << shift), reg); } static int __i2c_set_bus_speed(unsigned int speed) { u32 value; struct u8500_i2c_regs *i2c_regs; i2c_regs = i2c_dev[i2c_bus_num]; /* Select standard (100 kbps) speed mode */ i2c_write_field(&i2c_regs->cr, U8500_I2C_CR_SM, U8500_I2C_CR_SHIFT_SM, 0x0); /* * Set the Baud Rate Counter 2 value * Baud rate (standard) = fi2cclk / ( (BRCNT2 x 2) + Foncycle ) * Foncycle = 0 (no digital filtering) */ value = (u32) (U8500_I2C_INPUT_FREQ / (speed * 2)); i2c_write_field(&i2c_regs->brcr, U8500_I2C_BRCR_BRCNT2, U8500_I2C_BRCR_SHIFT_BRCNT2, value); /* ensure that BRCNT value is zero */ i2c_write_field(&i2c_regs->brcr, U8500_I2C_BRCR_BRCNT1, U8500_I2C_BRCR_SHIFT_BRCNT1, 0); return U8500_I2C_INPUT_FREQ/(value * 2); } /* * i2c_init - initialize the i2c bus * * speed: bus speed (in HZ) * slaveaddr: address of device in slave mode * * Slave mode is not implemented. */ void i2c_init(int speed, int slaveaddr) { struct u8500_i2c_regs *i2c_regs; debug("i2c_init bus %d, speed %d\n", i2c_bus_num, speed); u8500_clock_enable(i2c_clock_bits[i2c_bus_num].periph, i2c_clock_bits[i2c_bus_num].pcken, i2c_clock_bits[i2c_bus_num].kcken); i2c_regs = i2c_dev[i2c_bus_num]; /* Disable the controller */ i2c_clr_bit(&i2c_regs->cr, U8500_I2C_CR_PE); /* Clear registers */ writel(0, &i2c_regs->cr); writel(0, &i2c_regs->scr); writel(0, &i2c_regs->hsmcr); writel(0, &i2c_regs->tftr); writel(0, &i2c_regs->rftr); writel(0, &i2c_regs->dmar); i2c_bus_speed[i2c_bus_num] = __i2c_set_bus_speed(speed); /* * Set our own address. * Set slave address mode to 7 bit addressing mode */ i2c_clr_bit(&i2c_regs->cr, U8500_I2C_CR_SAM); i2c_write_field(&i2c_regs->scr, U8500_I2C_SCR_ADDR, U8500_I2C_SCR_SHIFT_ADDR, slaveaddr); /* Slave Data Set up Time */ i2c_write_field(&i2c_regs->scr, U8500_I2C_SCR_DATA_SETUP_TIME, U8500_I2C_SCR_SHIFT_DATA_SETUP_TIME, SLAVE_SETUP_TIME); /* Disable the DMA sync logic */ i2c_write_field(&i2c_regs->cr, U8500_I2C_CR_DMA_SLE, U8500_I2C_CR_SHIFT_DMA_SLE, 0); /* Disable interrupts */ writel(0, &i2c_regs->imscr); /* Configure bus master mode */ i2c_write_field(&i2c_regs->cr, U8500_I2C_CR_OM, U8500_I2C_CR_SHIFT_OM, U8500_I2C_BUS_MASTER_MODE); /* Set FIFO threshold values */ writel(TX_FIFO_THRESHOLD, &i2c_regs->tftr); writel(RX_FIFO_THRESHOLD, &i2c_regs->rftr); /* Enable the I2C Controller */ i2c_set_bit(&i2c_regs->cr, U8500_I2C_CR_PE); bus_initialized[i2c_bus_num] = 1; } /* * loop_till_bit_clear - polls on a bit till it clears * ioreg: register where you want to check status * mask: bit mask for the bit you wish to check * timeout: timeout in ticks/s */ static int loop_till_bit_clear(void *io_reg, u32 mask, unsigned long timeout) { unsigned long timebase = get_timer(0); do { if ((readl(io_reg) & mask) == 0x0UL) return 0; } while (get_timer(timebase) < timeout); debug("loop_till_bit_clear timed out\n"); return -1; } /* * loop_till_bit_set - polls on a bit till it is set. * ioreg: register where you want to check status * mask: bit mask for the bit you wish to check * timeout: timeout in ticks/s */ static int loop_till_bit_set(void *io_reg, u32 mask, unsigned long timeout) { unsigned long timebase = get_timer(0); do { if ((readl(io_reg) & mask) != 0x0UL) return 0; } while (get_timer(timebase) < timeout); debug("loop_till_bit_set timed out\n"); return -1; } /* * flush_fifo - flush the I2C TX and RX FIFOs */ static void flush_fifo(struct u8500_i2c_regs *i2c_regs) { int counter = U8500_I2C_FIFO_FLUSH_COUNTER; /* Flush Tx FIFO */ i2c_set_bit(&i2c_regs->cr, U8500_I2C_CR_FTX); /* Flush Rx FIFO */ i2c_set_bit(&i2c_regs->cr, U8500_I2C_CR_FRX); while (counter--) { if (!(readl(&i2c_regs->cr) & (U8500_I2C_CR_FTX | U8500_I2C_CR_FRX))) break; } return; } #ifdef DEBUG static void print_abort_reason(struct u8500_i2c_regs *i2c_regs) { int cause; printf("abort: risr %08x, sr %08x\n", i2c_regs->risr, i2c_regs->sr); cause = (readl(&i2c_regs->sr) & U8500_I2C_SR_CAUSE) >> U8500_I2C_SR_SHIFT_CAUSE; switch (cause) { case U8500_I2C_NACK_ADDR: printf("No Ack received after Slave Address xmission\n"); break; case U8500_I2C_NACK_DATA: printf("Valid for MASTER_WRITE: No Ack received " "during data phase\n"); break; case U8500_I2C_ACK_MCODE: printf("Master recv ack after xmission of master code" "in hs mode\n"); break; case U8500_I2C_ARB_LOST: printf("Master Lost arbitration\n"); break; case U8500_I2C_BERR_START: printf("Slave restarts\n"); break; case U8500_I2C_BERR_STOP: printf("Slave reset\n"); break; case U8500_I2C_OVFL: printf("Overflow\n"); break; default: printf("Unknown error type\n"); } } #endif /* * i2c_abort - called when a I2C transaction failed */ static void i2c_abort(struct u8500_i2c_regs *i2c_regs) { #ifdef DEBUG print_abort_reason(i2c_regs); #endif /* flush RX and TX fifos */ flush_fifo(i2c_regs); /* Acknowledge the Master Transaction Done */ i2c_set_bit(&i2c_regs->icr, U8500_I2C_INT_MTD); /* Acknowledge the Master Transaction Done Without Stop */ i2c_set_bit(&i2c_regs->icr, U8500_I2C_INT_MTDWS); i2c_init(i2c_bus_speed[i2c_bus_num], CONFIG_SYS_I2C_SLAVE); } /* * write addr, alias index, to I2C bus. */ static int i2c_write_addr(struct u8500_i2c_regs *i2c_regs, uint addr, int alen) { while (alen--) { /* Wait until the Tx Fifo is not full */ if (loop_till_bit_clear((void *)&i2c_regs->risr, U8500_I2C_INT_TXFF, U8500_I2C_ENDAD_COUNTER)) { i2c_abort(i2c_regs); return -1; } /* MSB first */ writeb((addr >> (alen * 8)) & 0xff, &i2c_regs->tfr); } return 0; } /* * Internal simplified read function: * i2c_regs: Pointer to I2C registers for current bus * chip: I2C chip address, range 0..127 * addr: Memory (register) address within the chip * alen: Number of bytes to use for addr (typically 1, 2 for larger * memories, 0 for register type devices with only one register) * value: Where to put the data * * Returns: 0 on success, not 0 on failure */ static int i2c_read_byte(struct u8500_i2c_regs *i2c_regs, uchar chip, uint addr, int alen, uchar *value) { u32 mcr = 0; /* Set the address mode to 7 bit */ WRITE_FIELD(mcr, U8500_I2C_MCR_AM, U8500_I2C_MCR_SHIFT_AM, 1); /* Store the slave address in the master control register */ WRITE_FIELD(mcr, U8500_I2C_MCR_A7, U8500_I2C_MCR_SHIFT_A7, chip); if (alen != 0) { /* Master write operation */ mcr &= ~(U8500_I2C_MCR_OP); /* Configure the Frame length to one byte */ WRITE_FIELD(mcr, U8500_I2C_MCR_LENGTH, U8500_I2C_MCR_SHIFT_LENGTH, 1); /* Repeated start, no stop */ mcr &= ~(U8500_I2C_MCR_STOP); /* Write Master Control Register */ writel(mcr, &i2c_regs->mcr); /* send addr/index */ if (i2c_write_addr(i2c_regs, addr, alen) != 0) return -1; /* Check for the Master Transaction Done Without Stop */ if (loop_till_bit_set((void *)&i2c_regs->risr, U8500_I2C_INT_MTDWS, U8500_I2C_ENDAD_COUNTER)) { return -1; } /* Acknowledge the Master Transaction Done Without Stop */ i2c_set_bit(&i2c_regs->icr, U8500_I2C_INT_MTDWS); } /* Master control configuration for read operation */ mcr |= U8500_I2C_MCR_OP; /* Configure the STOP condition, we read only one byte */ mcr |= U8500_I2C_MCR_STOP; /* Set the frame length to one byte, we support only 1 byte reads */ WRITE_FIELD(mcr, U8500_I2C_MCR_LENGTH, U8500_I2C_MCR_SHIFT_LENGTH, 1); i2c_write_field(&i2c_regs->mcr, U8500_I2C_MCR_LENGTH_STOP_OP, U8500_I2C_MCR_SHIFT_LENGTH_STOP_OP, mcr); /* * receive_data_polling */ /* Wait until the Rx FIFO is not empty */ if (loop_till_bit_clear((void *)&i2c_regs->risr, U8500_I2C_INT_RXFE, U8500_I2C_ENDAD_COUNTER)) return -1; /* Read the data byte from Rx FIFO */ *value = readb(&i2c_regs->rfr); /* Wait until the work is done */ if (loop_till_bit_set((void *)&i2c_regs->risr, U8500_I2C_INT_MTD, U8500_I2C_ENDAD_COUNTER)) return -1; /* Acknowledge the Master Transaction Done */ i2c_set_bit(&i2c_regs->icr, U8500_I2C_INT_MTD); /* If MTD is set, Master Transaction Done Without Stop is set too */ i2c_set_bit(&i2c_regs->icr, U8500_I2C_INT_MTDWS); return 0; } /* * Internal simplified write function: * i2c_regs: Pointer to I2C registers for current bus * chip: I2C chip address, range 0..127 * addr: Memory (register) address within the chip * alen: Number of bytes to use for addr (typically 1, 2 for larger * memories, 0 for register type devices with only one register) * data: Where to read the data * len: How many bytes to write * * Returns: 0 on success, not 0 on failure */ static int __i2c_write(struct u8500_i2c_regs *i2c_regs, u8 chip, uint addr, int alen, u8 *data, int len) { int i; u32 mcr = 0; /* Set the address mode to 7 bit */ WRITE_FIELD(mcr, U8500_I2C_MCR_AM, U8500_I2C_MCR_SHIFT_AM, 1); /* Store the slave address in the master control register */ WRITE_FIELD(mcr, U8500_I2C_MCR_A7, U8500_I2C_MCR_SHIFT_A7, chip); /* Write operation */ mcr &= ~(U8500_I2C_MCR_OP); /* Current transaction is terminated by STOP condition */ mcr |= U8500_I2C_MCR_STOP; /* Frame length: addr byte + len */ WRITE_FIELD(mcr, U8500_I2C_MCR_LENGTH, U8500_I2C_MCR_SHIFT_LENGTH, (alen + len)); /* Write MCR register */ writel(mcr, &i2c_regs->mcr); if (i2c_write_addr(i2c_regs, addr, alen) != 0) return -1; for (i = 0; i < len; i++) { /* Wait until the Tx FIFO is not full */ if (loop_till_bit_clear((void *)&i2c_regs->risr, U8500_I2C_INT_TXFF, U8500_I2C_ENDAD_COUNTER)) return -1; /* it is a 32 bit register with upper 24 reserved R/O */ writeb(data[i], &i2c_regs->tfr); } /* Check for Master Transaction Done */ if (loop_till_bit_set((void *)&i2c_regs->risr, U8500_I2C_INT_MTD, U8500_I2C_ENDAD_COUNTER)) { printf("i2c_write_byte error2: risr %08x\n", i2c_regs->risr); return -1; } /* Acknowledge Master Transaction Done */ i2c_set_bit(&i2c_regs->icr, U8500_I2C_INT_MTD); /* Acknowledge Master Transaction Done Without Stop */ i2c_set_bit(&i2c_regs->icr, U8500_I2C_INT_MTDWS); return 0; } /* * Probe the given I2C chip address. Returns 0 if a chip responded, * not 0 on failure. */ int i2c_probe(uchar chip) { u32 mcr = 0; struct u8500_i2c_regs *i2c_regs; if (chip == CONFIG_SYS_I2C_SLAVE) return 1; i2c_regs = i2c_dev[i2c_bus_num]; /* Set the address mode to 7 bit */ WRITE_FIELD(mcr, U8500_I2C_MCR_AM, U8500_I2C_MCR_SHIFT_AM, 1); /* Store the slave address in the master control register */ WRITE_FIELD(mcr, U8500_I2C_MCR_A10, U8500_I2C_MCR_SHIFT_A7, chip); /* Read operation */ mcr |= U8500_I2C_MCR_OP; /* Set the frame length to one byte */ WRITE_FIELD(mcr, U8500_I2C_MCR_LENGTH, U8500_I2C_MCR_SHIFT_LENGTH, 1); /* Current transaction is terminated by STOP condition */ mcr |= U8500_I2C_MCR_STOP; /* Write MCR register */ writel(mcr, &i2c_regs->mcr); /* Wait until the Rx Fifo is not empty */ if (loop_till_bit_clear((void *)&i2c_regs->risr, U8500_I2C_INT_RXFE, U8500_I2C_ENDAD_COUNTER)) { i2c_abort(i2c_regs); return -1; } flush_fifo(i2c_regs); /* Acknowledge the Master Transaction Done */ i2c_set_bit(&i2c_regs->icr, U8500_I2C_INT_MTD); /* Acknowledge the Master Transaction Done Without Stop */ i2c_set_bit(&i2c_regs->icr, U8500_I2C_INT_MTDWS); return 0; } /* * Read/Write interface: * chip: I2C chip address, range 0..127 * addr: Memory (register) address within the chip * alen: Number of bytes to use for addr (typically 1, 2 for larger * memories, 0 for register type devices with only one * register) * buffer: Where to read/write the data * len: How many bytes to read/write * * Returns: 0 on success, not 0 on failure */ int i2c_read(uchar chip, uint addr, int alen, uchar *buffer, int len) { int i; int rc; struct u8500_i2c_regs *i2c_regs; if (alen > 2) { debug("I2C read: addr len %d not supported\n", alen); return 1; } i2c_regs = i2c_dev[i2c_bus_num]; for (i = 0; i < len; i++) { rc = i2c_read_byte(i2c_regs, chip, addr + i, alen, &buffer[i]); if (rc != 0) { debug("I2C read: I/O error: %d\n", rc); i2c_abort(i2c_regs); return rc; } } return 0; } int i2c_write(uchar chip, uint addr, int alen, uchar *buffer, int len) { int rc; struct u8500_i2c_regs *i2c_regs; i2c_regs = i2c_dev[i2c_bus_num]; rc = __i2c_write(i2c_regs, chip, addr, alen, buffer, len); if (rc != 0) { debug("I2C write: I/O error\n"); i2c_abort(i2c_regs); return rc; } return 0; } int i2c_set_bus_num(unsigned int bus) { if (bus > ARRAY_SIZE(i2c_dev) - 1) { debug("i2c_set_bus_num: only up to bus %d supported\n", ARRAY_SIZE(i2c_dev)-1); return -1; } i2c_bus_num = bus; if (!bus_initialized[i2c_bus_num]) i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE); return 0; } int i2c_set_bus_speed(unsigned int speed) { if (speed > U8500_I2C_MAX_STANDARD_SCL) { debug("i2c_set_bus_speed: only up to %d supported\n", U8500_I2C_MAX_STANDARD_SCL); return -1; } /* sets as side effect i2c_bus_speed[i2c_bus_num] */ i2c_init(speed, CONFIG_SYS_I2C_SLAVE); return 0; } unsigned int i2c_get_bus_num(void) { return i2c_bus_num; } unsigned int i2c_get_bus_speed(void) { return i2c_bus_speed[i2c_bus_num]; }