/*
 * Chromium OS cros_ec driver
 *
 * Copyright (c) 2012 The Chromium OS Authors.
 *
 * SPDX-License-Identifier:	GPL-2.0+
 */

/*
 * This is the interface to the Chrome OS EC. It provides keyboard functions,
 * power control and battery management. Quite a few other functions are
 * provided to enable the EC software to be updated, talk to the EC's I2C bus
 * and store a small amount of data in a memory which persists while the EC
 * is not reset.
 */

#include <common.h>
#include <command.h>
#include <dm.h>
#include <i2c.h>
#include <cros_ec.h>
#include <fdtdec.h>
#include <malloc.h>
#include <spi.h>
#include <asm/errno.h>
#include <asm/io.h>
#include <asm-generic/gpio.h>
#include <dm/device-internal.h>
#include <dm/uclass-internal.h>

#ifdef DEBUG_TRACE
#define debug_trace(fmt, b...)	debug(fmt, #b)
#else
#define debug_trace(fmt, b...)
#endif

enum {
	/* Timeout waiting for a flash erase command to complete */
	CROS_EC_CMD_TIMEOUT_MS	= 5000,
	/* Timeout waiting for a synchronous hash to be recomputed */
	CROS_EC_CMD_HASH_TIMEOUT_MS = 2000,
};

#ifndef CONFIG_DM_CROS_EC
static struct cros_ec_dev static_dev, *last_dev;
#endif

DECLARE_GLOBAL_DATA_PTR;

/* Note: depends on enum ec_current_image */
static const char * const ec_current_image_name[] = {"unknown", "RO", "RW"};

void cros_ec_dump_data(const char *name, int cmd, const uint8_t *data, int len)
{
#ifdef DEBUG
	int i;

	printf("%s: ", name);
	if (cmd != -1)
		printf("cmd=%#x: ", cmd);
	for (i = 0; i < len; i++)
		printf("%02x ", data[i]);
	printf("\n");
#endif
}

/*
 * Calculate a simple 8-bit checksum of a data block
 *
 * @param data	Data block to checksum
 * @param size	Size of data block in bytes
 * @return checksum value (0 to 255)
 */
int cros_ec_calc_checksum(const uint8_t *data, int size)
{
	int csum, i;

	for (i = csum = 0; i < size; i++)
		csum += data[i];
	return csum & 0xff;
}

/**
 * Create a request packet for protocol version 3.
 *
 * The packet is stored in the device's internal output buffer.
 *
 * @param dev		CROS-EC device
 * @param cmd		Command to send (EC_CMD_...)
 * @param cmd_version	Version of command to send (EC_VER_...)
 * @param dout          Output data (may be NULL If dout_len=0)
 * @param dout_len      Size of output data in bytes
 * @return packet size in bytes, or <0 if error.
 */
static int create_proto3_request(struct cros_ec_dev *dev,
				 int cmd, int cmd_version,
				 const void *dout, int dout_len)
{
	struct ec_host_request *rq = (struct ec_host_request *)dev->dout;
	int out_bytes = dout_len + sizeof(*rq);

	/* Fail if output size is too big */
	if (out_bytes > (int)sizeof(dev->dout)) {
		debug("%s: Cannot send %d bytes\n", __func__, dout_len);
		return -EC_RES_REQUEST_TRUNCATED;
	}

	/* Fill in request packet */
	rq->struct_version = EC_HOST_REQUEST_VERSION;
	rq->checksum = 0;
	rq->command = cmd;
	rq->command_version = cmd_version;
	rq->reserved = 0;
	rq->data_len = dout_len;

	/* Copy data after header */
	memcpy(rq + 1, dout, dout_len);

	/* Write checksum field so the entire packet sums to 0 */
	rq->checksum = (uint8_t)(-cros_ec_calc_checksum(dev->dout, out_bytes));

	cros_ec_dump_data("out", cmd, dev->dout, out_bytes);

	/* Return size of request packet */
	return out_bytes;
}

/**
 * Prepare the device to receive a protocol version 3 response.
 *
 * @param dev		CROS-EC device
 * @param din_len       Maximum size of response in bytes
 * @return maximum expected number of bytes in response, or <0 if error.
 */
static int prepare_proto3_response_buffer(struct cros_ec_dev *dev, int din_len)
{
	int in_bytes = din_len + sizeof(struct ec_host_response);

	/* Fail if input size is too big */
	if (in_bytes > (int)sizeof(dev->din)) {
		debug("%s: Cannot receive %d bytes\n", __func__, din_len);
		return -EC_RES_RESPONSE_TOO_BIG;
	}

	/* Return expected size of response packet */
	return in_bytes;
}

/**
 * Handle a protocol version 3 response packet.
 *
 * The packet must already be stored in the device's internal input buffer.
 *
 * @param dev		CROS-EC device
 * @param dinp          Returns pointer to response data
 * @param din_len       Maximum size of response in bytes
 * @return number of bytes of response data, or <0 if error
 */
static int handle_proto3_response(struct cros_ec_dev *dev,
				  uint8_t **dinp, int din_len)
{
	struct ec_host_response *rs = (struct ec_host_response *)dev->din;
	int in_bytes;
	int csum;

	cros_ec_dump_data("in-header", -1, dev->din, sizeof(*rs));

	/* Check input data */
	if (rs->struct_version != EC_HOST_RESPONSE_VERSION) {
		debug("%s: EC response version mismatch\n", __func__);
		return -EC_RES_INVALID_RESPONSE;
	}

	if (rs->reserved) {
		debug("%s: EC response reserved != 0\n", __func__);
		return -EC_RES_INVALID_RESPONSE;
	}

	if (rs->data_len > din_len) {
		debug("%s: EC returned too much data\n", __func__);
		return -EC_RES_RESPONSE_TOO_BIG;
	}

	cros_ec_dump_data("in-data", -1, dev->din + sizeof(*rs), rs->data_len);

	/* Update in_bytes to actual data size */
	in_bytes = sizeof(*rs) + rs->data_len;

	/* Verify checksum */
	csum = cros_ec_calc_checksum(dev->din, in_bytes);
	if (csum) {
		debug("%s: EC response checksum invalid: 0x%02x\n", __func__,
		      csum);
		return -EC_RES_INVALID_CHECKSUM;
	}

	/* Return error result, if any */
	if (rs->result)
		return -(int)rs->result;

	/* If we're still here, set response data pointer and return length */
	*dinp = (uint8_t *)(rs + 1);

	return rs->data_len;
}

static int send_command_proto3(struct cros_ec_dev *dev,
			       int cmd, int cmd_version,
			       const void *dout, int dout_len,
			       uint8_t **dinp, int din_len)
{
#ifdef CONFIG_DM_CROS_EC
	struct dm_cros_ec_ops *ops;
#endif
	int out_bytes, in_bytes;
	int rv;

	/* Create request packet */
	out_bytes = create_proto3_request(dev, cmd, cmd_version,
					  dout, dout_len);
	if (out_bytes < 0)
		return out_bytes;

	/* Prepare response buffer */
	in_bytes = prepare_proto3_response_buffer(dev, din_len);
	if (in_bytes < 0)
		return in_bytes;

#ifdef CONFIG_DM_CROS_EC
	ops = dm_cros_ec_get_ops(dev->dev);
	rv = ops->packet(dev->dev, out_bytes, in_bytes);
#else
	switch (dev->interface) {
#ifdef CONFIG_CROS_EC_SPI
	case CROS_EC_IF_SPI:
		rv = cros_ec_spi_packet(dev, out_bytes, in_bytes);
		break;
#endif
#ifdef CONFIG_CROS_EC_SANDBOX
	case CROS_EC_IF_SANDBOX:
		rv = cros_ec_sandbox_packet(dev, out_bytes, in_bytes);
		break;
#endif
	case CROS_EC_IF_NONE:
	/* TODO: support protocol 3 for LPC, I2C; for now fall through */
	default:
		debug("%s: Unsupported interface\n", __func__);
		rv = -1;
	}
#endif
	if (rv < 0)
		return rv;

	/* Process the response */
	return handle_proto3_response(dev, dinp, din_len);
}

static int send_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version,
			const void *dout, int dout_len,
			uint8_t **dinp, int din_len)
{
#ifdef CONFIG_DM_CROS_EC
	struct dm_cros_ec_ops *ops;
#endif
	int ret = -1;

	/* Handle protocol version 3 support */
	if (dev->protocol_version == 3) {
		return send_command_proto3(dev, cmd, cmd_version,
					   dout, dout_len, dinp, din_len);
	}

#ifdef CONFIG_DM_CROS_EC
	ops = dm_cros_ec_get_ops(dev->dev);
	ret = ops->command(dev->dev, cmd, cmd_version,
			   (const uint8_t *)dout, dout_len, dinp, din_len);
#else
	switch (dev->interface) {
#ifdef CONFIG_CROS_EC_SPI
	case CROS_EC_IF_SPI:
		ret = cros_ec_spi_command(dev, cmd, cmd_version,
					(const uint8_t *)dout, dout_len,
					dinp, din_len);
		break;
#endif
#ifdef CONFIG_CROS_EC_I2C
	case CROS_EC_IF_I2C:
		ret = cros_ec_i2c_command(dev, cmd, cmd_version,
					(const uint8_t *)dout, dout_len,
					dinp, din_len);
		break;
#endif
#ifdef CONFIG_CROS_EC_LPC
	case CROS_EC_IF_LPC:
		ret = cros_ec_lpc_command(dev, cmd, cmd_version,
					(const uint8_t *)dout, dout_len,
					dinp, din_len);
		break;
#endif
	case CROS_EC_IF_NONE:
	default:
		ret = -1;
	}
#endif

	return ret;
}

/**
 * Send a command to the CROS-EC device and return the reply.
 *
 * The device's internal input/output buffers are used.
 *
 * @param dev		CROS-EC device
 * @param cmd		Command to send (EC_CMD_...)
 * @param cmd_version	Version of command to send (EC_VER_...)
 * @param dout          Output data (may be NULL If dout_len=0)
 * @param dout_len      Size of output data in bytes
 * @param dinp          Response data (may be NULL If din_len=0).
 *			If not NULL, it will be updated to point to the data
 *			and will always be double word aligned (64-bits)
 * @param din_len       Maximum size of response in bytes
 * @return number of bytes in response, or -1 on error
 */
static int ec_command_inptr(struct cros_ec_dev *dev, uint8_t cmd,
		int cmd_version, const void *dout, int dout_len, uint8_t **dinp,
		int din_len)
{
	uint8_t *din = NULL;
	int len;

	len = send_command(dev, cmd, cmd_version, dout, dout_len,
				&din, din_len);

	/* If the command doesn't complete, wait a while */
	if (len == -EC_RES_IN_PROGRESS) {
		struct ec_response_get_comms_status *resp = NULL;
		ulong start;

		/* Wait for command to complete */
		start = get_timer(0);
		do {
			int ret;

			mdelay(50);	/* Insert some reasonable delay */
			ret = send_command(dev, EC_CMD_GET_COMMS_STATUS, 0,
					NULL, 0,
					(uint8_t **)&resp, sizeof(*resp));
			if (ret < 0)
				return ret;

			if (get_timer(start) > CROS_EC_CMD_TIMEOUT_MS) {
				debug("%s: Command %#02x timeout\n",
				      __func__, cmd);
				return -EC_RES_TIMEOUT;
			}
		} while (resp->flags & EC_COMMS_STATUS_PROCESSING);

		/* OK it completed, so read the status response */
		/* not sure why it was 0 for the last argument */
		len = send_command(dev, EC_CMD_RESEND_RESPONSE, 0,
				NULL, 0, &din, din_len);
	}

	debug("%s: len=%d, dinp=%p, *dinp=%p\n", __func__, len, dinp,
	      dinp ? *dinp : NULL);
	if (dinp) {
		/* If we have any data to return, it must be 64bit-aligned */
		assert(len <= 0 || !((uintptr_t)din & 7));
		*dinp = din;
	}

	return len;
}

/**
 * Send a command to the CROS-EC device and return the reply.
 *
 * The device's internal input/output buffers are used.
 *
 * @param dev		CROS-EC device
 * @param cmd		Command to send (EC_CMD_...)
 * @param cmd_version	Version of command to send (EC_VER_...)
 * @param dout          Output data (may be NULL If dout_len=0)
 * @param dout_len      Size of output data in bytes
 * @param din           Response data (may be NULL If din_len=0).
 *			It not NULL, it is a place for ec_command() to copy the
 *      data to.
 * @param din_len       Maximum size of response in bytes
 * @return number of bytes in response, or -1 on error
 */
static int ec_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version,
		      const void *dout, int dout_len,
		      void *din, int din_len)
{
	uint8_t *in_buffer;
	int len;

	assert((din_len == 0) || din);
	len = ec_command_inptr(dev, cmd, cmd_version, dout, dout_len,
			&in_buffer, din_len);
	if (len > 0) {
		/*
		 * If we were asked to put it somewhere, do so, otherwise just
		 * disregard the result.
		 */
		if (din && in_buffer) {
			assert(len <= din_len);
			memmove(din, in_buffer, len);
		}
	}
	return len;
}

int cros_ec_scan_keyboard(struct cros_ec_dev *dev, struct mbkp_keyscan *scan)
{
	if (ec_command(dev, EC_CMD_MKBP_STATE, 0, NULL, 0, scan,
		       sizeof(scan->data)) != sizeof(scan->data))
		return -1;

	return 0;
}

int cros_ec_read_id(struct cros_ec_dev *dev, char *id, int maxlen)
{
	struct ec_response_get_version *r;

	if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
			(uint8_t **)&r, sizeof(*r)) != sizeof(*r))
		return -1;

	if (maxlen > (int)sizeof(r->version_string_ro))
		maxlen = sizeof(r->version_string_ro);

	switch (r->current_image) {
	case EC_IMAGE_RO:
		memcpy(id, r->version_string_ro, maxlen);
		break;
	case EC_IMAGE_RW:
		memcpy(id, r->version_string_rw, maxlen);
		break;
	default:
		return -1;
	}

	id[maxlen - 1] = '\0';
	return 0;
}

int cros_ec_read_version(struct cros_ec_dev *dev,
		       struct ec_response_get_version **versionp)
{
	if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
			(uint8_t **)versionp, sizeof(**versionp))
			!= sizeof(**versionp))
		return -1;

	return 0;
}

int cros_ec_read_build_info(struct cros_ec_dev *dev, char **strp)
{
	if (ec_command_inptr(dev, EC_CMD_GET_BUILD_INFO, 0, NULL, 0,
			(uint8_t **)strp, EC_PROTO2_MAX_PARAM_SIZE) < 0)
		return -1;

	return 0;
}

int cros_ec_read_current_image(struct cros_ec_dev *dev,
		enum ec_current_image *image)
{
	struct ec_response_get_version *r;

	if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
			(uint8_t **)&r, sizeof(*r)) != sizeof(*r))
		return -1;

	*image = r->current_image;
	return 0;
}

static int cros_ec_wait_on_hash_done(struct cros_ec_dev *dev,
				  struct ec_response_vboot_hash *hash)
{
	struct ec_params_vboot_hash p;
	ulong start;

	start = get_timer(0);
	while (hash->status == EC_VBOOT_HASH_STATUS_BUSY) {
		mdelay(50);	/* Insert some reasonable delay */

		p.cmd = EC_VBOOT_HASH_GET;
		if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
		       hash, sizeof(*hash)) < 0)
			return -1;

		if (get_timer(start) > CROS_EC_CMD_HASH_TIMEOUT_MS) {
			debug("%s: EC_VBOOT_HASH_GET timeout\n", __func__);
			return -EC_RES_TIMEOUT;
		}
	}
	return 0;
}


int cros_ec_read_hash(struct cros_ec_dev *dev,
		struct ec_response_vboot_hash *hash)
{
	struct ec_params_vboot_hash p;
	int rv;

	p.cmd = EC_VBOOT_HASH_GET;
	if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
		       hash, sizeof(*hash)) < 0)
		return -1;

	/* If the EC is busy calculating the hash, fidget until it's done. */
	rv = cros_ec_wait_on_hash_done(dev, hash);
	if (rv)
		return rv;

	/* If the hash is valid, we're done. Otherwise, we have to kick it off
	 * again and wait for it to complete. Note that we explicitly assume
	 * that hashing zero bytes is always wrong, even though that would
	 * produce a valid hash value. */
	if (hash->status == EC_VBOOT_HASH_STATUS_DONE && hash->size)
		return 0;

	debug("%s: No valid hash (status=%d size=%d). Compute one...\n",
	      __func__, hash->status, hash->size);

	p.cmd = EC_VBOOT_HASH_START;
	p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
	p.nonce_size = 0;
	p.offset = EC_VBOOT_HASH_OFFSET_RW;

	if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
		       hash, sizeof(*hash)) < 0)
		return -1;

	rv = cros_ec_wait_on_hash_done(dev, hash);
	if (rv)
		return rv;

	debug("%s: hash done\n", __func__);

	return 0;
}

static int cros_ec_invalidate_hash(struct cros_ec_dev *dev)
{
	struct ec_params_vboot_hash p;
	struct ec_response_vboot_hash *hash;

	/* We don't have an explict command for the EC to discard its current
	 * hash value, so we'll just tell it to calculate one that we know is
	 * wrong (we claim that hashing zero bytes is always invalid).
	 */
	p.cmd = EC_VBOOT_HASH_RECALC;
	p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
	p.nonce_size = 0;
	p.offset = 0;
	p.size = 0;

	debug("%s:\n", __func__);

	if (ec_command_inptr(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
		       (uint8_t **)&hash, sizeof(*hash)) < 0)
		return -1;

	/* No need to wait for it to finish */
	return 0;
}

int cros_ec_reboot(struct cros_ec_dev *dev, enum ec_reboot_cmd cmd,
		uint8_t flags)
{
	struct ec_params_reboot_ec p;

	p.cmd = cmd;
	p.flags = flags;

	if (ec_command_inptr(dev, EC_CMD_REBOOT_EC, 0, &p, sizeof(p), NULL, 0)
			< 0)
		return -1;

	if (!(flags & EC_REBOOT_FLAG_ON_AP_SHUTDOWN)) {
		/*
		 * EC reboot will take place immediately so delay to allow it
		 * to complete.  Note that some reboot types (EC_REBOOT_COLD)
		 * will reboot the AP as well, in which case we won't actually
		 * get to this point.
		 */
		/*
		 * TODO(rspangler@chromium.org): Would be nice if we had a
		 * better way to determine when the reboot is complete.  Could
		 * we poll a memory-mapped LPC value?
		 */
		udelay(50000);
	}

	return 0;
}

int cros_ec_interrupt_pending(struct cros_ec_dev *dev)
{
	/* no interrupt support : always poll */
	if (!fdt_gpio_isvalid(&dev->ec_int))
		return -ENOENT;

	return !gpio_get_value(dev->ec_int.gpio);
}

int cros_ec_info(struct cros_ec_dev *dev, struct ec_response_mkbp_info *info)
{
	if (ec_command(dev, EC_CMD_MKBP_INFO, 0, NULL, 0, info,
		       sizeof(*info)) != sizeof(*info))
		return -1;

	return 0;
}

int cros_ec_get_host_events(struct cros_ec_dev *dev, uint32_t *events_ptr)
{
	struct ec_response_host_event_mask *resp;

	/*
	 * Use the B copy of the event flags, because the main copy is already
	 * used by ACPI/SMI.
	 */
	if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_GET_B, 0, NULL, 0,
		       (uint8_t **)&resp, sizeof(*resp)) < (int)sizeof(*resp))
		return -1;

	if (resp->mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_INVALID))
		return -1;

	*events_ptr = resp->mask;
	return 0;
}

int cros_ec_clear_host_events(struct cros_ec_dev *dev, uint32_t events)
{
	struct ec_params_host_event_mask params;

	params.mask = events;

	/*
	 * Use the B copy of the event flags, so it affects the data returned
	 * by cros_ec_get_host_events().
	 */
	if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_CLEAR_B, 0,
		       &params, sizeof(params), NULL, 0) < 0)
		return -1;

	return 0;
}

int cros_ec_flash_protect(struct cros_ec_dev *dev,
		       uint32_t set_mask, uint32_t set_flags,
		       struct ec_response_flash_protect *resp)
{
	struct ec_params_flash_protect params;

	params.mask = set_mask;
	params.flags = set_flags;

	if (ec_command(dev, EC_CMD_FLASH_PROTECT, EC_VER_FLASH_PROTECT,
		       &params, sizeof(params),
		       resp, sizeof(*resp)) != sizeof(*resp))
		return -1;

	return 0;
}

static int cros_ec_check_version(struct cros_ec_dev *dev)
{
	struct ec_params_hello req;
	struct ec_response_hello *resp;

#ifdef CONFIG_CROS_EC_LPC
	/* LPC has its own way of doing this */
	if (dev->interface == CROS_EC_IF_LPC)
		return cros_ec_lpc_check_version(dev);
#endif

	/*
	 * TODO(sjg@chromium.org).
	 * There is a strange oddity here with the EC. We could just ignore
	 * the response, i.e. pass the last two parameters as NULL and 0.
	 * In this case we won't read back very many bytes from the EC.
	 * On the I2C bus the EC gets upset about this and will try to send
	 * the bytes anyway. This means that we will have to wait for that
	 * to complete before continuing with a new EC command.
	 *
	 * This problem is probably unique to the I2C bus.
	 *
	 * So for now, just read all the data anyway.
	 */

	/* Try sending a version 3 packet */
	dev->protocol_version = 3;
	if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
			     (uint8_t **)&resp, sizeof(*resp)) > 0) {
		return 0;
	}

	/* Try sending a version 2 packet */
	dev->protocol_version = 2;
	if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
		       (uint8_t **)&resp, sizeof(*resp)) > 0) {
		return 0;
	}

	/*
	 * Fail if we're still here, since the EC doesn't understand any
	 * protcol version we speak.  Version 1 interface without command
	 * version is no longer supported, and we don't know about any new
	 * protocol versions.
	 */
	dev->protocol_version = 0;
	printf("%s: ERROR: old EC interface not supported\n", __func__);
	return -1;
}

int cros_ec_test(struct cros_ec_dev *dev)
{
	struct ec_params_hello req;
	struct ec_response_hello *resp;

	req.in_data = 0x12345678;
	if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
		       (uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp)) {
		printf("ec_command_inptr() returned error\n");
		return -1;
	}
	if (resp->out_data != req.in_data + 0x01020304) {
		printf("Received invalid handshake %x\n", resp->out_data);
		return -1;
	}

	return 0;
}

int cros_ec_flash_offset(struct cros_ec_dev *dev, enum ec_flash_region region,
		      uint32_t *offset, uint32_t *size)
{
	struct ec_params_flash_region_info p;
	struct ec_response_flash_region_info *r;
	int ret;

	p.region = region;
	ret = ec_command_inptr(dev, EC_CMD_FLASH_REGION_INFO,
			 EC_VER_FLASH_REGION_INFO,
			 &p, sizeof(p), (uint8_t **)&r, sizeof(*r));
	if (ret != sizeof(*r))
		return -1;

	if (offset)
		*offset = r->offset;
	if (size)
		*size = r->size;

	return 0;
}

int cros_ec_flash_erase(struct cros_ec_dev *dev, uint32_t offset, uint32_t size)
{
	struct ec_params_flash_erase p;

	p.offset = offset;
	p.size = size;
	return ec_command_inptr(dev, EC_CMD_FLASH_ERASE, 0, &p, sizeof(p),
			NULL, 0);
}

/**
 * Write a single block to the flash
 *
 * Write a block of data to the EC flash. The size must not exceed the flash
 * write block size which you can obtain from cros_ec_flash_write_burst_size().
 *
 * The offset starts at 0. You can obtain the region information from
 * cros_ec_flash_offset() to find out where to write for a particular region.
 *
 * Attempting to write to the region where the EC is currently running from
 * will result in an error.
 *
 * @param dev		CROS-EC device
 * @param data		Pointer to data buffer to write
 * @param offset	Offset within flash to write to.
 * @param size		Number of bytes to write
 * @return 0 if ok, -1 on error
 */
static int cros_ec_flash_write_block(struct cros_ec_dev *dev,
		const uint8_t *data, uint32_t offset, uint32_t size)
{
	struct ec_params_flash_write p;

	p.offset = offset;
	p.size = size;
	assert(data && p.size <= EC_FLASH_WRITE_VER0_SIZE);
	memcpy(&p + 1, data, p.size);

	return ec_command_inptr(dev, EC_CMD_FLASH_WRITE, 0,
			  &p, sizeof(p), NULL, 0) >= 0 ? 0 : -1;
}

/**
 * Return optimal flash write burst size
 */
static int cros_ec_flash_write_burst_size(struct cros_ec_dev *dev)
{
	return EC_FLASH_WRITE_VER0_SIZE;
}

/**
 * Check if a block of data is erased (all 0xff)
 *
 * This function is useful when dealing with flash, for checking whether a
 * data block is erased and thus does not need to be programmed.
 *
 * @param data		Pointer to data to check (must be word-aligned)
 * @param size		Number of bytes to check (must be word-aligned)
 * @return 0 if erased, non-zero if any word is not erased
 */
static int cros_ec_data_is_erased(const uint32_t *data, int size)
{
	assert(!(size & 3));
	size /= sizeof(uint32_t);
	for (; size > 0; size -= 4, data++)
		if (*data != -1U)
			return 0;

	return 1;
}

int cros_ec_flash_write(struct cros_ec_dev *dev, const uint8_t *data,
		     uint32_t offset, uint32_t size)
{
	uint32_t burst = cros_ec_flash_write_burst_size(dev);
	uint32_t end, off;
	int ret;

	/*
	 * TODO: round up to the nearest multiple of write size.  Can get away
	 * without that on link right now because its write size is 4 bytes.
	 */
	end = offset + size;
	for (off = offset; off < end; off += burst, data += burst) {
		uint32_t todo;

		/* If the data is empty, there is no point in programming it */
		todo = min(end - off, burst);
		if (dev->optimise_flash_write &&
				cros_ec_data_is_erased((uint32_t *)data, todo))
			continue;

		ret = cros_ec_flash_write_block(dev, data, off, todo);
		if (ret)
			return ret;
	}

	return 0;
}

/**
 * Read a single block from the flash
 *
 * Read a block of data from the EC flash. The size must not exceed the flash
 * write block size which you can obtain from cros_ec_flash_write_burst_size().
 *
 * The offset starts at 0. You can obtain the region information from
 * cros_ec_flash_offset() to find out where to read for a particular region.
 *
 * @param dev		CROS-EC device
 * @param data		Pointer to data buffer to read into
 * @param offset	Offset within flash to read from
 * @param size		Number of bytes to read
 * @return 0 if ok, -1 on error
 */
static int cros_ec_flash_read_block(struct cros_ec_dev *dev, uint8_t *data,
				 uint32_t offset, uint32_t size)
{
	struct ec_params_flash_read p;

	p.offset = offset;
	p.size = size;

	return ec_command(dev, EC_CMD_FLASH_READ, 0,
			  &p, sizeof(p), data, size) >= 0 ? 0 : -1;
}

int cros_ec_flash_read(struct cros_ec_dev *dev, uint8_t *data, uint32_t offset,
		    uint32_t size)
{
	uint32_t burst = cros_ec_flash_write_burst_size(dev);
	uint32_t end, off;
	int ret;

	end = offset + size;
	for (off = offset; off < end; off += burst, data += burst) {
		ret = cros_ec_flash_read_block(dev, data, off,
					    min(end - off, burst));
		if (ret)
			return ret;
	}

	return 0;
}

int cros_ec_flash_update_rw(struct cros_ec_dev *dev,
			 const uint8_t *image, int image_size)
{
	uint32_t rw_offset, rw_size;
	int ret;

	if (cros_ec_flash_offset(dev, EC_FLASH_REGION_RW, &rw_offset, &rw_size))
		return -1;
	if (image_size > (int)rw_size)
		return -1;

	/* Invalidate the existing hash, just in case the AP reboots
	 * unexpectedly during the update. If that happened, the EC RW firmware
	 * would be invalid, but the EC would still have the original hash.
	 */
	ret = cros_ec_invalidate_hash(dev);
	if (ret)
		return ret;

	/*
	 * Erase the entire RW section, so that the EC doesn't see any garbage
	 * past the new image if it's smaller than the current image.
	 *
	 * TODO: could optimize this to erase just the current image, since
	 * presumably everything past that is 0xff's.  But would still need to
	 * round up to the nearest multiple of erase size.
	 */
	ret = cros_ec_flash_erase(dev, rw_offset, rw_size);
	if (ret)
		return ret;

	/* Write the image */
	ret = cros_ec_flash_write(dev, image, rw_offset, image_size);
	if (ret)
		return ret;

	return 0;
}

int cros_ec_read_vbnvcontext(struct cros_ec_dev *dev, uint8_t *block)
{
	struct ec_params_vbnvcontext p;
	int len;

	p.op = EC_VBNV_CONTEXT_OP_READ;

	len = ec_command(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
			&p, sizeof(p), block, EC_VBNV_BLOCK_SIZE);
	if (len < EC_VBNV_BLOCK_SIZE)
		return -1;

	return 0;
}

int cros_ec_write_vbnvcontext(struct cros_ec_dev *dev, const uint8_t *block)
{
	struct ec_params_vbnvcontext p;
	int len;

	p.op = EC_VBNV_CONTEXT_OP_WRITE;
	memcpy(p.block, block, sizeof(p.block));

	len = ec_command_inptr(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
			&p, sizeof(p), NULL, 0);
	if (len < 0)
		return -1;

	return 0;
}

int cros_ec_set_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t state)
{
	struct ec_params_ldo_set params;

	params.index = index;
	params.state = state;

	if (ec_command_inptr(dev, EC_CMD_LDO_SET, 0,
		       &params, sizeof(params),
		       NULL, 0))
		return -1;

	return 0;
}

int cros_ec_get_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t *state)
{
	struct ec_params_ldo_get params;
	struct ec_response_ldo_get *resp;

	params.index = index;

	if (ec_command_inptr(dev, EC_CMD_LDO_GET, 0,
		       &params, sizeof(params),
		       (uint8_t **)&resp, sizeof(*resp)) != sizeof(*resp))
		return -1;

	*state = resp->state;

	return 0;
}

#ifndef CONFIG_DM_CROS_EC
/**
 * Decode EC interface details from the device tree and allocate a suitable
 * device.
 *
 * @param blob		Device tree blob
 * @param node		Node to decode from
 * @param devp		Returns a pointer to the new allocated device
 * @return 0 if ok, -1 on error
 */
static int cros_ec_decode_fdt(const void *blob, int node,
		struct cros_ec_dev **devp)
{
	enum fdt_compat_id compat;
	struct cros_ec_dev *dev;
	int parent;

	/* See what type of parent we are inside (this is expensive) */
	parent = fdt_parent_offset(blob, node);
	if (parent < 0) {
		debug("%s: Cannot find node parent\n", __func__);
		return -1;
	}

	dev = &static_dev;
	dev->node = node;
	dev->parent_node = parent;

	compat = fdtdec_lookup(blob, parent);
	switch (compat) {
#ifdef CONFIG_CROS_EC_SPI
	case COMPAT_SAMSUNG_EXYNOS_SPI:
		dev->interface = CROS_EC_IF_SPI;
		if (cros_ec_spi_decode_fdt(dev, blob))
			return -1;
		break;
#endif
#ifdef CONFIG_CROS_EC_I2C
	case COMPAT_SAMSUNG_S3C2440_I2C:
		dev->interface = CROS_EC_IF_I2C;
		if (cros_ec_i2c_decode_fdt(dev, blob))
			return -1;
		break;
#endif
#ifdef CONFIG_CROS_EC_LPC
	case COMPAT_INTEL_LPC:
		dev->interface = CROS_EC_IF_LPC;
		break;
#endif
#ifdef CONFIG_CROS_EC_SANDBOX
	case COMPAT_SANDBOX_HOST_EMULATION:
		dev->interface = CROS_EC_IF_SANDBOX;
		break;
#endif
	default:
		debug("%s: Unknown compat id %d\n", __func__, compat);
		return -1;
	}

	fdtdec_decode_gpio(blob, node, "ec-interrupt", &dev->ec_int);
	dev->optimise_flash_write = fdtdec_get_bool(blob, node,
						    "optimise-flash-write");
	*devp = dev;

	return 0;
}
#endif

#ifdef CONFIG_DM_CROS_EC
int cros_ec_register(struct udevice *dev)
{
	struct cros_ec_dev *cdev = dev->uclass_priv;
	const void *blob = gd->fdt_blob;
	int node = dev->of_offset;
	char id[MSG_BYTES];

	cdev->dev = dev;
	fdtdec_decode_gpio(blob, node, "ec-interrupt", &cdev->ec_int);
	cdev->optimise_flash_write = fdtdec_get_bool(blob, node,
						     "optimise-flash-write");

	/* we will poll the EC interrupt line */
	fdtdec_setup_gpio(&cdev->ec_int);
	if (fdt_gpio_isvalid(&cdev->ec_int)) {
		gpio_request(cdev->ec_int.gpio, "cros-ec-irq");
		gpio_direction_input(cdev->ec_int.gpio);
	}

	if (cros_ec_check_version(cdev)) {
		debug("%s: Could not detect CROS-EC version\n", __func__);
		return -CROS_EC_ERR_CHECK_VERSION;
	}

	if (cros_ec_read_id(cdev, id, sizeof(id))) {
		debug("%s: Could not read KBC ID\n", __func__);
		return -CROS_EC_ERR_READ_ID;
	}

	/* Remember this device for use by the cros_ec command */
	debug("Google Chrome EC CROS-EC driver ready, id '%s'\n", id);

	return 0;
}
#else
int cros_ec_init(const void *blob, struct cros_ec_dev **cros_ecp)
{
	struct cros_ec_dev *dev;
	char id[MSG_BYTES];
#ifdef CONFIG_DM_CROS_EC
	struct udevice *udev;
	int ret;

	ret = uclass_find_device(UCLASS_CROS_EC, 0, &udev);
	if (!ret)
		device_remove(udev);
	ret = uclass_get_device(UCLASS_CROS_EC, 0, &udev);
	if (ret)
		return ret;
	dev = udev->uclass_priv;
	return 0;
#else
	int node = 0;

	*cros_ecp = NULL;
	do {
		node = fdtdec_next_compatible(blob, node,
					      COMPAT_GOOGLE_CROS_EC);
		if (node < 0) {
			debug("%s: Node not found\n", __func__);
			return 0;
		}
	} while (!fdtdec_get_is_enabled(blob, node));

	if (cros_ec_decode_fdt(blob, node, &dev)) {
		debug("%s: Failed to decode device.\n", __func__);
		return -CROS_EC_ERR_FDT_DECODE;
	}

	switch (dev->interface) {
#ifdef CONFIG_CROS_EC_SPI
	case CROS_EC_IF_SPI:
		if (cros_ec_spi_init(dev, blob)) {
			debug("%s: Could not setup SPI interface\n", __func__);
			return -CROS_EC_ERR_DEV_INIT;
		}
		break;
#endif
#ifdef CONFIG_CROS_EC_I2C
	case CROS_EC_IF_I2C:
		if (cros_ec_i2c_init(dev, blob))
			return -CROS_EC_ERR_DEV_INIT;
		break;
#endif
#ifdef CONFIG_CROS_EC_LPC
	case CROS_EC_IF_LPC:
		if (cros_ec_lpc_init(dev, blob))
			return -CROS_EC_ERR_DEV_INIT;
		break;
#endif
#ifdef CONFIG_CROS_EC_SANDBOX
	case CROS_EC_IF_SANDBOX:
		if (cros_ec_sandbox_init(dev, blob))
			return -CROS_EC_ERR_DEV_INIT;
		break;
#endif
	case CROS_EC_IF_NONE:
	default:
		return 0;
	}
#endif

	/* we will poll the EC interrupt line */
	fdtdec_setup_gpio(&dev->ec_int);
	if (fdt_gpio_isvalid(&dev->ec_int)) {
		gpio_request(dev->ec_int.gpio, "cros-ec-irq");
		gpio_direction_input(dev->ec_int.gpio);
	}

	if (cros_ec_check_version(dev)) {
		debug("%s: Could not detect CROS-EC version\n", __func__);
		return -CROS_EC_ERR_CHECK_VERSION;
	}

	if (cros_ec_read_id(dev, id, sizeof(id))) {
		debug("%s: Could not read KBC ID\n", __func__);
		return -CROS_EC_ERR_READ_ID;
	}

	/* Remember this device for use by the cros_ec command */
	*cros_ecp = dev;
#ifndef CONFIG_DM_CROS_EC
	last_dev = dev;
#endif
	debug("Google Chrome EC CROS-EC driver ready, id '%s'\n", id);

	return 0;
}
#endif

int cros_ec_decode_region(int argc, char * const argv[])
{
	if (argc > 0) {
		if (0 == strcmp(*argv, "rw"))
			return EC_FLASH_REGION_RW;
		else if (0 == strcmp(*argv, "ro"))
			return EC_FLASH_REGION_RO;

		debug("%s: Invalid region '%s'\n", __func__, *argv);
	} else {
		debug("%s: Missing region parameter\n", __func__);
	}

	return -1;
}

int cros_ec_decode_ec_flash(const void *blob, int node,
			    struct fdt_cros_ec *config)
{
	int flash_node;

	flash_node = fdt_subnode_offset(blob, node, "flash");
	if (flash_node < 0) {
		debug("Failed to find flash node\n");
		return -1;
	}

	if (fdtdec_read_fmap_entry(blob, flash_node, "flash",
				   &config->flash)) {
		debug("Failed to decode flash node in chrome-ec'\n");
		return -1;
	}

	config->flash_erase_value = fdtdec_get_int(blob, flash_node,
						    "erase-value", -1);
	for (node = fdt_first_subnode(blob, flash_node); node >= 0;
	     node = fdt_next_subnode(blob, node)) {
		const char *name = fdt_get_name(blob, node, NULL);
		enum ec_flash_region region;

		if (0 == strcmp(name, "ro")) {
			region = EC_FLASH_REGION_RO;
		} else if (0 == strcmp(name, "rw")) {
			region = EC_FLASH_REGION_RW;
		} else if (0 == strcmp(name, "wp-ro")) {
			region = EC_FLASH_REGION_WP_RO;
		} else {
			debug("Unknown EC flash region name '%s'\n", name);
			return -1;
		}

		if (fdtdec_read_fmap_entry(blob, node, "reg",
					   &config->region[region])) {
			debug("Failed to decode flash region in chrome-ec'\n");
			return -1;
		}
	}

	return 0;
}

int cros_ec_i2c_xfer(struct cros_ec_dev *dev, uchar chip, uint addr,
		     int alen, uchar *buffer, int len, int is_read)
{
	union {
		struct ec_params_i2c_passthru p;
		uint8_t outbuf[EC_PROTO2_MAX_PARAM_SIZE];
	} params;
	union {
		struct ec_response_i2c_passthru r;
		uint8_t inbuf[EC_PROTO2_MAX_PARAM_SIZE];
	} response;
	struct ec_params_i2c_passthru *p = &params.p;
	struct ec_response_i2c_passthru *r = &response.r;
	struct ec_params_i2c_passthru_msg *msg = p->msg;
	uint8_t *pdata;
	int read_len, write_len;
	int size;
	int rv;

	p->port = 0;

	if (alen != 1) {
		printf("Unsupported address length %d\n", alen);
		return -1;
	}
	if (is_read) {
		read_len = len;
		write_len = alen;
		p->num_msgs = 2;
	} else {
		read_len = 0;
		write_len = alen + len;
		p->num_msgs = 1;
	}

	size = sizeof(*p) + p->num_msgs * sizeof(*msg);
	if (size + write_len > sizeof(params)) {
		puts("Params too large for buffer\n");
		return -1;
	}
	if (sizeof(*r) + read_len > sizeof(response)) {
		puts("Read length too big for buffer\n");
		return -1;
	}

	/* Create a message to write the register address and optional data */
	pdata = (uint8_t *)p + size;
	msg->addr_flags = chip;
	msg->len = write_len;
	pdata[0] = addr;
	if (!is_read)
		memcpy(pdata + 1, buffer, len);
	msg++;

	if (read_len) {
		msg->addr_flags = chip | EC_I2C_FLAG_READ;
		msg->len = read_len;
	}

	rv = ec_command(dev, EC_CMD_I2C_PASSTHRU, 0, p, size + write_len,
			r, sizeof(*r) + read_len);
	if (rv < 0)
		return rv;

	/* Parse response */
	if (r->i2c_status & EC_I2C_STATUS_ERROR) {
		printf("Transfer failed with status=0x%x\n", r->i2c_status);
		return -1;
	}

	if (rv < sizeof(*r) + read_len) {
		puts("Truncated read response\n");
		return -1;
	}

	if (read_len)
		memcpy(buffer, r->data, read_len);

	return 0;
}

#ifdef CONFIG_CMD_CROS_EC

/**
 * Perform a flash read or write command
 *
 * @param dev		CROS-EC device to read/write
 * @param is_write	1 do to a write, 0 to do a read
 * @param argc		Number of arguments
 * @param argv		Arguments (2 is region, 3 is address)
 * @return 0 for ok, 1 for a usage error or -ve for ec command error
 *	(negative EC_RES_...)
 */
static int do_read_write(struct cros_ec_dev *dev, int is_write, int argc,
			 char * const argv[])
{
	uint32_t offset, size = -1U, region_size;
	unsigned long addr;
	char *endp;
	int region;
	int ret;

	region = cros_ec_decode_region(argc - 2, argv + 2);
	if (region == -1)
		return 1;
	if (argc < 4)
		return 1;
	addr = simple_strtoul(argv[3], &endp, 16);
	if (*argv[3] == 0 || *endp != 0)
		return 1;
	if (argc > 4) {
		size = simple_strtoul(argv[4], &endp, 16);
		if (*argv[4] == 0 || *endp != 0)
			return 1;
	}

	ret = cros_ec_flash_offset(dev, region, &offset, &region_size);
	if (ret) {
		debug("%s: Could not read region info\n", __func__);
		return ret;
	}
	if (size == -1U)
		size = region_size;

	ret = is_write ?
		cros_ec_flash_write(dev, (uint8_t *)addr, offset, size) :
		cros_ec_flash_read(dev, (uint8_t *)addr, offset, size);
	if (ret) {
		debug("%s: Could not %s region\n", __func__,
		      is_write ? "write" : "read");
		return ret;
	}

	return 0;
}

/**
 * get_alen() - Small parser helper function to get address length
 *
 * Returns the address length.
 */
static uint get_alen(char *arg)
{
	int	j;
	int	alen;

	alen = 1;
	for (j = 0; j < 8; j++) {
		if (arg[j] == '.') {
			alen = arg[j+1] - '0';
			break;
		} else if (arg[j] == '\0') {
			break;
		}
	}
	return alen;
}

#define DISP_LINE_LEN	16

/*
 * TODO(sjg@chromium.org): This code copied almost verbatim from cmd_i2c.c
 * so we can remove it later.
 */
static int cros_ec_i2c_md(struct cros_ec_dev *dev, int flag, int argc,
			  char * const argv[])
{
	u_char	chip;
	uint	addr, alen, length = 0x10;
	int	j, nbytes, linebytes;

	if (argc < 2)
		return CMD_RET_USAGE;

	if (1 || (flag & CMD_FLAG_REPEAT) == 0) {
		/*
		 * New command specified.
		 */

		/*
		 * I2C chip address
		 */
		chip = simple_strtoul(argv[0], NULL, 16);

		/*
		 * I2C data address within the chip.  This can be 1 or
		 * 2 bytes long.  Some day it might be 3 bytes long :-).
		 */
		addr = simple_strtoul(argv[1], NULL, 16);
		alen = get_alen(argv[1]);
		if (alen > 3)
			return CMD_RET_USAGE;

		/*
		 * If another parameter, it is the length to display.
		 * Length is the number of objects, not number of bytes.
		 */
		if (argc > 2)
			length = simple_strtoul(argv[2], NULL, 16);
	}

	/*
	 * Print the lines.
	 *
	 * We buffer all read data, so we can make sure data is read only
	 * once.
	 */
	nbytes = length;
	do {
		unsigned char	linebuf[DISP_LINE_LEN];
		unsigned char	*cp;

		linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes;

		if (cros_ec_i2c_xfer(dev, chip, addr, alen, linebuf, linebytes,
				     1))
			puts("Error reading the chip.\n");
		else {
			printf("%04x:", addr);
			cp = linebuf;
			for (j = 0; j < linebytes; j++) {
				printf(" %02x", *cp++);
				addr++;
			}
			puts("    ");
			cp = linebuf;
			for (j = 0; j < linebytes; j++) {
				if ((*cp < 0x20) || (*cp > 0x7e))
					puts(".");
				else
					printf("%c", *cp);
				cp++;
			}
			putc('\n');
		}
		nbytes -= linebytes;
	} while (nbytes > 0);

	return 0;
}

static int cros_ec_i2c_mw(struct cros_ec_dev *dev, int flag, int argc,
			  char * const argv[])
{
	uchar	chip;
	ulong	addr;
	uint	alen;
	uchar	byte;
	int	count;

	if ((argc < 3) || (argc > 4))
		return CMD_RET_USAGE;

	/*
	 * Chip is always specified.
	 */
	chip = simple_strtoul(argv[0], NULL, 16);

	/*
	 * Address is always specified.
	 */
	addr = simple_strtoul(argv[1], NULL, 16);
	alen = get_alen(argv[1]);
	if (alen > 3)
		return CMD_RET_USAGE;

	/*
	 * Value to write is always specified.
	 */
	byte = simple_strtoul(argv[2], NULL, 16);

	/*
	 * Optional count
	 */
	if (argc == 4)
		count = simple_strtoul(argv[3], NULL, 16);
	else
		count = 1;

	while (count-- > 0) {
		if (cros_ec_i2c_xfer(dev, chip, addr++, alen, &byte, 1, 0))
			puts("Error writing the chip.\n");
		/*
		 * Wait for the write to complete.  The write can take
		 * up to 10mSec (we allow a little more time).
		 */
/*
 * No write delay with FRAM devices.
 */
#if !defined(CONFIG_SYS_I2C_FRAM)
		udelay(11000);
#endif
	}

	return 0;
}

/* Temporary code until we have driver model and can use the i2c command */
static int cros_ec_i2c_passthrough(struct cros_ec_dev *dev, int flag,
				   int argc, char * const argv[])
{
	const char *cmd;

	if (argc < 1)
		return CMD_RET_USAGE;
	cmd = *argv++;
	argc--;
	if (0 == strcmp("md", cmd))
		cros_ec_i2c_md(dev, flag, argc, argv);
	else if (0 == strcmp("mw", cmd))
		cros_ec_i2c_mw(dev, flag, argc, argv);
	else
		return CMD_RET_USAGE;

	return 0;
}

static int do_cros_ec(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
	struct cros_ec_dev *dev;
#ifdef CONFIG_DM_CROS_EC
	struct udevice *udev;
#endif
	const char *cmd;
	int ret = 0;

	if (argc < 2)
		return CMD_RET_USAGE;

	cmd = argv[1];
	if (0 == strcmp("init", cmd)) {
#ifndef CONFIG_DM_CROS_EC
		ret = cros_ec_init(gd->fdt_blob, &dev);
		if (ret) {
			printf("Could not init cros_ec device (err %d)\n", ret);
			return 1;
		}
#endif
		return 0;
	}

#ifdef CONFIG_DM_CROS_EC
	ret = uclass_get_device(UCLASS_CROS_EC, 0, &udev);
	if (ret) {
		printf("Cannot get cros-ec device (err=%d)\n", ret);
		return 1;
	}
	dev = udev->uclass_priv;
#else
	/* Just use the last allocated device; there should be only one */
	if (!last_dev) {
		printf("No CROS-EC device available\n");
		return 1;
	}
	dev = last_dev;
#endif
	if (0 == strcmp("id", cmd)) {
		char id[MSG_BYTES];

		if (cros_ec_read_id(dev, id, sizeof(id))) {
			debug("%s: Could not read KBC ID\n", __func__);
			return 1;
		}
		printf("%s\n", id);
	} else if (0 == strcmp("info", cmd)) {
		struct ec_response_mkbp_info info;

		if (cros_ec_info(dev, &info)) {
			debug("%s: Could not read KBC info\n", __func__);
			return 1;
		}
		printf("rows     = %u\n", info.rows);
		printf("cols     = %u\n", info.cols);
		printf("switches = %#x\n", info.switches);
	} else if (0 == strcmp("curimage", cmd)) {
		enum ec_current_image image;

		if (cros_ec_read_current_image(dev, &image)) {
			debug("%s: Could not read KBC image\n", __func__);
			return 1;
		}
		printf("%d\n", image);
	} else if (0 == strcmp("hash", cmd)) {
		struct ec_response_vboot_hash hash;
		int i;

		if (cros_ec_read_hash(dev, &hash)) {
			debug("%s: Could not read KBC hash\n", __func__);
			return 1;
		}

		if (hash.hash_type == EC_VBOOT_HASH_TYPE_SHA256)
			printf("type:    SHA-256\n");
		else
			printf("type:    %d\n", hash.hash_type);

		printf("offset:  0x%08x\n", hash.offset);
		printf("size:    0x%08x\n", hash.size);

		printf("digest:  ");
		for (i = 0; i < hash.digest_size; i++)
			printf("%02x", hash.hash_digest[i]);
		printf("\n");
	} else if (0 == strcmp("reboot", cmd)) {
		int region;
		enum ec_reboot_cmd cmd;

		if (argc >= 3 && !strcmp(argv[2], "cold"))
			cmd = EC_REBOOT_COLD;
		else {
			region = cros_ec_decode_region(argc - 2, argv + 2);
			if (region == EC_FLASH_REGION_RO)
				cmd = EC_REBOOT_JUMP_RO;
			else if (region == EC_FLASH_REGION_RW)
				cmd = EC_REBOOT_JUMP_RW;
			else
				return CMD_RET_USAGE;
		}

		if (cros_ec_reboot(dev, cmd, 0)) {
			debug("%s: Could not reboot KBC\n", __func__);
			return 1;
		}
	} else if (0 == strcmp("events", cmd)) {
		uint32_t events;

		if (cros_ec_get_host_events(dev, &events)) {
			debug("%s: Could not read host events\n", __func__);
			return 1;
		}
		printf("0x%08x\n", events);
	} else if (0 == strcmp("clrevents", cmd)) {
		uint32_t events = 0x7fffffff;

		if (argc >= 3)
			events = simple_strtol(argv[2], NULL, 0);

		if (cros_ec_clear_host_events(dev, events)) {
			debug("%s: Could not clear host events\n", __func__);
			return 1;
		}
	} else if (0 == strcmp("read", cmd)) {
		ret = do_read_write(dev, 0, argc, argv);
		if (ret > 0)
			return CMD_RET_USAGE;
	} else if (0 == strcmp("write", cmd)) {
		ret = do_read_write(dev, 1, argc, argv);
		if (ret > 0)
			return CMD_RET_USAGE;
	} else if (0 == strcmp("erase", cmd)) {
		int region = cros_ec_decode_region(argc - 2, argv + 2);
		uint32_t offset, size;

		if (region == -1)
			return CMD_RET_USAGE;
		if (cros_ec_flash_offset(dev, region, &offset, &size)) {
			debug("%s: Could not read region info\n", __func__);
			ret = -1;
		} else {
			ret = cros_ec_flash_erase(dev, offset, size);
			if (ret) {
				debug("%s: Could not erase region\n",
				      __func__);
			}
		}
	} else if (0 == strcmp("regioninfo", cmd)) {
		int region = cros_ec_decode_region(argc - 2, argv + 2);
		uint32_t offset, size;

		if (region == -1)
			return CMD_RET_USAGE;
		ret = cros_ec_flash_offset(dev, region, &offset, &size);
		if (ret) {
			debug("%s: Could not read region info\n", __func__);
		} else {
			printf("Region: %s\n", region == EC_FLASH_REGION_RO ?
					"RO" : "RW");
			printf("Offset: %x\n", offset);
			printf("Size:   %x\n", size);
		}
	} else if (0 == strcmp("vbnvcontext", cmd)) {
		uint8_t block[EC_VBNV_BLOCK_SIZE];
		char buf[3];
		int i, len;
		unsigned long result;

		if (argc <= 2) {
			ret = cros_ec_read_vbnvcontext(dev, block);
			if (!ret) {
				printf("vbnv_block: ");
				for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++)
					printf("%02x", block[i]);
				putc('\n');
			}
		} else {
			/*
			 * TODO(clchiou): Move this to a utility function as
			 * cmd_spi might want to call it.
			 */
			memset(block, 0, EC_VBNV_BLOCK_SIZE);
			len = strlen(argv[2]);
			buf[2] = '\0';
			for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++) {
				if (i * 2 >= len)
					break;
				buf[0] = argv[2][i * 2];
				if (i * 2 + 1 >= len)
					buf[1] = '0';
				else
					buf[1] = argv[2][i * 2 + 1];
				strict_strtoul(buf, 16, &result);
				block[i] = result;
			}
			ret = cros_ec_write_vbnvcontext(dev, block);
		}
		if (ret) {
			debug("%s: Could not %s VbNvContext\n", __func__,
					argc <= 2 ?  "read" : "write");
		}
	} else if (0 == strcmp("test", cmd)) {
		int result = cros_ec_test(dev);

		if (result)
			printf("Test failed with error %d\n", result);
		else
			puts("Test passed\n");
	} else if (0 == strcmp("version", cmd)) {
		struct ec_response_get_version *p;
		char *build_string;

		ret = cros_ec_read_version(dev, &p);
		if (!ret) {
			/* Print versions */
			printf("RO version:    %1.*s\n",
			       (int)sizeof(p->version_string_ro),
			       p->version_string_ro);
			printf("RW version:    %1.*s\n",
			       (int)sizeof(p->version_string_rw),
			       p->version_string_rw);
			printf("Firmware copy: %s\n",
				(p->current_image <
					ARRAY_SIZE(ec_current_image_name) ?
				ec_current_image_name[p->current_image] :
				"?"));
			ret = cros_ec_read_build_info(dev, &build_string);
			if (!ret)
				printf("Build info:    %s\n", build_string);
		}
	} else if (0 == strcmp("ldo", cmd)) {
		uint8_t index, state;
		char *endp;

		if (argc < 3)
			return CMD_RET_USAGE;
		index = simple_strtoul(argv[2], &endp, 10);
		if (*argv[2] == 0 || *endp != 0)
			return CMD_RET_USAGE;
		if (argc > 3) {
			state = simple_strtoul(argv[3], &endp, 10);
			if (*argv[3] == 0 || *endp != 0)
				return CMD_RET_USAGE;
			ret = cros_ec_set_ldo(dev, index, state);
		} else {
			ret = cros_ec_get_ldo(dev, index, &state);
			if (!ret) {
				printf("LDO%d: %s\n", index,
					state == EC_LDO_STATE_ON ?
					"on" : "off");
			}
		}

		if (ret) {
			debug("%s: Could not access LDO%d\n", __func__, index);
			return ret;
		}
	} else if (0 == strcmp("i2c", cmd)) {
		ret = cros_ec_i2c_passthrough(dev, flag, argc - 2, argv + 2);
	} else {
		return CMD_RET_USAGE;
	}

	if (ret < 0) {
		printf("Error: CROS-EC command failed (error %d)\n", ret);
		ret = 1;
	}

	return ret;
}

U_BOOT_CMD(
	crosec,	6,	1,	do_cros_ec,
	"CROS-EC utility command",
	"init                Re-init CROS-EC (done on startup automatically)\n"
	"crosec id                  Read CROS-EC ID\n"
	"crosec info                Read CROS-EC info\n"
	"crosec curimage            Read CROS-EC current image\n"
	"crosec hash                Read CROS-EC hash\n"
	"crosec reboot [rw | ro | cold]  Reboot CROS-EC\n"
	"crosec events              Read CROS-EC host events\n"
	"crosec clrevents [mask]    Clear CROS-EC host events\n"
	"crosec regioninfo <ro|rw>  Read image info\n"
	"crosec erase <ro|rw>       Erase EC image\n"
	"crosec read <ro|rw> <addr> [<size>]   Read EC image\n"
	"crosec write <ro|rw> <addr> [<size>]  Write EC image\n"
	"crosec vbnvcontext [hexstring]        Read [write] VbNvContext from EC\n"
	"crosec ldo <idx> [<state>] Switch/Read LDO state\n"
	"crosec test                run tests on cros_ec\n"
	"crosec version             Read CROS-EC version\n"
	"crosec i2c md chip address[.0, .1, .2] [# of objects] - read from I2C passthru\n"
	"crosec i2c mw chip address[.0, .1, .2] value [count] - write to I2C passthru (fill)"
);
#endif

#ifdef CONFIG_DM_CROS_EC
UCLASS_DRIVER(cros_ec) = {
	.id		= UCLASS_CROS_EC,
	.name		= "cros_ec",
	.per_device_auto_alloc_size = sizeof(struct cros_ec_dev),
};
#endif