// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2008, Freescale Semiconductor, Inc * Andy Fleming * * Based vaguely on the Linux code */ #include <config.h> #include <common.h> #include <command.h> #include <dm.h> #include <dm/device-internal.h> #include <errno.h> #include <mmc.h> #include <part.h> #include <power/regulator.h> #include <malloc.h> #include <memalign.h> #include <linux/list.h> #include <div64.h> #include "mmc_private.h" #define DEFAULT_CMD6_TIMEOUT_MS 500 static int mmc_set_signal_voltage(struct mmc *mmc, uint signal_voltage); static int mmc_power_cycle(struct mmc *mmc); #if !CONFIG_IS_ENABLED(MMC_TINY) static int mmc_select_mode_and_width(struct mmc *mmc, uint card_caps); #endif #if !CONFIG_IS_ENABLED(DM_MMC) static int mmc_wait_dat0(struct mmc *mmc, int state, int timeout_us) { return -ENOSYS; } __weak int board_mmc_getwp(struct mmc *mmc) { return -1; } int mmc_getwp(struct mmc *mmc) { int wp; wp = board_mmc_getwp(mmc); if (wp < 0) { if (mmc->cfg->ops->getwp) wp = mmc->cfg->ops->getwp(mmc); else wp = 0; } return wp; } __weak int board_mmc_getcd(struct mmc *mmc) { return -1; } #endif #ifdef CONFIG_MMC_TRACE void mmmc_trace_before_send(struct mmc *mmc, struct mmc_cmd *cmd) { printf("CMD_SEND:%d\n", cmd->cmdidx); printf("\t\tARG\t\t\t 0x%08x\n", cmd->cmdarg); } void mmmc_trace_after_send(struct mmc *mmc, struct mmc_cmd *cmd, int ret) { int i; u8 *ptr; if (ret) { printf("\t\tRET\t\t\t %d\n", ret); } else { switch (cmd->resp_type) { case MMC_RSP_NONE: printf("\t\tMMC_RSP_NONE\n"); break; case MMC_RSP_R1: printf("\t\tMMC_RSP_R1,5,6,7 \t 0x%08x \n", cmd->response[0]); break; case MMC_RSP_R1b: printf("\t\tMMC_RSP_R1b\t\t 0x%08x \n", cmd->response[0]); break; case MMC_RSP_R2: printf("\t\tMMC_RSP_R2\t\t 0x%08x \n", cmd->response[0]); printf("\t\t \t\t 0x%08x \n", cmd->response[1]); printf("\t\t \t\t 0x%08x \n", cmd->response[2]); printf("\t\t \t\t 0x%08x \n", cmd->response[3]); printf("\n"); printf("\t\t\t\t\tDUMPING DATA\n"); for (i = 0; i < 4; i++) { int j; printf("\t\t\t\t\t%03d - ", i*4); ptr = (u8 *)&cmd->response[i]; ptr += 3; for (j = 0; j < 4; j++) printf("%02x ", *ptr--); printf("\n"); } break; case MMC_RSP_R3: printf("\t\tMMC_RSP_R3,4\t\t 0x%08x \n", cmd->response[0]); break; default: printf("\t\tERROR MMC rsp not supported\n"); break; } } } void mmc_trace_state(struct mmc *mmc, struct mmc_cmd *cmd) { int status; status = (cmd->response[0] & MMC_STATUS_CURR_STATE) >> 9; printf("CURR STATE:%d\n", status); } #endif #if CONFIG_IS_ENABLED(MMC_VERBOSE) || defined(DEBUG) const char *mmc_mode_name(enum bus_mode mode) { static const char *const names[] = { [MMC_LEGACY] = "MMC legacy", [SD_LEGACY] = "SD Legacy", [MMC_HS] = "MMC High Speed (26MHz)", [SD_HS] = "SD High Speed (50MHz)", [UHS_SDR12] = "UHS SDR12 (25MHz)", [UHS_SDR25] = "UHS SDR25 (50MHz)", [UHS_SDR50] = "UHS SDR50 (100MHz)", [UHS_SDR104] = "UHS SDR104 (208MHz)", [UHS_DDR50] = "UHS DDR50 (50MHz)", [MMC_HS_52] = "MMC High Speed (52MHz)", [MMC_DDR_52] = "MMC DDR52 (52MHz)", [MMC_HS_200] = "HS200 (200MHz)", [MMC_HS_400] = "HS400 (200MHz)", [MMC_HS_400_ES] = "HS400ES (200MHz)", }; if (mode >= MMC_MODES_END) return "Unknown mode"; else return names[mode]; } #endif static uint mmc_mode2freq(struct mmc *mmc, enum bus_mode mode) { static const int freqs[] = { [MMC_LEGACY] = 25000000, [SD_LEGACY] = 25000000, [MMC_HS] = 26000000, [SD_HS] = 50000000, [MMC_HS_52] = 52000000, [MMC_DDR_52] = 52000000, [UHS_SDR12] = 25000000, [UHS_SDR25] = 50000000, [UHS_SDR50] = 100000000, [UHS_DDR50] = 50000000, [UHS_SDR104] = 208000000, [MMC_HS_200] = 200000000, [MMC_HS_400] = 200000000, [MMC_HS_400_ES] = 200000000, }; if (mode == MMC_LEGACY) return mmc->legacy_speed; else if (mode >= MMC_MODES_END) return 0; else return freqs[mode]; } static int mmc_select_mode(struct mmc *mmc, enum bus_mode mode) { mmc->selected_mode = mode; mmc->tran_speed = mmc_mode2freq(mmc, mode); mmc->ddr_mode = mmc_is_mode_ddr(mode); pr_debug("selecting mode %s (freq : %d MHz)\n", mmc_mode_name(mode), mmc->tran_speed / 1000000); return 0; } #if !CONFIG_IS_ENABLED(DM_MMC) int mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data) { int ret; mmmc_trace_before_send(mmc, cmd); ret = mmc->cfg->ops->send_cmd(mmc, cmd, data); mmmc_trace_after_send(mmc, cmd, ret); return ret; } #endif int mmc_send_status(struct mmc *mmc, unsigned int *status) { struct mmc_cmd cmd; int err, retries = 5; cmd.cmdidx = MMC_CMD_SEND_STATUS; cmd.resp_type = MMC_RSP_R1; if (!mmc_host_is_spi(mmc)) cmd.cmdarg = mmc->rca << 16; while (retries--) { err = mmc_send_cmd(mmc, &cmd, NULL); if (!err) { mmc_trace_state(mmc, &cmd); *status = cmd.response[0]; return 0; } } mmc_trace_state(mmc, &cmd); return -ECOMM; } int mmc_poll_for_busy(struct mmc *mmc, int timeout_ms) { unsigned int status; int err; err = mmc_wait_dat0(mmc, 1, timeout_ms * 1000); if (err != -ENOSYS) return err; while (1) { err = mmc_send_status(mmc, &status); if (err) return err; if ((status & MMC_STATUS_RDY_FOR_DATA) && (status & MMC_STATUS_CURR_STATE) != MMC_STATE_PRG) break; if (status & MMC_STATUS_MASK) { #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) pr_err("Status Error: 0x%08x\n", status); #endif return -ECOMM; } if (timeout_ms-- <= 0) break; udelay(1000); } if (timeout_ms <= 0) { #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) pr_err("Timeout waiting card ready\n"); #endif return -ETIMEDOUT; } return 0; } int mmc_set_blocklen(struct mmc *mmc, int len) { struct mmc_cmd cmd; int err; if (mmc->ddr_mode) return 0; cmd.cmdidx = MMC_CMD_SET_BLOCKLEN; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = len; err = mmc_send_cmd(mmc, &cmd, NULL); #ifdef CONFIG_MMC_QUIRKS if (err && (mmc->quirks & MMC_QUIRK_RETRY_SET_BLOCKLEN)) { int retries = 4; /* * It has been seen that SET_BLOCKLEN may fail on the first * attempt, let's try a few more time */ do { err = mmc_send_cmd(mmc, &cmd, NULL); if (!err) break; } while (retries--); } #endif return err; } #ifdef MMC_SUPPORTS_TUNING static const u8 tuning_blk_pattern_4bit[] = { 0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc, 0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef, 0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb, 0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef, 0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c, 0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee, 0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff, 0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde, }; static const u8 tuning_blk_pattern_8bit[] = { 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff, 0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, }; int mmc_send_tuning(struct mmc *mmc, u32 opcode, int *cmd_error) { struct mmc_cmd cmd; struct mmc_data data; const u8 *tuning_block_pattern; int size, err; if (mmc->bus_width == 8) { tuning_block_pattern = tuning_blk_pattern_8bit; size = sizeof(tuning_blk_pattern_8bit); } else if (mmc->bus_width == 4) { tuning_block_pattern = tuning_blk_pattern_4bit; size = sizeof(tuning_blk_pattern_4bit); } else { return -EINVAL; } ALLOC_CACHE_ALIGN_BUFFER(u8, data_buf, size); cmd.cmdidx = opcode; cmd.cmdarg = 0; cmd.resp_type = MMC_RSP_R1; data.dest = (void *)data_buf; data.blocks = 1; data.blocksize = size; data.flags = MMC_DATA_READ; err = mmc_send_cmd(mmc, &cmd, &data); if (err) return err; if (memcmp(data_buf, tuning_block_pattern, size)) return -EIO; return 0; } #endif static int mmc_read_blocks(struct mmc *mmc, void *dst, lbaint_t start, lbaint_t blkcnt) { struct mmc_cmd cmd; struct mmc_data data; if (blkcnt > 1) cmd.cmdidx = MMC_CMD_READ_MULTIPLE_BLOCK; else cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK; if (mmc->high_capacity) cmd.cmdarg = start; else cmd.cmdarg = start * mmc->read_bl_len; cmd.resp_type = MMC_RSP_R1; data.dest = dst; data.blocks = blkcnt; data.blocksize = mmc->read_bl_len; data.flags = MMC_DATA_READ; if (mmc_send_cmd(mmc, &cmd, &data)) return 0; if (blkcnt > 1) { cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION; cmd.cmdarg = 0; cmd.resp_type = MMC_RSP_R1b; if (mmc_send_cmd(mmc, &cmd, NULL)) { #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) pr_err("mmc fail to send stop cmd\n"); #endif return 0; } } return blkcnt; } #if CONFIG_IS_ENABLED(BLK) ulong mmc_bread(struct udevice *dev, lbaint_t start, lbaint_t blkcnt, void *dst) #else ulong mmc_bread(struct blk_desc *block_dev, lbaint_t start, lbaint_t blkcnt, void *dst) #endif { #if CONFIG_IS_ENABLED(BLK) struct blk_desc *block_dev = dev_get_uclass_platdata(dev); #endif int dev_num = block_dev->devnum; int err; lbaint_t cur, blocks_todo = blkcnt; if (blkcnt == 0) return 0; struct mmc *mmc = find_mmc_device(dev_num); if (!mmc) return 0; if (CONFIG_IS_ENABLED(MMC_TINY)) err = mmc_switch_part(mmc, block_dev->hwpart); else err = blk_dselect_hwpart(block_dev, block_dev->hwpart); if (err < 0) return 0; if ((start + blkcnt) > block_dev->lba) { #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) pr_err("MMC: block number 0x" LBAF " exceeds max(0x" LBAF ")\n", start + blkcnt, block_dev->lba); #endif return 0; } if (mmc_set_blocklen(mmc, mmc->read_bl_len)) { pr_debug("%s: Failed to set blocklen\n", __func__); return 0; } do { cur = (blocks_todo > mmc->cfg->b_max) ? mmc->cfg->b_max : blocks_todo; if (mmc_read_blocks(mmc, dst, start, cur) != cur) { pr_debug("%s: Failed to read blocks\n", __func__); return 0; } blocks_todo -= cur; start += cur; dst += cur * mmc->read_bl_len; } while (blocks_todo > 0); return blkcnt; } static int mmc_go_idle(struct mmc *mmc) { struct mmc_cmd cmd; int err; udelay(1000); cmd.cmdidx = MMC_CMD_GO_IDLE_STATE; cmd.cmdarg = 0; cmd.resp_type = MMC_RSP_NONE; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; udelay(2000); return 0; } #if CONFIG_IS_ENABLED(MMC_UHS_SUPPORT) static int mmc_switch_voltage(struct mmc *mmc, int signal_voltage) { struct mmc_cmd cmd; int err = 0; /* * Send CMD11 only if the request is to switch the card to * 1.8V signalling. */ if (signal_voltage == MMC_SIGNAL_VOLTAGE_330) return mmc_set_signal_voltage(mmc, signal_voltage); cmd.cmdidx = SD_CMD_SWITCH_UHS18V; cmd.cmdarg = 0; cmd.resp_type = MMC_RSP_R1; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; if (!mmc_host_is_spi(mmc) && (cmd.response[0] & MMC_STATUS_ERROR)) return -EIO; /* * The card should drive cmd and dat[0:3] low immediately * after the response of cmd11, but wait 100 us to be sure */ err = mmc_wait_dat0(mmc, 0, 100); if (err == -ENOSYS) udelay(100); else if (err) return -ETIMEDOUT; /* * During a signal voltage level switch, the clock must be gated * for 5 ms according to the SD spec */ mmc_set_clock(mmc, mmc->clock, MMC_CLK_DISABLE); err = mmc_set_signal_voltage(mmc, signal_voltage); if (err) return err; /* Keep clock gated for at least 10 ms, though spec only says 5 ms */ mdelay(10); mmc_set_clock(mmc, mmc->clock, MMC_CLK_ENABLE); /* * Failure to switch is indicated by the card holding * dat[0:3] low. Wait for at least 1 ms according to spec */ err = mmc_wait_dat0(mmc, 1, 1000); if (err == -ENOSYS) udelay(1000); else if (err) return -ETIMEDOUT; return 0; } #endif static int sd_send_op_cond(struct mmc *mmc, bool uhs_en) { int timeout = 1000; int err; struct mmc_cmd cmd; while (1) { cmd.cmdidx = MMC_CMD_APP_CMD; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; cmd.cmdidx = SD_CMD_APP_SEND_OP_COND; cmd.resp_type = MMC_RSP_R3; /* * Most cards do not answer if some reserved bits * in the ocr are set. However, Some controller * can set bit 7 (reserved for low voltages), but * how to manage low voltages SD card is not yet * specified. */ cmd.cmdarg = mmc_host_is_spi(mmc) ? 0 : (mmc->cfg->voltages & 0xff8000); if (mmc->version == SD_VERSION_2) cmd.cmdarg |= OCR_HCS; if (uhs_en) cmd.cmdarg |= OCR_S18R; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; if (cmd.response[0] & OCR_BUSY) break; if (timeout-- <= 0) return -EOPNOTSUPP; udelay(1000); } if (mmc->version != SD_VERSION_2) mmc->version = SD_VERSION_1_0; if (mmc_host_is_spi(mmc)) { /* read OCR for spi */ cmd.cmdidx = MMC_CMD_SPI_READ_OCR; cmd.resp_type = MMC_RSP_R3; cmd.cmdarg = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; } mmc->ocr = cmd.response[0]; #if CONFIG_IS_ENABLED(MMC_UHS_SUPPORT) if (uhs_en && !(mmc_host_is_spi(mmc)) && (cmd.response[0] & 0x41000000) == 0x41000000) { err = mmc_switch_voltage(mmc, MMC_SIGNAL_VOLTAGE_180); if (err) return err; } #endif mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS); mmc->rca = 0; return 0; } static int mmc_send_op_cond_iter(struct mmc *mmc, int use_arg) { struct mmc_cmd cmd; int err; cmd.cmdidx = MMC_CMD_SEND_OP_COND; cmd.resp_type = MMC_RSP_R3; cmd.cmdarg = 0; if (use_arg && !mmc_host_is_spi(mmc)) cmd.cmdarg = OCR_HCS | (mmc->cfg->voltages & (mmc->ocr & OCR_VOLTAGE_MASK)) | (mmc->ocr & OCR_ACCESS_MODE); err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; mmc->ocr = cmd.response[0]; return 0; } static int mmc_send_op_cond(struct mmc *mmc) { int err, i; /* Some cards seem to need this */ mmc_go_idle(mmc); /* Asking to the card its capabilities */ for (i = 0; i < 2; i++) { err = mmc_send_op_cond_iter(mmc, i != 0); if (err) return err; /* exit if not busy (flag seems to be inverted) */ if (mmc->ocr & OCR_BUSY) break; } mmc->op_cond_pending = 1; return 0; } static int mmc_complete_op_cond(struct mmc *mmc) { struct mmc_cmd cmd; int timeout = 1000; ulong start; int err; mmc->op_cond_pending = 0; if (!(mmc->ocr & OCR_BUSY)) { /* Some cards seem to need this */ mmc_go_idle(mmc); start = get_timer(0); while (1) { err = mmc_send_op_cond_iter(mmc, 1); if (err) return err; if (mmc->ocr & OCR_BUSY) break; if (get_timer(start) > timeout) return -EOPNOTSUPP; udelay(100); } } if (mmc_host_is_spi(mmc)) { /* read OCR for spi */ cmd.cmdidx = MMC_CMD_SPI_READ_OCR; cmd.resp_type = MMC_RSP_R3; cmd.cmdarg = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; mmc->ocr = cmd.response[0]; } mmc->version = MMC_VERSION_UNKNOWN; mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS); mmc->rca = 1; return 0; } static int mmc_send_ext_csd(struct mmc *mmc, u8 *ext_csd) { struct mmc_cmd cmd; struct mmc_data data; int err; /* Get the Card Status Register */ cmd.cmdidx = MMC_CMD_SEND_EXT_CSD; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = 0; data.dest = (char *)ext_csd; data.blocks = 1; data.blocksize = MMC_MAX_BLOCK_LEN; data.flags = MMC_DATA_READ; err = mmc_send_cmd(mmc, &cmd, &data); return err; } static int __mmc_switch(struct mmc *mmc, u8 set, u8 index, u8 value, bool send_status) { unsigned int status, start; struct mmc_cmd cmd; int timeout_ms = DEFAULT_CMD6_TIMEOUT_MS; bool is_part_switch = (set == EXT_CSD_CMD_SET_NORMAL) && (index == EXT_CSD_PART_CONF); int retries = 3; int ret; if (mmc->gen_cmd6_time) timeout_ms = mmc->gen_cmd6_time * 10; if (is_part_switch && mmc->part_switch_time) timeout_ms = mmc->part_switch_time * 10; cmd.cmdidx = MMC_CMD_SWITCH; cmd.resp_type = MMC_RSP_R1b; cmd.cmdarg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | (index << 16) | (value << 8); do { ret = mmc_send_cmd(mmc, &cmd, NULL); } while (ret && retries-- > 0); if (ret) return ret; start = get_timer(0); /* poll dat0 for rdy/buys status */ ret = mmc_wait_dat0(mmc, 1, timeout_ms * 1000); if (ret && ret != -ENOSYS) return ret; /* * In cases when not allowed to poll by using CMD13 or because we aren't * capable of polling by using mmc_wait_dat0, then rely on waiting the * stated timeout to be sufficient. */ if (ret == -ENOSYS && !send_status) mdelay(timeout_ms); /* Finally wait until the card is ready or indicates a failure * to switch. It doesn't hurt to use CMD13 here even if send_status * is false, because by now (after 'timeout_ms' ms) the bus should be * reliable. */ do { ret = mmc_send_status(mmc, &status); if (!ret && (status & MMC_STATUS_SWITCH_ERROR)) { pr_debug("switch failed %d/%d/0x%x !\n", set, index, value); return -EIO; } if (!ret && (status & MMC_STATUS_RDY_FOR_DATA)) return 0; udelay(100); } while (get_timer(start) < timeout_ms); return -ETIMEDOUT; } int mmc_switch(struct mmc *mmc, u8 set, u8 index, u8 value) { return __mmc_switch(mmc, set, index, value, true); } #if !CONFIG_IS_ENABLED(MMC_TINY) static int mmc_set_card_speed(struct mmc *mmc, enum bus_mode mode, bool hsdowngrade) { int err; int speed_bits; ALLOC_CACHE_ALIGN_BUFFER(u8, test_csd, MMC_MAX_BLOCK_LEN); switch (mode) { case MMC_HS: case MMC_HS_52: case MMC_DDR_52: speed_bits = EXT_CSD_TIMING_HS; break; #if CONFIG_IS_ENABLED(MMC_HS200_SUPPORT) case MMC_HS_200: speed_bits = EXT_CSD_TIMING_HS200; break; #endif #if CONFIG_IS_ENABLED(MMC_HS400_SUPPORT) case MMC_HS_400: speed_bits = EXT_CSD_TIMING_HS400; break; #endif #if CONFIG_IS_ENABLED(MMC_HS400_ES_SUPPORT) case MMC_HS_400_ES: speed_bits = EXT_CSD_TIMING_HS400; break; #endif case MMC_LEGACY: speed_bits = EXT_CSD_TIMING_LEGACY; break; default: return -EINVAL; } err = __mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, speed_bits, !hsdowngrade); if (err) return err; #if CONFIG_IS_ENABLED(MMC_HS200_SUPPORT) || \ CONFIG_IS_ENABLED(MMC_HS400_SUPPORT) /* * In case the eMMC is in HS200/HS400 mode and we are downgrading * to HS mode, the card clock are still running much faster than * the supported HS mode clock, so we can not reliably read out * Extended CSD. Reconfigure the controller to run at HS mode. */ if (hsdowngrade) { mmc_select_mode(mmc, MMC_HS); mmc_set_clock(mmc, mmc_mode2freq(mmc, MMC_HS), false); } #endif if ((mode == MMC_HS) || (mode == MMC_HS_52)) { /* Now check to see that it worked */ err = mmc_send_ext_csd(mmc, test_csd); if (err) return err; /* No high-speed support */ if (!test_csd[EXT_CSD_HS_TIMING]) return -ENOTSUPP; } return 0; } static int mmc_get_capabilities(struct mmc *mmc) { u8 *ext_csd = mmc->ext_csd; char cardtype; mmc->card_caps = MMC_MODE_1BIT | MMC_CAP(MMC_LEGACY); if (mmc_host_is_spi(mmc)) return 0; /* Only version 4 supports high-speed */ if (mmc->version < MMC_VERSION_4) return 0; if (!ext_csd) { pr_err("No ext_csd found!\n"); /* this should enver happen */ return -ENOTSUPP; } mmc->card_caps |= MMC_MODE_4BIT | MMC_MODE_8BIT; cardtype = ext_csd[EXT_CSD_CARD_TYPE]; mmc->cardtype = cardtype; #if CONFIG_IS_ENABLED(MMC_HS200_SUPPORT) if (cardtype & (EXT_CSD_CARD_TYPE_HS200_1_2V | EXT_CSD_CARD_TYPE_HS200_1_8V)) { mmc->card_caps |= MMC_MODE_HS200; } #endif #if CONFIG_IS_ENABLED(MMC_HS400_SUPPORT) || \ CONFIG_IS_ENABLED(MMC_HS400_ES_SUPPORT) if (cardtype & (EXT_CSD_CARD_TYPE_HS400_1_2V | EXT_CSD_CARD_TYPE_HS400_1_8V)) { mmc->card_caps |= MMC_MODE_HS400; } #endif if (cardtype & EXT_CSD_CARD_TYPE_52) { if (cardtype & EXT_CSD_CARD_TYPE_DDR_52) mmc->card_caps |= MMC_MODE_DDR_52MHz; mmc->card_caps |= MMC_MODE_HS_52MHz; } if (cardtype & EXT_CSD_CARD_TYPE_26) mmc->card_caps |= MMC_MODE_HS; #if CONFIG_IS_ENABLED(MMC_HS400_ES_SUPPORT) if (ext_csd[EXT_CSD_STROBE_SUPPORT] && (mmc->card_caps & MMC_MODE_HS400)) { mmc->card_caps |= MMC_MODE_HS400_ES; } #endif return 0; } #endif static int mmc_set_capacity(struct mmc *mmc, int part_num) { switch (part_num) { case 0: mmc->capacity = mmc->capacity_user; break; case 1: case 2: mmc->capacity = mmc->capacity_boot; break; case 3: mmc->capacity = mmc->capacity_rpmb; break; case 4: case 5: case 6: case 7: mmc->capacity = mmc->capacity_gp[part_num - 4]; break; default: return -1; } mmc_get_blk_desc(mmc)->lba = lldiv(mmc->capacity, mmc->read_bl_len); return 0; } int mmc_switch_part(struct mmc *mmc, unsigned int part_num) { int ret; int retry = 3; do { ret = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONF, (mmc->part_config & ~PART_ACCESS_MASK) | (part_num & PART_ACCESS_MASK)); } while (ret && retry--); /* * Set the capacity if the switch succeeded or was intended * to return to representing the raw device. */ if ((ret == 0) || ((ret == -ENODEV) && (part_num == 0))) { ret = mmc_set_capacity(mmc, part_num); mmc_get_blk_desc(mmc)->hwpart = part_num; } return ret; } #if CONFIG_IS_ENABLED(MMC_HW_PARTITIONING) int mmc_hwpart_config(struct mmc *mmc, const struct mmc_hwpart_conf *conf, enum mmc_hwpart_conf_mode mode) { u8 part_attrs = 0; u32 enh_size_mult; u32 enh_start_addr; u32 gp_size_mult[4]; u32 max_enh_size_mult; u32 tot_enh_size_mult = 0; u8 wr_rel_set; int i, pidx, err; ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN); if (mode < MMC_HWPART_CONF_CHECK || mode > MMC_HWPART_CONF_COMPLETE) return -EINVAL; if (IS_SD(mmc) || (mmc->version < MMC_VERSION_4_41)) { pr_err("eMMC >= 4.4 required for enhanced user data area\n"); return -EMEDIUMTYPE; } if (!(mmc->part_support & PART_SUPPORT)) { pr_err("Card does not support partitioning\n"); return -EMEDIUMTYPE; } if (!mmc->hc_wp_grp_size) { pr_err("Card does not define HC WP group size\n"); return -EMEDIUMTYPE; } /* check partition alignment and total enhanced size */ if (conf->user.enh_size) { if (conf->user.enh_size % mmc->hc_wp_grp_size || conf->user.enh_start % mmc->hc_wp_grp_size) { pr_err("User data enhanced area not HC WP group " "size aligned\n"); return -EINVAL; } part_attrs |= EXT_CSD_ENH_USR; enh_size_mult = conf->user.enh_size / mmc->hc_wp_grp_size; if (mmc->high_capacity) { enh_start_addr = conf->user.enh_start; } else { enh_start_addr = (conf->user.enh_start << 9); } } else { enh_size_mult = 0; enh_start_addr = 0; } tot_enh_size_mult += enh_size_mult; for (pidx = 0; pidx < 4; pidx++) { if (conf->gp_part[pidx].size % mmc->hc_wp_grp_size) { pr_err("GP%i partition not HC WP group size " "aligned\n", pidx+1); return -EINVAL; } gp_size_mult[pidx] = conf->gp_part[pidx].size / mmc->hc_wp_grp_size; if (conf->gp_part[pidx].size && conf->gp_part[pidx].enhanced) { part_attrs |= EXT_CSD_ENH_GP(pidx); tot_enh_size_mult += gp_size_mult[pidx]; } } if (part_attrs && ! (mmc->part_support & ENHNCD_SUPPORT)) { pr_err("Card does not support enhanced attribute\n"); return -EMEDIUMTYPE; } err = mmc_send_ext_csd(mmc, ext_csd); if (err) return err; max_enh_size_mult = (ext_csd[EXT_CSD_MAX_ENH_SIZE_MULT+2] << 16) + (ext_csd[EXT_CSD_MAX_ENH_SIZE_MULT+1] << 8) + ext_csd[EXT_CSD_MAX_ENH_SIZE_MULT]; if (tot_enh_size_mult > max_enh_size_mult) { pr_err("Total enhanced size exceeds maximum (%u > %u)\n", tot_enh_size_mult, max_enh_size_mult); return -EMEDIUMTYPE; } /* The default value of EXT_CSD_WR_REL_SET is device * dependent, the values can only be changed if the * EXT_CSD_HS_CTRL_REL bit is set. The values can be * changed only once and before partitioning is completed. */ wr_rel_set = ext_csd[EXT_CSD_WR_REL_SET]; if (conf->user.wr_rel_change) { if (conf->user.wr_rel_set) wr_rel_set |= EXT_CSD_WR_DATA_REL_USR; else wr_rel_set &= ~EXT_CSD_WR_DATA_REL_USR; } for (pidx = 0; pidx < 4; pidx++) { if (conf->gp_part[pidx].wr_rel_change) { if (conf->gp_part[pidx].wr_rel_set) wr_rel_set |= EXT_CSD_WR_DATA_REL_GP(pidx); else wr_rel_set &= ~EXT_CSD_WR_DATA_REL_GP(pidx); } } if (wr_rel_set != ext_csd[EXT_CSD_WR_REL_SET] && !(ext_csd[EXT_CSD_WR_REL_PARAM] & EXT_CSD_HS_CTRL_REL)) { puts("Card does not support host controlled partition write " "reliability settings\n"); return -EMEDIUMTYPE; } if (ext_csd[EXT_CSD_PARTITION_SETTING] & EXT_CSD_PARTITION_SETTING_COMPLETED) { pr_err("Card already partitioned\n"); return -EPERM; } if (mode == MMC_HWPART_CONF_CHECK) return 0; /* Partitioning requires high-capacity size definitions */ if (!(ext_csd[EXT_CSD_ERASE_GROUP_DEF] & 0x01)) { err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_ERASE_GROUP_DEF, 1); if (err) return err; ext_csd[EXT_CSD_ERASE_GROUP_DEF] = 1; /* update erase group size to be high-capacity */ mmc->erase_grp_size = ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] * 1024; } /* all OK, write the configuration */ for (i = 0; i < 4; i++) { err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_ENH_START_ADDR+i, (enh_start_addr >> (i*8)) & 0xFF); if (err) return err; } for (i = 0; i < 3; i++) { err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_ENH_SIZE_MULT+i, (enh_size_mult >> (i*8)) & 0xFF); if (err) return err; } for (pidx = 0; pidx < 4; pidx++) { for (i = 0; i < 3; i++) { err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_GP_SIZE_MULT+pidx*3+i, (gp_size_mult[pidx] >> (i*8)) & 0xFF); if (err) return err; } } err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PARTITIONS_ATTRIBUTE, part_attrs); if (err) return err; if (mode == MMC_HWPART_CONF_SET) return 0; /* The WR_REL_SET is a write-once register but shall be * written before setting PART_SETTING_COMPLETED. As it is * write-once we can only write it when completing the * partitioning. */ if (wr_rel_set != ext_csd[EXT_CSD_WR_REL_SET]) { err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_WR_REL_SET, wr_rel_set); if (err) return err; } /* Setting PART_SETTING_COMPLETED confirms the partition * configuration but it only becomes effective after power * cycle, so we do not adjust the partition related settings * in the mmc struct. */ err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PARTITION_SETTING, EXT_CSD_PARTITION_SETTING_COMPLETED); if (err) return err; return 0; } #endif #if !CONFIG_IS_ENABLED(DM_MMC) int mmc_getcd(struct mmc *mmc) { int cd; cd = board_mmc_getcd(mmc); if (cd < 0) { if (mmc->cfg->ops->getcd) cd = mmc->cfg->ops->getcd(mmc); else cd = 1; } return cd; } #endif #if !CONFIG_IS_ENABLED(MMC_TINY) static int sd_switch(struct mmc *mmc, int mode, int group, u8 value, u8 *resp) { struct mmc_cmd cmd; struct mmc_data data; /* Switch the frequency */ cmd.cmdidx = SD_CMD_SWITCH_FUNC; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = (mode << 31) | 0xffffff; cmd.cmdarg &= ~(0xf << (group * 4)); cmd.cmdarg |= value << (group * 4); data.dest = (char *)resp; data.blocksize = 64; data.blocks = 1; data.flags = MMC_DATA_READ; return mmc_send_cmd(mmc, &cmd, &data); } static int sd_get_capabilities(struct mmc *mmc) { int err; struct mmc_cmd cmd; ALLOC_CACHE_ALIGN_BUFFER(__be32, scr, 2); ALLOC_CACHE_ALIGN_BUFFER(__be32, switch_status, 16); struct mmc_data data; int timeout; #if CONFIG_IS_ENABLED(MMC_UHS_SUPPORT) u32 sd3_bus_mode; #endif mmc->card_caps = MMC_MODE_1BIT | MMC_CAP(SD_LEGACY); if (mmc_host_is_spi(mmc)) return 0; /* Read the SCR to find out if this card supports higher speeds */ cmd.cmdidx = MMC_CMD_APP_CMD; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = mmc->rca << 16; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; cmd.cmdidx = SD_CMD_APP_SEND_SCR; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = 0; timeout = 3; retry_scr: data.dest = (char *)scr; data.blocksize = 8; data.blocks = 1; data.flags = MMC_DATA_READ; err = mmc_send_cmd(mmc, &cmd, &data); if (err) { if (timeout--) goto retry_scr; return err; } mmc->scr[0] = __be32_to_cpu(scr[0]); mmc->scr[1] = __be32_to_cpu(scr[1]); switch ((mmc->scr[0] >> 24) & 0xf) { case 0: mmc->version = SD_VERSION_1_0; break; case 1: mmc->version = SD_VERSION_1_10; break; case 2: mmc->version = SD_VERSION_2; if ((mmc->scr[0] >> 15) & 0x1) mmc->version = SD_VERSION_3; break; default: mmc->version = SD_VERSION_1_0; break; } if (mmc->scr[0] & SD_DATA_4BIT) mmc->card_caps |= MMC_MODE_4BIT; /* Version 1.0 doesn't support switching */ if (mmc->version == SD_VERSION_1_0) return 0; timeout = 4; while (timeout--) { err = sd_switch(mmc, SD_SWITCH_CHECK, 0, 1, (u8 *)switch_status); if (err) return err; /* The high-speed function is busy. Try again */ if (!(__be32_to_cpu(switch_status[7]) & SD_HIGHSPEED_BUSY)) break; } /* If high-speed isn't supported, we return */ if (__be32_to_cpu(switch_status[3]) & SD_HIGHSPEED_SUPPORTED) mmc->card_caps |= MMC_CAP(SD_HS); #if CONFIG_IS_ENABLED(MMC_UHS_SUPPORT) /* Version before 3.0 don't support UHS modes */ if (mmc->version < SD_VERSION_3) return 0; sd3_bus_mode = __be32_to_cpu(switch_status[3]) >> 16 & 0x1f; if (sd3_bus_mode & SD_MODE_UHS_SDR104) mmc->card_caps |= MMC_CAP(UHS_SDR104); if (sd3_bus_mode & SD_MODE_UHS_SDR50) mmc->card_caps |= MMC_CAP(UHS_SDR50); if (sd3_bus_mode & SD_MODE_UHS_SDR25) mmc->card_caps |= MMC_CAP(UHS_SDR25); if (sd3_bus_mode & SD_MODE_UHS_SDR12) mmc->card_caps |= MMC_CAP(UHS_SDR12); if (sd3_bus_mode & SD_MODE_UHS_DDR50) mmc->card_caps |= MMC_CAP(UHS_DDR50); #endif return 0; } static int sd_set_card_speed(struct mmc *mmc, enum bus_mode mode) { int err; ALLOC_CACHE_ALIGN_BUFFER(uint, switch_status, 16); int speed; /* SD version 1.00 and 1.01 does not support CMD 6 */ if (mmc->version == SD_VERSION_1_0) return 0; switch (mode) { case SD_LEGACY: speed = UHS_SDR12_BUS_SPEED; break; case SD_HS: speed = HIGH_SPEED_BUS_SPEED; break; #if CONFIG_IS_ENABLED(MMC_UHS_SUPPORT) case UHS_SDR12: speed = UHS_SDR12_BUS_SPEED; break; case UHS_SDR25: speed = UHS_SDR25_BUS_SPEED; break; case UHS_SDR50: speed = UHS_SDR50_BUS_SPEED; break; case UHS_DDR50: speed = UHS_DDR50_BUS_SPEED; break; case UHS_SDR104: speed = UHS_SDR104_BUS_SPEED; break; #endif default: return -EINVAL; } err = sd_switch(mmc, SD_SWITCH_SWITCH, 0, speed, (u8 *)switch_status); if (err) return err; if (((__be32_to_cpu(switch_status[4]) >> 24) & 0xF) != speed) return -ENOTSUPP; return 0; } static int sd_select_bus_width(struct mmc *mmc, int w) { int err; struct mmc_cmd cmd; if ((w != 4) && (w != 1)) return -EINVAL; cmd.cmdidx = MMC_CMD_APP_CMD; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = mmc->rca << 16; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; cmd.cmdidx = SD_CMD_APP_SET_BUS_WIDTH; cmd.resp_type = MMC_RSP_R1; if (w == 4) cmd.cmdarg = 2; else if (w == 1) cmd.cmdarg = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; return 0; } #endif #if CONFIG_IS_ENABLED(MMC_WRITE) static int sd_read_ssr(struct mmc *mmc) { static const unsigned int sd_au_size[] = { 0, SZ_16K / 512, SZ_32K / 512, SZ_64K / 512, SZ_128K / 512, SZ_256K / 512, SZ_512K / 512, SZ_1M / 512, SZ_2M / 512, SZ_4M / 512, SZ_8M / 512, (SZ_8M + SZ_4M) / 512, SZ_16M / 512, (SZ_16M + SZ_8M) / 512, SZ_32M / 512, SZ_64M / 512, }; int err, i; struct mmc_cmd cmd; ALLOC_CACHE_ALIGN_BUFFER(uint, ssr, 16); struct mmc_data data; int timeout = 3; unsigned int au, eo, et, es; cmd.cmdidx = MMC_CMD_APP_CMD; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = mmc->rca << 16; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; cmd.cmdidx = SD_CMD_APP_SD_STATUS; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = 0; retry_ssr: data.dest = (char *)ssr; data.blocksize = 64; data.blocks = 1; data.flags = MMC_DATA_READ; err = mmc_send_cmd(mmc, &cmd, &data); if (err) { if (timeout--) goto retry_ssr; return err; } for (i = 0; i < 16; i++) ssr[i] = be32_to_cpu(ssr[i]); au = (ssr[2] >> 12) & 0xF; if ((au <= 9) || (mmc->version == SD_VERSION_3)) { mmc->ssr.au = sd_au_size[au]; es = (ssr[3] >> 24) & 0xFF; es |= (ssr[2] & 0xFF) << 8; et = (ssr[3] >> 18) & 0x3F; if (es && et) { eo = (ssr[3] >> 16) & 0x3; mmc->ssr.erase_timeout = (et * 1000) / es; mmc->ssr.erase_offset = eo * 1000; } } else { pr_debug("Invalid Allocation Unit Size.\n"); } return 0; } #endif /* frequency bases */ /* divided by 10 to be nice to platforms without floating point */ static const int fbase[] = { 10000, 100000, 1000000, 10000000, }; /* Multiplier values for TRAN_SPEED. Multiplied by 10 to be nice * to platforms without floating point. */ static const u8 multipliers[] = { 0, /* reserved */ 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, }; static inline int bus_width(uint cap) { if (cap == MMC_MODE_8BIT) return 8; if (cap == MMC_MODE_4BIT) return 4; if (cap == MMC_MODE_1BIT) return 1; pr_warn("invalid bus witdh capability 0x%x\n", cap); return 0; } #if !CONFIG_IS_ENABLED(DM_MMC) #ifdef MMC_SUPPORTS_TUNING static int mmc_execute_tuning(struct mmc *mmc, uint opcode) { return -ENOTSUPP; } #endif static int mmc_set_ios(struct mmc *mmc) { int ret = 0; if (mmc->cfg->ops->set_ios) ret = mmc->cfg->ops->set_ios(mmc); return ret; } static int mmc_host_power_cycle(struct mmc *mmc) { int ret = 0; if (mmc->cfg->ops->host_power_cycle) ret = mmc->cfg->ops->host_power_cycle(mmc); return ret; } #endif int mmc_set_clock(struct mmc *mmc, uint clock, bool disable) { if (!disable) { if (clock > mmc->cfg->f_max) clock = mmc->cfg->f_max; if (clock < mmc->cfg->f_min) clock = mmc->cfg->f_min; } mmc->clock = clock; mmc->clk_disable = disable; debug("clock is %s (%dHz)\n", disable ? "disabled" : "enabled", clock); return mmc_set_ios(mmc); } static int mmc_set_bus_width(struct mmc *mmc, uint width) { mmc->bus_width = width; return mmc_set_ios(mmc); } #if CONFIG_IS_ENABLED(MMC_VERBOSE) || defined(DEBUG) /* * helper function to display the capabilities in a human * friendly manner. The capabilities include bus width and * supported modes. */ void mmc_dump_capabilities(const char *text, uint caps) { enum bus_mode mode; pr_debug("%s: widths [", text); if (caps & MMC_MODE_8BIT) pr_debug("8, "); if (caps & MMC_MODE_4BIT) pr_debug("4, "); if (caps & MMC_MODE_1BIT) pr_debug("1, "); pr_debug("\b\b] modes ["); for (mode = MMC_LEGACY; mode < MMC_MODES_END; mode++) if (MMC_CAP(mode) & caps) pr_debug("%s, ", mmc_mode_name(mode)); pr_debug("\b\b]\n"); } #endif struct mode_width_tuning { enum bus_mode mode; uint widths; #ifdef MMC_SUPPORTS_TUNING uint tuning; #endif }; #if CONFIG_IS_ENABLED(MMC_IO_VOLTAGE) int mmc_voltage_to_mv(enum mmc_voltage voltage) { switch (voltage) { case MMC_SIGNAL_VOLTAGE_000: return 0; case MMC_SIGNAL_VOLTAGE_330: return 3300; case MMC_SIGNAL_VOLTAGE_180: return 1800; case MMC_SIGNAL_VOLTAGE_120: return 1200; } return -EINVAL; } static int mmc_set_signal_voltage(struct mmc *mmc, uint signal_voltage) { int err; if (mmc->signal_voltage == signal_voltage) return 0; mmc->signal_voltage = signal_voltage; err = mmc_set_ios(mmc); if (err) pr_debug("unable to set voltage (err %d)\n", err); return err; } #else static inline int mmc_set_signal_voltage(struct mmc *mmc, uint signal_voltage) { return 0; } #endif #if !CONFIG_IS_ENABLED(MMC_TINY) static const struct mode_width_tuning sd_modes_by_pref[] = { #if CONFIG_IS_ENABLED(MMC_UHS_SUPPORT) #ifdef MMC_SUPPORTS_TUNING { .mode = UHS_SDR104, .widths = MMC_MODE_4BIT | MMC_MODE_1BIT, .tuning = MMC_CMD_SEND_TUNING_BLOCK }, #endif { .mode = UHS_SDR50, .widths = MMC_MODE_4BIT | MMC_MODE_1BIT, }, { .mode = UHS_DDR50, .widths = MMC_MODE_4BIT | MMC_MODE_1BIT, }, { .mode = UHS_SDR25, .widths = MMC_MODE_4BIT | MMC_MODE_1BIT, }, #endif { .mode = SD_HS, .widths = MMC_MODE_4BIT | MMC_MODE_1BIT, }, #if CONFIG_IS_ENABLED(MMC_UHS_SUPPORT) { .mode = UHS_SDR12, .widths = MMC_MODE_4BIT | MMC_MODE_1BIT, }, #endif { .mode = SD_LEGACY, .widths = MMC_MODE_4BIT | MMC_MODE_1BIT, } }; #define for_each_sd_mode_by_pref(caps, mwt) \ for (mwt = sd_modes_by_pref;\ mwt < sd_modes_by_pref + ARRAY_SIZE(sd_modes_by_pref);\ mwt++) \ if (caps & MMC_CAP(mwt->mode)) static int sd_select_mode_and_width(struct mmc *mmc, uint card_caps) { int err; uint widths[] = {MMC_MODE_4BIT, MMC_MODE_1BIT}; const struct mode_width_tuning *mwt; #if CONFIG_IS_ENABLED(MMC_UHS_SUPPORT) bool uhs_en = (mmc->ocr & OCR_S18R) ? true : false; #else bool uhs_en = false; #endif uint caps; #ifdef DEBUG mmc_dump_capabilities("sd card", card_caps); mmc_dump_capabilities("host", mmc->host_caps); #endif if (mmc_host_is_spi(mmc)) { mmc_set_bus_width(mmc, 1); mmc_select_mode(mmc, SD_LEGACY); mmc_set_clock(mmc, mmc->tran_speed, MMC_CLK_ENABLE); return 0; } /* Restrict card's capabilities by what the host can do */ caps = card_caps & mmc->host_caps; if (!uhs_en) caps &= ~UHS_CAPS; for_each_sd_mode_by_pref(caps, mwt) { uint *w; for (w = widths; w < widths + ARRAY_SIZE(widths); w++) { if (*w & caps & mwt->widths) { pr_debug("trying mode %s width %d (at %d MHz)\n", mmc_mode_name(mwt->mode), bus_width(*w), mmc_mode2freq(mmc, mwt->mode) / 1000000); /* configure the bus width (card + host) */ err = sd_select_bus_width(mmc, bus_width(*w)); if (err) goto error; mmc_set_bus_width(mmc, bus_width(*w)); /* configure the bus mode (card) */ err = sd_set_card_speed(mmc, mwt->mode); if (err) goto error; /* configure the bus mode (host) */ mmc_select_mode(mmc, mwt->mode); mmc_set_clock(mmc, mmc->tran_speed, MMC_CLK_ENABLE); #ifdef MMC_SUPPORTS_TUNING /* execute tuning if needed */ if (mwt->tuning && !mmc_host_is_spi(mmc)) { err = mmc_execute_tuning(mmc, mwt->tuning); if (err) { pr_debug("tuning failed\n"); goto error; } } #endif #if CONFIG_IS_ENABLED(MMC_WRITE) err = sd_read_ssr(mmc); if (err) pr_warn("unable to read ssr\n"); #endif if (!err) return 0; error: /* revert to a safer bus speed */ mmc_select_mode(mmc, SD_LEGACY); mmc_set_clock(mmc, mmc->tran_speed, MMC_CLK_ENABLE); } } } pr_err("unable to select a mode\n"); return -ENOTSUPP; } /* * read the compare the part of ext csd that is constant. * This can be used to check that the transfer is working * as expected. */ static int mmc_read_and_compare_ext_csd(struct mmc *mmc) { int err; const u8 *ext_csd = mmc->ext_csd; ALLOC_CACHE_ALIGN_BUFFER(u8, test_csd, MMC_MAX_BLOCK_LEN); if (mmc->version < MMC_VERSION_4) return 0; err = mmc_send_ext_csd(mmc, test_csd); if (err) return err; /* Only compare read only fields */ if (ext_csd[EXT_CSD_PARTITIONING_SUPPORT] == test_csd[EXT_CSD_PARTITIONING_SUPPORT] && ext_csd[EXT_CSD_HC_WP_GRP_SIZE] == test_csd[EXT_CSD_HC_WP_GRP_SIZE] && ext_csd[EXT_CSD_REV] == test_csd[EXT_CSD_REV] && ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] == test_csd[EXT_CSD_HC_ERASE_GRP_SIZE] && memcmp(&ext_csd[EXT_CSD_SEC_CNT], &test_csd[EXT_CSD_SEC_CNT], 4) == 0) return 0; return -EBADMSG; } #if CONFIG_IS_ENABLED(MMC_IO_VOLTAGE) static int mmc_set_lowest_voltage(struct mmc *mmc, enum bus_mode mode, uint32_t allowed_mask) { u32 card_mask = 0; switch (mode) { case MMC_HS_400_ES: case MMC_HS_400: case MMC_HS_200: if (mmc->cardtype & (EXT_CSD_CARD_TYPE_HS200_1_8V | EXT_CSD_CARD_TYPE_HS400_1_8V)) card_mask |= MMC_SIGNAL_VOLTAGE_180; if (mmc->cardtype & (EXT_CSD_CARD_TYPE_HS200_1_2V | EXT_CSD_CARD_TYPE_HS400_1_2V)) card_mask |= MMC_SIGNAL_VOLTAGE_120; break; case MMC_DDR_52: if (mmc->cardtype & EXT_CSD_CARD_TYPE_DDR_1_8V) card_mask |= MMC_SIGNAL_VOLTAGE_330 | MMC_SIGNAL_VOLTAGE_180; if (mmc->cardtype & EXT_CSD_CARD_TYPE_DDR_1_2V) card_mask |= MMC_SIGNAL_VOLTAGE_120; break; default: card_mask |= MMC_SIGNAL_VOLTAGE_330; break; } while (card_mask & allowed_mask) { enum mmc_voltage best_match; best_match = 1 << (ffs(card_mask & allowed_mask) - 1); if (!mmc_set_signal_voltage(mmc, best_match)) return 0; allowed_mask &= ~best_match; } return -ENOTSUPP; } #else static inline int mmc_set_lowest_voltage(struct mmc *mmc, enum bus_mode mode, uint32_t allowed_mask) { return 0; } #endif static const struct mode_width_tuning mmc_modes_by_pref[] = { #if CONFIG_IS_ENABLED(MMC_HS400_ES_SUPPORT) { .mode = MMC_HS_400_ES, .widths = MMC_MODE_8BIT, }, #endif #if CONFIG_IS_ENABLED(MMC_HS400_SUPPORT) { .mode = MMC_HS_400, .widths = MMC_MODE_8BIT, .tuning = MMC_CMD_SEND_TUNING_BLOCK_HS200 }, #endif #if CONFIG_IS_ENABLED(MMC_HS200_SUPPORT) { .mode = MMC_HS_200, .widths = MMC_MODE_8BIT | MMC_MODE_4BIT, .tuning = MMC_CMD_SEND_TUNING_BLOCK_HS200 }, #endif { .mode = MMC_DDR_52, .widths = MMC_MODE_8BIT | MMC_MODE_4BIT, }, { .mode = MMC_HS_52, .widths = MMC_MODE_8BIT | MMC_MODE_4BIT | MMC_MODE_1BIT, }, { .mode = MMC_HS, .widths = MMC_MODE_8BIT | MMC_MODE_4BIT | MMC_MODE_1BIT, }, { .mode = MMC_LEGACY, .widths = MMC_MODE_8BIT | MMC_MODE_4BIT | MMC_MODE_1BIT, } }; #define for_each_mmc_mode_by_pref(caps, mwt) \ for (mwt = mmc_modes_by_pref;\ mwt < mmc_modes_by_pref + ARRAY_SIZE(mmc_modes_by_pref);\ mwt++) \ if (caps & MMC_CAP(mwt->mode)) static const struct ext_csd_bus_width { uint cap; bool is_ddr; uint ext_csd_bits; } ext_csd_bus_width[] = { {MMC_MODE_8BIT, true, EXT_CSD_DDR_BUS_WIDTH_8}, {MMC_MODE_4BIT, true, EXT_CSD_DDR_BUS_WIDTH_4}, {MMC_MODE_8BIT, false, EXT_CSD_BUS_WIDTH_8}, {MMC_MODE_4BIT, false, EXT_CSD_BUS_WIDTH_4}, {MMC_MODE_1BIT, false, EXT_CSD_BUS_WIDTH_1}, }; #if CONFIG_IS_ENABLED(MMC_HS400_SUPPORT) static int mmc_select_hs400(struct mmc *mmc) { int err; /* Set timing to HS200 for tuning */ err = mmc_set_card_speed(mmc, MMC_HS_200, false); if (err) return err; /* configure the bus mode (host) */ mmc_select_mode(mmc, MMC_HS_200); mmc_set_clock(mmc, mmc->tran_speed, false); /* execute tuning if needed */ err = mmc_execute_tuning(mmc, MMC_CMD_SEND_TUNING_BLOCK_HS200); if (err) { debug("tuning failed\n"); return err; } /* Set back to HS */ mmc_set_card_speed(mmc, MMC_HS, true); err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_FLAG); if (err) return err; err = mmc_set_card_speed(mmc, MMC_HS_400, false); if (err) return err; mmc_select_mode(mmc, MMC_HS_400); err = mmc_set_clock(mmc, mmc->tran_speed, false); if (err) return err; return 0; } #else static int mmc_select_hs400(struct mmc *mmc) { return -ENOTSUPP; } #endif #if CONFIG_IS_ENABLED(MMC_HS400_ES_SUPPORT) #if !CONFIG_IS_ENABLED(DM_MMC) static int mmc_set_enhanced_strobe(struct mmc *mmc) { return -ENOTSUPP; } #endif static int mmc_select_hs400es(struct mmc *mmc) { int err; err = mmc_set_card_speed(mmc, MMC_HS, true); if (err) return err; err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_FLAG | EXT_CSD_BUS_WIDTH_STROBE); if (err) { printf("switch to bus width for hs400 failed\n"); return err; } /* TODO: driver strength */ err = mmc_set_card_speed(mmc, MMC_HS_400_ES, false); if (err) return err; mmc_select_mode(mmc, MMC_HS_400_ES); err = mmc_set_clock(mmc, mmc->tran_speed, false); if (err) return err; return mmc_set_enhanced_strobe(mmc); } #else static int mmc_select_hs400es(struct mmc *mmc) { return -ENOTSUPP; } #endif #define for_each_supported_width(caps, ddr, ecbv) \ for (ecbv = ext_csd_bus_width;\ ecbv < ext_csd_bus_width + ARRAY_SIZE(ext_csd_bus_width);\ ecbv++) \ if ((ddr == ecbv->is_ddr) && (caps & ecbv->cap)) static int mmc_select_mode_and_width(struct mmc *mmc, uint card_caps) { int err; const struct mode_width_tuning *mwt; const struct ext_csd_bus_width *ecbw; #ifdef DEBUG mmc_dump_capabilities("mmc", card_caps); mmc_dump_capabilities("host", mmc->host_caps); #endif if (mmc_host_is_spi(mmc)) { mmc_set_bus_width(mmc, 1); mmc_select_mode(mmc, MMC_LEGACY); mmc_set_clock(mmc, mmc->tran_speed, MMC_CLK_ENABLE); return 0; } /* Restrict card's capabilities by what the host can do */ card_caps &= mmc->host_caps; /* Only version 4 of MMC supports wider bus widths */ if (mmc->version < MMC_VERSION_4) return 0; if (!mmc->ext_csd) { pr_debug("No ext_csd found!\n"); /* this should enver happen */ return -ENOTSUPP; } #if CONFIG_IS_ENABLED(MMC_HS200_SUPPORT) || \ CONFIG_IS_ENABLED(MMC_HS400_SUPPORT) /* * In case the eMMC is in HS200/HS400 mode, downgrade to HS mode * before doing anything else, since a transition from either of * the HS200/HS400 mode directly to legacy mode is not supported. */ if (mmc->selected_mode == MMC_HS_200 || mmc->selected_mode == MMC_HS_400) mmc_set_card_speed(mmc, MMC_HS, true); else #endif mmc_set_clock(mmc, mmc->legacy_speed, MMC_CLK_ENABLE); for_each_mmc_mode_by_pref(card_caps, mwt) { for_each_supported_width(card_caps & mwt->widths, mmc_is_mode_ddr(mwt->mode), ecbw) { enum mmc_voltage old_voltage; pr_debug("trying mode %s width %d (at %d MHz)\n", mmc_mode_name(mwt->mode), bus_width(ecbw->cap), mmc_mode2freq(mmc, mwt->mode) / 1000000); old_voltage = mmc->signal_voltage; err = mmc_set_lowest_voltage(mmc, mwt->mode, MMC_ALL_SIGNAL_VOLTAGE); if (err) continue; /* configure the bus width (card + host) */ err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, ecbw->ext_csd_bits & ~EXT_CSD_DDR_FLAG); if (err) goto error; mmc_set_bus_width(mmc, bus_width(ecbw->cap)); if (mwt->mode == MMC_HS_400) { err = mmc_select_hs400(mmc); if (err) { printf("Select HS400 failed %d\n", err); goto error; } } else if (mwt->mode == MMC_HS_400_ES) { err = mmc_select_hs400es(mmc); if (err) { printf("Select HS400ES failed %d\n", err); goto error; } } else { /* configure the bus speed (card) */ err = mmc_set_card_speed(mmc, mwt->mode, false); if (err) goto error; /* * configure the bus width AND the ddr mode * (card). The host side will be taken care * of in the next step */ if (ecbw->ext_csd_bits & EXT_CSD_DDR_FLAG) { err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, ecbw->ext_csd_bits); if (err) goto error; } /* configure the bus mode (host) */ mmc_select_mode(mmc, mwt->mode); mmc_set_clock(mmc, mmc->tran_speed, MMC_CLK_ENABLE); #ifdef MMC_SUPPORTS_TUNING /* execute tuning if needed */ if (mwt->tuning) { err = mmc_execute_tuning(mmc, mwt->tuning); if (err) { pr_debug("tuning failed\n"); goto error; } } #endif } /* do a transfer to check the configuration */ err = mmc_read_and_compare_ext_csd(mmc); if (!err) return 0; error: mmc_set_signal_voltage(mmc, old_voltage); /* if an error occured, revert to a safer bus mode */ mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, EXT_CSD_BUS_WIDTH_1); mmc_select_mode(mmc, MMC_LEGACY); mmc_set_bus_width(mmc, 1); } } pr_err("unable to select a mode\n"); return -ENOTSUPP; } #endif #if CONFIG_IS_ENABLED(MMC_TINY) DEFINE_CACHE_ALIGN_BUFFER(u8, ext_csd_bkup, MMC_MAX_BLOCK_LEN); #endif static int mmc_startup_v4(struct mmc *mmc) { int err, i; u64 capacity; bool has_parts = false; bool part_completed; static const u32 mmc_versions[] = { MMC_VERSION_4, MMC_VERSION_4_1, MMC_VERSION_4_2, MMC_VERSION_4_3, MMC_VERSION_4_4, MMC_VERSION_4_41, MMC_VERSION_4_5, MMC_VERSION_5_0, MMC_VERSION_5_1 }; #if CONFIG_IS_ENABLED(MMC_TINY) u8 *ext_csd = ext_csd_bkup; if (IS_SD(mmc) || mmc->version < MMC_VERSION_4) return 0; if (!mmc->ext_csd) memset(ext_csd_bkup, 0, sizeof(ext_csd_bkup)); err = mmc_send_ext_csd(mmc, ext_csd); if (err) goto error; /* store the ext csd for future reference */ if (!mmc->ext_csd) mmc->ext_csd = ext_csd; #else ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN); if (IS_SD(mmc) || (mmc->version < MMC_VERSION_4)) return 0; /* check ext_csd version and capacity */ err = mmc_send_ext_csd(mmc, ext_csd); if (err) goto error; /* store the ext csd for future reference */ if (!mmc->ext_csd) mmc->ext_csd = malloc(MMC_MAX_BLOCK_LEN); if (!mmc->ext_csd) return -ENOMEM; memcpy(mmc->ext_csd, ext_csd, MMC_MAX_BLOCK_LEN); #endif if (ext_csd[EXT_CSD_REV] >= ARRAY_SIZE(mmc_versions)) return -EINVAL; mmc->version = mmc_versions[ext_csd[EXT_CSD_REV]]; if (mmc->version >= MMC_VERSION_4_2) { /* * According to the JEDEC Standard, the value of * ext_csd's capacity is valid if the value is more * than 2GB */ capacity = ext_csd[EXT_CSD_SEC_CNT] << 0 | ext_csd[EXT_CSD_SEC_CNT + 1] << 8 | ext_csd[EXT_CSD_SEC_CNT + 2] << 16 | ext_csd[EXT_CSD_SEC_CNT + 3] << 24; capacity *= MMC_MAX_BLOCK_LEN; if ((capacity >> 20) > 2 * 1024) mmc->capacity_user = capacity; } if (mmc->version >= MMC_VERSION_4_5) mmc->gen_cmd6_time = ext_csd[EXT_CSD_GENERIC_CMD6_TIME]; /* The partition data may be non-zero but it is only * effective if PARTITION_SETTING_COMPLETED is set in * EXT_CSD, so ignore any data if this bit is not set, * except for enabling the high-capacity group size * definition (see below). */ part_completed = !!(ext_csd[EXT_CSD_PARTITION_SETTING] & EXT_CSD_PARTITION_SETTING_COMPLETED); mmc->part_switch_time = ext_csd[EXT_CSD_PART_SWITCH_TIME]; /* Some eMMC set the value too low so set a minimum */ if (mmc->part_switch_time < MMC_MIN_PART_SWITCH_TIME && mmc->part_switch_time) mmc->part_switch_time = MMC_MIN_PART_SWITCH_TIME; /* store the partition info of emmc */ mmc->part_support = ext_csd[EXT_CSD_PARTITIONING_SUPPORT]; if ((ext_csd[EXT_CSD_PARTITIONING_SUPPORT] & PART_SUPPORT) || ext_csd[EXT_CSD_BOOT_MULT]) mmc->part_config = ext_csd[EXT_CSD_PART_CONF]; if (part_completed && (ext_csd[EXT_CSD_PARTITIONING_SUPPORT] & ENHNCD_SUPPORT)) mmc->part_attr = ext_csd[EXT_CSD_PARTITIONS_ATTRIBUTE]; mmc->capacity_boot = ext_csd[EXT_CSD_BOOT_MULT] << 17; mmc->capacity_rpmb = ext_csd[EXT_CSD_RPMB_MULT] << 17; for (i = 0; i < 4; i++) { int idx = EXT_CSD_GP_SIZE_MULT + i * 3; uint mult = (ext_csd[idx + 2] << 16) + (ext_csd[idx + 1] << 8) + ext_csd[idx]; if (mult) has_parts = true; if (!part_completed) continue; mmc->capacity_gp[i] = mult; mmc->capacity_gp[i] *= ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; mmc->capacity_gp[i] *= ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; mmc->capacity_gp[i] <<= 19; } #ifndef CONFIG_SPL_BUILD if (part_completed) { mmc->enh_user_size = (ext_csd[EXT_CSD_ENH_SIZE_MULT + 2] << 16) + (ext_csd[EXT_CSD_ENH_SIZE_MULT + 1] << 8) + ext_csd[EXT_CSD_ENH_SIZE_MULT]; mmc->enh_user_size *= ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; mmc->enh_user_size *= ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; mmc->enh_user_size <<= 19; mmc->enh_user_start = (ext_csd[EXT_CSD_ENH_START_ADDR + 3] << 24) + (ext_csd[EXT_CSD_ENH_START_ADDR + 2] << 16) + (ext_csd[EXT_CSD_ENH_START_ADDR + 1] << 8) + ext_csd[EXT_CSD_ENH_START_ADDR]; if (mmc->high_capacity) mmc->enh_user_start <<= 9; } #endif /* * Host needs to enable ERASE_GRP_DEF bit if device is * partitioned. This bit will be lost every time after a reset * or power off. This will affect erase size. */ if (part_completed) has_parts = true; if ((ext_csd[EXT_CSD_PARTITIONING_SUPPORT] & PART_SUPPORT) && (ext_csd[EXT_CSD_PARTITIONS_ATTRIBUTE] & PART_ENH_ATTRIB)) has_parts = true; if (has_parts) { err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_ERASE_GROUP_DEF, 1); if (err) goto error; ext_csd[EXT_CSD_ERASE_GROUP_DEF] = 1; } if (ext_csd[EXT_CSD_ERASE_GROUP_DEF] & 0x01) { #if CONFIG_IS_ENABLED(MMC_WRITE) /* Read out group size from ext_csd */ mmc->erase_grp_size = ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] * 1024; #endif /* * if high capacity and partition setting completed * SEC_COUNT is valid even if it is smaller than 2 GiB * JEDEC Standard JESD84-B45, 6.2.4 */ if (mmc->high_capacity && part_completed) { capacity = (ext_csd[EXT_CSD_SEC_CNT]) | (ext_csd[EXT_CSD_SEC_CNT + 1] << 8) | (ext_csd[EXT_CSD_SEC_CNT + 2] << 16) | (ext_csd[EXT_CSD_SEC_CNT + 3] << 24); capacity *= MMC_MAX_BLOCK_LEN; mmc->capacity_user = capacity; } } #if CONFIG_IS_ENABLED(MMC_WRITE) else { /* Calculate the group size from the csd value. */ int erase_gsz, erase_gmul; erase_gsz = (mmc->csd[2] & 0x00007c00) >> 10; erase_gmul = (mmc->csd[2] & 0x000003e0) >> 5; mmc->erase_grp_size = (erase_gsz + 1) * (erase_gmul + 1); } #endif #if CONFIG_IS_ENABLED(MMC_HW_PARTITIONING) mmc->hc_wp_grp_size = 1024 * ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] * ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; #endif mmc->wr_rel_set = ext_csd[EXT_CSD_WR_REL_SET]; return 0; error: if (mmc->ext_csd) { #if !CONFIG_IS_ENABLED(MMC_TINY) free(mmc->ext_csd); #endif mmc->ext_csd = NULL; } return err; } static int mmc_startup(struct mmc *mmc) { int err, i; uint mult, freq; u64 cmult, csize; struct mmc_cmd cmd; struct blk_desc *bdesc; #ifdef CONFIG_MMC_SPI_CRC_ON if (mmc_host_is_spi(mmc)) { /* enable CRC check for spi */ cmd.cmdidx = MMC_CMD_SPI_CRC_ON_OFF; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = 1; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; } #endif /* Put the Card in Identify Mode */ cmd.cmdidx = mmc_host_is_spi(mmc) ? MMC_CMD_SEND_CID : MMC_CMD_ALL_SEND_CID; /* cmd not supported in spi */ cmd.resp_type = MMC_RSP_R2; cmd.cmdarg = 0; err = mmc_send_cmd(mmc, &cmd, NULL); #ifdef CONFIG_MMC_QUIRKS if (err && (mmc->quirks & MMC_QUIRK_RETRY_SEND_CID)) { int retries = 4; /* * It has been seen that SEND_CID may fail on the first * attempt, let's try a few more time */ do { err = mmc_send_cmd(mmc, &cmd, NULL); if (!err) break; } while (retries--); } #endif if (err) return err; memcpy(mmc->cid, cmd.response, 16); /* * For MMC cards, set the Relative Address. * For SD cards, get the Relatvie Address. * This also puts the cards into Standby State */ if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */ cmd.cmdidx = SD_CMD_SEND_RELATIVE_ADDR; cmd.cmdarg = mmc->rca << 16; cmd.resp_type = MMC_RSP_R6; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; if (IS_SD(mmc)) mmc->rca = (cmd.response[0] >> 16) & 0xffff; } /* Get the Card-Specific Data */ cmd.cmdidx = MMC_CMD_SEND_CSD; cmd.resp_type = MMC_RSP_R2; cmd.cmdarg = mmc->rca << 16; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; mmc->csd[0] = cmd.response[0]; mmc->csd[1] = cmd.response[1]; mmc->csd[2] = cmd.response[2]; mmc->csd[3] = cmd.response[3]; if (mmc->version == MMC_VERSION_UNKNOWN) { int version = (cmd.response[0] >> 26) & 0xf; switch (version) { case 0: mmc->version = MMC_VERSION_1_2; break; case 1: mmc->version = MMC_VERSION_1_4; break; case 2: mmc->version = MMC_VERSION_2_2; break; case 3: mmc->version = MMC_VERSION_3; break; case 4: mmc->version = MMC_VERSION_4; break; default: mmc->version = MMC_VERSION_1_2; break; } } /* divide frequency by 10, since the mults are 10x bigger */ freq = fbase[(cmd.response[0] & 0x7)]; mult = multipliers[((cmd.response[0] >> 3) & 0xf)]; mmc->legacy_speed = freq * mult; mmc_select_mode(mmc, MMC_LEGACY); mmc->dsr_imp = ((cmd.response[1] >> 12) & 0x1); mmc->read_bl_len = 1 << ((cmd.response[1] >> 16) & 0xf); #if CONFIG_IS_ENABLED(MMC_WRITE) if (IS_SD(mmc)) mmc->write_bl_len = mmc->read_bl_len; else mmc->write_bl_len = 1 << ((cmd.response[3] >> 22) & 0xf); #endif if (mmc->high_capacity) { csize = (mmc->csd[1] & 0x3f) << 16 | (mmc->csd[2] & 0xffff0000) >> 16; cmult = 8; } else { csize = (mmc->csd[1] & 0x3ff) << 2 | (mmc->csd[2] & 0xc0000000) >> 30; cmult = (mmc->csd[2] & 0x00038000) >> 15; } mmc->capacity_user = (csize + 1) << (cmult + 2); mmc->capacity_user *= mmc->read_bl_len; mmc->capacity_boot = 0; mmc->capacity_rpmb = 0; for (i = 0; i < 4; i++) mmc->capacity_gp[i] = 0; if (mmc->read_bl_len > MMC_MAX_BLOCK_LEN) mmc->read_bl_len = MMC_MAX_BLOCK_LEN; #if CONFIG_IS_ENABLED(MMC_WRITE) if (mmc->write_bl_len > MMC_MAX_BLOCK_LEN) mmc->write_bl_len = MMC_MAX_BLOCK_LEN; #endif if ((mmc->dsr_imp) && (0xffffffff != mmc->dsr)) { cmd.cmdidx = MMC_CMD_SET_DSR; cmd.cmdarg = (mmc->dsr & 0xffff) << 16; cmd.resp_type = MMC_RSP_NONE; if (mmc_send_cmd(mmc, &cmd, NULL)) pr_warn("MMC: SET_DSR failed\n"); } /* Select the card, and put it into Transfer Mode */ if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */ cmd.cmdidx = MMC_CMD_SELECT_CARD; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = mmc->rca << 16; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; } /* * For SD, its erase group is always one sector */ #if CONFIG_IS_ENABLED(MMC_WRITE) mmc->erase_grp_size = 1; #endif mmc->part_config = MMCPART_NOAVAILABLE; err = mmc_startup_v4(mmc); if (err) return err; err = mmc_set_capacity(mmc, mmc_get_blk_desc(mmc)->hwpart); if (err) return err; #if CONFIG_IS_ENABLED(MMC_TINY) mmc_set_clock(mmc, mmc->legacy_speed, false); mmc_select_mode(mmc, IS_SD(mmc) ? SD_LEGACY : MMC_LEGACY); mmc_set_bus_width(mmc, 1); #else if (IS_SD(mmc)) { err = sd_get_capabilities(mmc); if (err) return err; err = sd_select_mode_and_width(mmc, mmc->card_caps); } else { err = mmc_get_capabilities(mmc); if (err) return err; mmc_select_mode_and_width(mmc, mmc->card_caps); } #endif if (err) return err; mmc->best_mode = mmc->selected_mode; /* Fix the block length for DDR mode */ if (mmc->ddr_mode) { mmc->read_bl_len = MMC_MAX_BLOCK_LEN; #if CONFIG_IS_ENABLED(MMC_WRITE) mmc->write_bl_len = MMC_MAX_BLOCK_LEN; #endif } /* fill in device description */ bdesc = mmc_get_blk_desc(mmc); bdesc->lun = 0; bdesc->hwpart = 0; bdesc->type = 0; bdesc->blksz = mmc->read_bl_len; bdesc->log2blksz = LOG2(bdesc->blksz); bdesc->lba = lldiv(mmc->capacity, mmc->read_bl_len); #if !defined(CONFIG_SPL_BUILD) || \ (defined(CONFIG_SPL_LIBCOMMON_SUPPORT) && \ !CONFIG_IS_ENABLED(USE_TINY_PRINTF)) sprintf(bdesc->vendor, "Man %06x Snr %04x%04x", mmc->cid[0] >> 24, (mmc->cid[2] & 0xffff), (mmc->cid[3] >> 16) & 0xffff); sprintf(bdesc->product, "%c%c%c%c%c%c", mmc->cid[0] & 0xff, (mmc->cid[1] >> 24), (mmc->cid[1] >> 16) & 0xff, (mmc->cid[1] >> 8) & 0xff, mmc->cid[1] & 0xff, (mmc->cid[2] >> 24) & 0xff); sprintf(bdesc->revision, "%d.%d", (mmc->cid[2] >> 20) & 0xf, (mmc->cid[2] >> 16) & 0xf); #else bdesc->vendor[0] = 0; bdesc->product[0] = 0; bdesc->revision[0] = 0; #endif #if !defined(CONFIG_DM_MMC) && (!defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBDISK_SUPPORT)) part_init(bdesc); #endif return 0; } static int mmc_send_if_cond(struct mmc *mmc) { struct mmc_cmd cmd; int err; cmd.cmdidx = SD_CMD_SEND_IF_COND; /* We set the bit if the host supports voltages between 2.7 and 3.6 V */ cmd.cmdarg = ((mmc->cfg->voltages & 0xff8000) != 0) << 8 | 0xaa; cmd.resp_type = MMC_RSP_R7; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; if ((cmd.response[0] & 0xff) != 0xaa) return -EOPNOTSUPP; else mmc->version = SD_VERSION_2; return 0; } #if !CONFIG_IS_ENABLED(DM_MMC) /* board-specific MMC power initializations. */ __weak void board_mmc_power_init(void) { } #endif static int mmc_power_init(struct mmc *mmc) { #if CONFIG_IS_ENABLED(DM_MMC) #if CONFIG_IS_ENABLED(DM_REGULATOR) int ret; ret = device_get_supply_regulator(mmc->dev, "vmmc-supply", &mmc->vmmc_supply); if (ret) pr_debug("%s: No vmmc supply\n", mmc->dev->name); ret = device_get_supply_regulator(mmc->dev, "vqmmc-supply", &mmc->vqmmc_supply); if (ret) pr_debug("%s: No vqmmc supply\n", mmc->dev->name); #endif #else /* !CONFIG_DM_MMC */ /* * Driver model should use a regulator, as above, rather than calling * out to board code. */ board_mmc_power_init(); #endif return 0; } /* * put the host in the initial state: * - turn on Vdd (card power supply) * - configure the bus width and clock to minimal values */ static void mmc_set_initial_state(struct mmc *mmc) { int err; /* First try to set 3.3V. If it fails set to 1.8V */ err = mmc_set_signal_voltage(mmc, MMC_SIGNAL_VOLTAGE_330); if (err != 0) err = mmc_set_signal_voltage(mmc, MMC_SIGNAL_VOLTAGE_180); if (err != 0) pr_warn("mmc: failed to set signal voltage\n"); mmc_select_mode(mmc, MMC_LEGACY); mmc_set_bus_width(mmc, 1); mmc_set_clock(mmc, 0, MMC_CLK_ENABLE); } static int mmc_power_on(struct mmc *mmc) { #if CONFIG_IS_ENABLED(DM_MMC) && CONFIG_IS_ENABLED(DM_REGULATOR) if (mmc->vmmc_supply) { int ret = regulator_set_enable(mmc->vmmc_supply, true); if (ret) { puts("Error enabling VMMC supply\n"); return ret; } } #endif return 0; } static int mmc_power_off(struct mmc *mmc) { mmc_set_clock(mmc, 0, MMC_CLK_DISABLE); #if CONFIG_IS_ENABLED(DM_MMC) && CONFIG_IS_ENABLED(DM_REGULATOR) if (mmc->vmmc_supply) { int ret = regulator_set_enable(mmc->vmmc_supply, false); if (ret) { pr_debug("Error disabling VMMC supply\n"); return ret; } } #endif return 0; } static int mmc_power_cycle(struct mmc *mmc) { int ret; ret = mmc_power_off(mmc); if (ret) return ret; ret = mmc_host_power_cycle(mmc); if (ret) return ret; /* * SD spec recommends at least 1ms of delay. Let's wait for 2ms * to be on the safer side. */ udelay(2000); return mmc_power_on(mmc); } int mmc_get_op_cond(struct mmc *mmc) { bool uhs_en = supports_uhs(mmc->cfg->host_caps); int err; if (mmc->has_init) return 0; #ifdef CONFIG_FSL_ESDHC_ADAPTER_IDENT mmc_adapter_card_type_ident(); #endif err = mmc_power_init(mmc); if (err) return err; #ifdef CONFIG_MMC_QUIRKS mmc->quirks = MMC_QUIRK_RETRY_SET_BLOCKLEN | MMC_QUIRK_RETRY_SEND_CID; #endif err = mmc_power_cycle(mmc); if (err) { /* * if power cycling is not supported, we should not try * to use the UHS modes, because we wouldn't be able to * recover from an error during the UHS initialization. */ pr_debug("Unable to do a full power cycle. Disabling the UHS modes for safety\n"); uhs_en = false; mmc->host_caps &= ~UHS_CAPS; err = mmc_power_on(mmc); } if (err) return err; #if CONFIG_IS_ENABLED(DM_MMC) /* The device has already been probed ready for use */ #else /* made sure it's not NULL earlier */ err = mmc->cfg->ops->init(mmc); if (err) return err; #endif mmc->ddr_mode = 0; retry: mmc_set_initial_state(mmc); /* Reset the Card */ err = mmc_go_idle(mmc); if (err) return err; /* The internal partition reset to user partition(0) at every CMD0*/ mmc_get_blk_desc(mmc)->hwpart = 0; /* Test for SD version 2 */ err = mmc_send_if_cond(mmc); /* Now try to get the SD card's operating condition */ err = sd_send_op_cond(mmc, uhs_en); if (err && uhs_en) { uhs_en = false; mmc_power_cycle(mmc); goto retry; } /* If the command timed out, we check for an MMC card */ if (err == -ETIMEDOUT) { err = mmc_send_op_cond(mmc); if (err) { #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) pr_err("Card did not respond to voltage select!\n"); #endif return -EOPNOTSUPP; } } return err; } int mmc_start_init(struct mmc *mmc) { bool no_card; int err = 0; /* * all hosts are capable of 1 bit bus-width and able to use the legacy * timings. */ mmc->host_caps = mmc->cfg->host_caps | MMC_CAP(SD_LEGACY) | MMC_CAP(MMC_LEGACY) | MMC_MODE_1BIT; #if !defined(CONFIG_MMC_BROKEN_CD) no_card = mmc_getcd(mmc) == 0; #else no_card = 0; #endif #if !CONFIG_IS_ENABLED(DM_MMC) /* we pretend there's no card when init is NULL */ no_card = no_card || (mmc->cfg->ops->init == NULL); #endif if (no_card) { mmc->has_init = 0; #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) pr_err("MMC: no card present\n"); #endif return -ENOMEDIUM; } err = mmc_get_op_cond(mmc); if (!err) mmc->init_in_progress = 1; return err; } static int mmc_complete_init(struct mmc *mmc) { int err = 0; mmc->init_in_progress = 0; if (mmc->op_cond_pending) err = mmc_complete_op_cond(mmc); if (!err) err = mmc_startup(mmc); if (err) mmc->has_init = 0; else mmc->has_init = 1; return err; } int mmc_init(struct mmc *mmc) { int err = 0; __maybe_unused ulong start; #if CONFIG_IS_ENABLED(DM_MMC) struct mmc_uclass_priv *upriv = dev_get_uclass_priv(mmc->dev); upriv->mmc = mmc; #endif if (mmc->has_init) return 0; start = get_timer(0); if (!mmc->init_in_progress) err = mmc_start_init(mmc); if (!err) err = mmc_complete_init(mmc); if (err) pr_info("%s: %d, time %lu\n", __func__, err, get_timer(start)); return err; } #if CONFIG_IS_ENABLED(MMC_UHS_SUPPORT) || \ CONFIG_IS_ENABLED(MMC_HS200_SUPPORT) || \ CONFIG_IS_ENABLED(MMC_HS400_SUPPORT) int mmc_deinit(struct mmc *mmc) { u32 caps_filtered; if (!mmc->has_init) return 0; if (IS_SD(mmc)) { caps_filtered = mmc->card_caps & ~(MMC_CAP(UHS_SDR12) | MMC_CAP(UHS_SDR25) | MMC_CAP(UHS_SDR50) | MMC_CAP(UHS_DDR50) | MMC_CAP(UHS_SDR104)); return sd_select_mode_and_width(mmc, caps_filtered); } else { caps_filtered = mmc->card_caps & ~(MMC_CAP(MMC_HS_200) | MMC_CAP(MMC_HS_400)); return mmc_select_mode_and_width(mmc, caps_filtered); } } #endif int mmc_set_dsr(struct mmc *mmc, u16 val) { mmc->dsr = val; return 0; } /* CPU-specific MMC initializations */ __weak int cpu_mmc_init(bd_t *bis) { return -1; } /* board-specific MMC initializations. */ __weak int board_mmc_init(bd_t *bis) { return -1; } void mmc_set_preinit(struct mmc *mmc, int preinit) { mmc->preinit = preinit; } #if CONFIG_IS_ENABLED(DM_MMC) static int mmc_probe(bd_t *bis) { int ret, i; struct uclass *uc; struct udevice *dev; ret = uclass_get(UCLASS_MMC, &uc); if (ret) return ret; /* * Try to add them in sequence order. Really with driver model we * should allow holes, but the current MMC list does not allow that. * So if we request 0, 1, 3 we will get 0, 1, 2. */ for (i = 0; ; i++) { ret = uclass_get_device_by_seq(UCLASS_MMC, i, &dev); if (ret == -ENODEV) break; } uclass_foreach_dev(dev, uc) { ret = device_probe(dev); if (ret) pr_err("%s - probe failed: %d\n", dev->name, ret); } return 0; } #else static int mmc_probe(bd_t *bis) { if (board_mmc_init(bis) < 0) cpu_mmc_init(bis); return 0; } #endif int mmc_initialize(bd_t *bis) { static int initialized = 0; int ret; if (initialized) /* Avoid initializing mmc multiple times */ return 0; initialized = 1; #if !CONFIG_IS_ENABLED(BLK) #if !CONFIG_IS_ENABLED(MMC_TINY) mmc_list_init(); #endif #endif ret = mmc_probe(bis); if (ret) return ret; #ifndef CONFIG_SPL_BUILD print_mmc_devices(','); #endif mmc_do_preinit(); return 0; } #if CONFIG_IS_ENABLED(DM_MMC) int mmc_init_device(int num) { struct udevice *dev; struct mmc *m; int ret; ret = uclass_get_device(UCLASS_MMC, num, &dev); if (ret) return ret; m = mmc_get_mmc_dev(dev); if (!m) return 0; #ifdef CONFIG_FSL_ESDHC_ADAPTER_IDENT mmc_set_preinit(m, 1); #endif if (m->preinit) mmc_start_init(m); return 0; } #endif #ifdef CONFIG_CMD_BKOPS_ENABLE int mmc_set_bkops_enable(struct mmc *mmc) { int err; ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN); err = mmc_send_ext_csd(mmc, ext_csd); if (err) { puts("Could not get ext_csd register values\n"); return err; } if (!(ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1)) { puts("Background operations not supported on device\n"); return -EMEDIUMTYPE; } if (ext_csd[EXT_CSD_BKOPS_EN] & 0x1) { puts("Background operations already enabled\n"); return 0; } err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BKOPS_EN, 1); if (err) { puts("Failed to enable manual background operations\n"); return err; } puts("Enabled manual background operations\n"); return 0; } #endif