/* * (C) Copyright 2015 Miao Yan <yanmiaobest@gmail.com> * * SPDX-License-Identifier: GPL-2.0+ */ #include <common.h> #include <command.h> #include <errno.h> #include <malloc.h> #include <qfw.h> #include <asm/io.h> #ifdef CONFIG_GENERATE_ACPI_TABLE #include <asm/tables.h> #endif #include <linux/list.h> static bool fwcfg_present; static bool fwcfg_dma_present; static struct fw_cfg_arch_ops *fwcfg_arch_ops; static LIST_HEAD(fw_list); #ifdef CONFIG_GENERATE_ACPI_TABLE /* * This function allocates memory for ACPI tables * * @entry : BIOS linker command entry which tells where to allocate memory * (either high memory or low memory) * @addr : The address that should be used for low memory allcation. If the * memory allocation request is 'ZONE_HIGH' then this parameter will * be ignored. * @return: 0 on success, or negative value on failure */ static int bios_linker_allocate(struct bios_linker_entry *entry, u32 *addr) { uint32_t size, align; struct fw_file *file; unsigned long aligned_addr; align = le32_to_cpu(entry->alloc.align); /* align must be power of 2 */ if (align & (align - 1)) { printf("error: wrong alignment %u\n", align); return -EINVAL; } file = qemu_fwcfg_find_file(entry->alloc.file); if (!file) { printf("error: can't find file %s\n", entry->alloc.file); return -ENOENT; } size = be32_to_cpu(file->cfg.size); /* * ZONE_HIGH means we need to allocate from high memory, since * malloc space is already at the end of RAM, so we directly use it. * If allocation zone is ZONE_FSEG, then we use the 'addr' passed * in which is low memory */ if (entry->alloc.zone == BIOS_LINKER_LOADER_ALLOC_ZONE_HIGH) { aligned_addr = (unsigned long)memalign(align, size); if (!aligned_addr) { printf("error: allocating resource\n"); return -ENOMEM; } } else if (entry->alloc.zone == BIOS_LINKER_LOADER_ALLOC_ZONE_FSEG) { aligned_addr = ALIGN(*addr, align); } else { printf("error: invalid allocation zone\n"); return -EINVAL; } debug("bios_linker_allocate: allocate file %s, size %u, zone %d, align %u, addr 0x%lx\n", file->cfg.name, size, entry->alloc.zone, align, aligned_addr); qemu_fwcfg_read_entry(be16_to_cpu(file->cfg.select), size, (void *)aligned_addr); file->addr = aligned_addr; /* adjust address for low memory allocation */ if (entry->alloc.zone == BIOS_LINKER_LOADER_ALLOC_ZONE_FSEG) *addr = (aligned_addr + size); return 0; } /* * This function patches ACPI tables previously loaded * by bios_linker_allocate() * * @entry : BIOS linker command entry which tells how to patch * ACPI tables * @return: 0 on success, or negative value on failure */ static int bios_linker_add_pointer(struct bios_linker_entry *entry) { struct fw_file *dest, *src; uint32_t offset = le32_to_cpu(entry->pointer.offset); uint64_t pointer = 0; dest = qemu_fwcfg_find_file(entry->pointer.dest_file); if (!dest || !dest->addr) return -ENOENT; src = qemu_fwcfg_find_file(entry->pointer.src_file); if (!src || !src->addr) return -ENOENT; debug("bios_linker_add_pointer: dest->addr 0x%lx, src->addr 0x%lx, offset 0x%x size %u, 0x%llx\n", dest->addr, src->addr, offset, entry->pointer.size, pointer); memcpy(&pointer, (char *)dest->addr + offset, entry->pointer.size); pointer = le64_to_cpu(pointer); pointer += (unsigned long)src->addr; pointer = cpu_to_le64(pointer); memcpy((char *)dest->addr + offset, &pointer, entry->pointer.size); return 0; } /* * This function updates checksum fields of ACPI tables previously loaded * by bios_linker_allocate() * * @entry : BIOS linker command entry which tells where to update ACPI table * checksums * @return: 0 on success, or negative value on failure */ static int bios_linker_add_checksum(struct bios_linker_entry *entry) { struct fw_file *file; uint8_t *data, cksum = 0; uint8_t *cksum_start; file = qemu_fwcfg_find_file(entry->cksum.file); if (!file || !file->addr) return -ENOENT; data = (uint8_t *)(file->addr + le32_to_cpu(entry->cksum.offset)); cksum_start = (uint8_t *)(file->addr + le32_to_cpu(entry->cksum.start)); cksum = table_compute_checksum(cksum_start, le32_to_cpu(entry->cksum.length)); *data = cksum; return 0; } /* This function loads and patches ACPI tables provided by QEMU */ u32 write_acpi_tables(u32 addr) { int i, ret = 0; struct fw_file *file; struct bios_linker_entry *table_loader; struct bios_linker_entry *entry; uint32_t size; /* make sure fw_list is loaded */ ret = qemu_fwcfg_read_firmware_list(); if (ret) { printf("error: can't read firmware file list\n"); return addr; } file = qemu_fwcfg_find_file("etc/table-loader"); if (!file) { printf("error: can't find etc/table-loader\n"); return addr; } size = be32_to_cpu(file->cfg.size); if ((size % sizeof(*entry)) != 0) { printf("error: table-loader maybe corrupted\n"); return addr; } table_loader = malloc(size); if (!table_loader) { printf("error: no memory for table-loader\n"); return addr; } qemu_fwcfg_read_entry(be16_to_cpu(file->cfg.select), size, table_loader); for (i = 0; i < (size / sizeof(*entry)); i++) { entry = table_loader + i; switch (le32_to_cpu(entry->command)) { case BIOS_LINKER_LOADER_COMMAND_ALLOCATE: ret = bios_linker_allocate(entry, &addr); if (ret) goto out; break; case BIOS_LINKER_LOADER_COMMAND_ADD_POINTER: ret = bios_linker_add_pointer(entry); if (ret) goto out; break; case BIOS_LINKER_LOADER_COMMAND_ADD_CHECKSUM: ret = bios_linker_add_checksum(entry); if (ret) goto out; break; default: break; } } out: if (ret) { struct fw_cfg_file_iter iter; for (file = qemu_fwcfg_file_iter_init(&iter); !qemu_fwcfg_file_iter_end(&iter); file = qemu_fwcfg_file_iter_next(&iter)) { if (file->addr) { free((void *)file->addr); file->addr = 0; } } } free(table_loader); return addr; } #endif /* Read configuration item using fw_cfg PIO interface */ static void qemu_fwcfg_read_entry_pio(uint16_t entry, uint32_t size, void *address) { debug("qemu_fwcfg_read_entry_pio: entry 0x%x, size %u address %p\n", entry, size, address); return fwcfg_arch_ops->arch_read_pio(entry, size, address); } /* Read configuration item using fw_cfg DMA interface */ static void qemu_fwcfg_read_entry_dma(uint16_t entry, uint32_t size, void *address) { struct fw_cfg_dma_access dma; dma.length = cpu_to_be32(size); dma.address = cpu_to_be64((uintptr_t)address); dma.control = cpu_to_be32(FW_CFG_DMA_READ); /* * writting FW_CFG_INVALID will cause read operation to resume at * last offset, otherwise read will start at offset 0 */ if (entry != FW_CFG_INVALID) dma.control |= cpu_to_be32(FW_CFG_DMA_SELECT | (entry << 16)); barrier(); debug("qemu_fwcfg_read_entry_dma: entry 0x%x, size %u address %p, control 0x%x\n", entry, size, address, be32_to_cpu(dma.control)); fwcfg_arch_ops->arch_read_dma(&dma); } bool qemu_fwcfg_present(void) { return fwcfg_present; } bool qemu_fwcfg_dma_present(void) { return fwcfg_dma_present; } void qemu_fwcfg_read_entry(uint16_t entry, uint32_t length, void *address) { if (fwcfg_dma_present) qemu_fwcfg_read_entry_dma(entry, length, address); else qemu_fwcfg_read_entry_pio(entry, length, address); } int qemu_fwcfg_online_cpus(void) { uint16_t nb_cpus; if (!fwcfg_present) return -ENODEV; qemu_fwcfg_read_entry(FW_CFG_NB_CPUS, 2, &nb_cpus); return le16_to_cpu(nb_cpus); } int qemu_fwcfg_read_firmware_list(void) { int i; uint32_t count; struct fw_file *file; struct list_head *entry; /* don't read it twice */ if (!list_empty(&fw_list)) return 0; qemu_fwcfg_read_entry(FW_CFG_FILE_DIR, 4, &count); if (!count) return 0; count = be32_to_cpu(count); for (i = 0; i < count; i++) { file = malloc(sizeof(*file)); if (!file) { printf("error: allocating resource\n"); goto err; } qemu_fwcfg_read_entry(FW_CFG_INVALID, sizeof(struct fw_cfg_file), &file->cfg); file->addr = 0; list_add_tail(&file->list, &fw_list); } return 0; err: list_for_each(entry, &fw_list) { file = list_entry(entry, struct fw_file, list); free(file); } return -ENOMEM; } struct fw_file *qemu_fwcfg_find_file(const char *name) { struct list_head *entry; struct fw_file *file; list_for_each(entry, &fw_list) { file = list_entry(entry, struct fw_file, list); if (!strcmp(file->cfg.name, name)) return file; } return NULL; } struct fw_file *qemu_fwcfg_file_iter_init(struct fw_cfg_file_iter *iter) { iter->entry = fw_list.next; return list_entry((struct list_head *)iter->entry, struct fw_file, list); } struct fw_file *qemu_fwcfg_file_iter_next(struct fw_cfg_file_iter *iter) { iter->entry = ((struct list_head *)iter->entry)->next; return list_entry((struct list_head *)iter->entry, struct fw_file, list); } bool qemu_fwcfg_file_iter_end(struct fw_cfg_file_iter *iter) { return iter->entry == &fw_list; } void qemu_fwcfg_init(struct fw_cfg_arch_ops *ops) { uint32_t qemu; uint32_t dma_enabled; fwcfg_present = false; fwcfg_dma_present = false; fwcfg_arch_ops = NULL; if (!ops || !ops->arch_read_pio || !ops->arch_read_dma) return; fwcfg_arch_ops = ops; qemu_fwcfg_read_entry_pio(FW_CFG_SIGNATURE, 4, &qemu); if (be32_to_cpu(qemu) == QEMU_FW_CFG_SIGNATURE) fwcfg_present = true; if (fwcfg_present) { qemu_fwcfg_read_entry_pio(FW_CFG_ID, 1, &dma_enabled); if (dma_enabled & FW_CFG_DMA_ENABLED) fwcfg_dma_present = true; } }