/* * Copyright 2008, Freescale Semiconductor, Inc * Andy Fleming * * Based vaguely on the Linux code * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include #include #include #include "mmc_private.h" static struct list_head mmc_devices; static int cur_dev_num = -1; __weak int board_mmc_getwp(struct mmc *mmc) { return -1; } int mmc_getwp(struct mmc *mmc) { int wp; wp = board_mmc_getwp(mmc); if (wp < 0) { if (mmc->cfg->ops->getwp) wp = mmc->cfg->ops->getwp(mmc); else wp = 0; } return wp; } __weak int board_mmc_getcd(struct mmc *mmc) { return -1; } int mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data) { int ret; #ifdef CONFIG_MMC_TRACE int i; u8 *ptr; printf("CMD_SEND:%d\n", cmd->cmdidx); printf("\t\tARG\t\t\t 0x%08X\n", cmd->cmdarg); ret = mmc->cfg->ops->send_cmd(mmc, cmd, data); if (ret) { printf("\t\tRET\t\t\t %d\n", ret); } else { switch (cmd->resp_type) { case MMC_RSP_NONE: printf("\t\tMMC_RSP_NONE\n"); break; case MMC_RSP_R1: printf("\t\tMMC_RSP_R1,5,6,7 \t 0x%08X \n", cmd->response[0]); break; case MMC_RSP_R1b: printf("\t\tMMC_RSP_R1b\t\t 0x%08X \n", cmd->response[0]); break; case MMC_RSP_R2: printf("\t\tMMC_RSP_R2\t\t 0x%08X \n", cmd->response[0]); printf("\t\t \t\t 0x%08X \n", cmd->response[1]); printf("\t\t \t\t 0x%08X \n", cmd->response[2]); printf("\t\t \t\t 0x%08X \n", cmd->response[3]); printf("\n"); printf("\t\t\t\t\tDUMPING DATA\n"); for (i = 0; i < 4; i++) { int j; printf("\t\t\t\t\t%03d - ", i*4); ptr = (u8 *)&cmd->response[i]; ptr += 3; for (j = 0; j < 4; j++) printf("%02X ", *ptr--); printf("\n"); } break; case MMC_RSP_R3: printf("\t\tMMC_RSP_R3,4\t\t 0x%08X \n", cmd->response[0]); break; default: printf("\t\tERROR MMC rsp not supported\n"); break; } } #else ret = mmc->cfg->ops->send_cmd(mmc, cmd, data); #endif return ret; } int mmc_send_status(struct mmc *mmc, int timeout) { struct mmc_cmd cmd; int err, retries = 5; #ifdef CONFIG_MMC_TRACE int status; #endif cmd.cmdidx = MMC_CMD_SEND_STATUS; cmd.resp_type = MMC_RSP_R1; if (!mmc_host_is_spi(mmc)) cmd.cmdarg = mmc->rca << 16; while (1) { err = mmc_send_cmd(mmc, &cmd, NULL); if (!err) { if ((cmd.response[0] & MMC_STATUS_RDY_FOR_DATA) && (cmd.response[0] & MMC_STATUS_CURR_STATE) != MMC_STATE_PRG) break; else if (cmd.response[0] & MMC_STATUS_MASK) { #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) printf("Status Error: 0x%08X\n", cmd.response[0]); #endif return COMM_ERR; } } else if (--retries < 0) return err; if (timeout-- <= 0) break; udelay(1000); } #ifdef CONFIG_MMC_TRACE status = (cmd.response[0] & MMC_STATUS_CURR_STATE) >> 9; printf("CURR STATE:%d\n", status); #endif if (timeout <= 0) { #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) printf("Timeout waiting card ready\n"); #endif return TIMEOUT; } if (cmd.response[0] & MMC_STATUS_SWITCH_ERROR) return SWITCH_ERR; return 0; } int mmc_set_blocklen(struct mmc *mmc, int len) { struct mmc_cmd cmd; if (mmc->ddr_mode) return 0; cmd.cmdidx = MMC_CMD_SET_BLOCKLEN; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = len; return mmc_send_cmd(mmc, &cmd, NULL); } struct mmc *find_mmc_device(int dev_num) { struct mmc *m; struct list_head *entry; list_for_each(entry, &mmc_devices) { m = list_entry(entry, struct mmc, link); if (m->block_dev.devnum == dev_num) return m; } #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) printf("MMC Device %d not found\n", dev_num); #endif return NULL; } static int mmc_read_blocks(struct mmc *mmc, void *dst, lbaint_t start, lbaint_t blkcnt) { struct mmc_cmd cmd; struct mmc_data data; if (blkcnt > 1) cmd.cmdidx = MMC_CMD_READ_MULTIPLE_BLOCK; else cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK; if (mmc->high_capacity) cmd.cmdarg = start; else cmd.cmdarg = start * mmc->read_bl_len; cmd.resp_type = MMC_RSP_R1; data.dest = dst; data.blocks = blkcnt; data.blocksize = mmc->read_bl_len; data.flags = MMC_DATA_READ; if (mmc_send_cmd(mmc, &cmd, &data)) return 0; if (blkcnt > 1) { cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION; cmd.cmdarg = 0; cmd.resp_type = MMC_RSP_R1b; if (mmc_send_cmd(mmc, &cmd, NULL)) { #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) printf("mmc fail to send stop cmd\n"); #endif return 0; } } return blkcnt; } static ulong mmc_bread(struct blk_desc *block_dev, lbaint_t start, lbaint_t blkcnt, void *dst) { int dev_num = block_dev->devnum; int err; lbaint_t cur, blocks_todo = blkcnt; if (blkcnt == 0) return 0; struct mmc *mmc = find_mmc_device(dev_num); if (!mmc) return 0; err = mmc_select_hwpart(dev_num, block_dev->hwpart); if (err < 0) return 0; if ((start + blkcnt) > mmc->block_dev.lba) { #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) printf("MMC: block number 0x" LBAF " exceeds max(0x" LBAF ")\n", start + blkcnt, mmc->block_dev.lba); #endif return 0; } if (mmc_set_blocklen(mmc, mmc->read_bl_len)) { debug("%s: Failed to set blocklen\n", __func__); return 0; } do { cur = (blocks_todo > mmc->cfg->b_max) ? mmc->cfg->b_max : blocks_todo; if (mmc_read_blocks(mmc, dst, start, cur) != cur) { debug("%s: Failed to read blocks\n", __func__); return 0; } blocks_todo -= cur; start += cur; dst += cur * mmc->read_bl_len; } while (blocks_todo > 0); return blkcnt; } static int mmc_go_idle(struct mmc *mmc) { struct mmc_cmd cmd; int err; udelay(1000); cmd.cmdidx = MMC_CMD_GO_IDLE_STATE; cmd.cmdarg = 0; cmd.resp_type = MMC_RSP_NONE; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; udelay(2000); return 0; } static int sd_send_op_cond(struct mmc *mmc) { int timeout = 1000; int err; struct mmc_cmd cmd; while (1) { cmd.cmdidx = MMC_CMD_APP_CMD; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; cmd.cmdidx = SD_CMD_APP_SEND_OP_COND; cmd.resp_type = MMC_RSP_R3; /* * Most cards do not answer if some reserved bits * in the ocr are set. However, Some controller * can set bit 7 (reserved for low voltages), but * how to manage low voltages SD card is not yet * specified. */ cmd.cmdarg = mmc_host_is_spi(mmc) ? 0 : (mmc->cfg->voltages & 0xff8000); if (mmc->version == SD_VERSION_2) cmd.cmdarg |= OCR_HCS; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; if (cmd.response[0] & OCR_BUSY) break; if (timeout-- <= 0) return UNUSABLE_ERR; udelay(1000); } if (mmc->version != SD_VERSION_2) mmc->version = SD_VERSION_1_0; if (mmc_host_is_spi(mmc)) { /* read OCR for spi */ cmd.cmdidx = MMC_CMD_SPI_READ_OCR; cmd.resp_type = MMC_RSP_R3; cmd.cmdarg = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; } mmc->ocr = cmd.response[0]; mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS); mmc->rca = 0; return 0; } static int mmc_send_op_cond_iter(struct mmc *mmc, int use_arg) { struct mmc_cmd cmd; int err; cmd.cmdidx = MMC_CMD_SEND_OP_COND; cmd.resp_type = MMC_RSP_R3; cmd.cmdarg = 0; if (use_arg && !mmc_host_is_spi(mmc)) cmd.cmdarg = OCR_HCS | (mmc->cfg->voltages & (mmc->ocr & OCR_VOLTAGE_MASK)) | (mmc->ocr & OCR_ACCESS_MODE); err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; mmc->ocr = cmd.response[0]; return 0; } static int mmc_send_op_cond(struct mmc *mmc) { int err, i; /* Some cards seem to need this */ mmc_go_idle(mmc); /* Asking to the card its capabilities */ for (i = 0; i < 2; i++) { err = mmc_send_op_cond_iter(mmc, i != 0); if (err) return err; /* exit if not busy (flag seems to be inverted) */ if (mmc->ocr & OCR_BUSY) break; } mmc->op_cond_pending = 1; return 0; } static int mmc_complete_op_cond(struct mmc *mmc) { struct mmc_cmd cmd; int timeout = 1000; uint start; int err; mmc->op_cond_pending = 0; if (!(mmc->ocr & OCR_BUSY)) { start = get_timer(0); while (1) { err = mmc_send_op_cond_iter(mmc, 1); if (err) return err; if (mmc->ocr & OCR_BUSY) break; if (get_timer(start) > timeout) return UNUSABLE_ERR; udelay(100); } } if (mmc_host_is_spi(mmc)) { /* read OCR for spi */ cmd.cmdidx = MMC_CMD_SPI_READ_OCR; cmd.resp_type = MMC_RSP_R3; cmd.cmdarg = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; mmc->ocr = cmd.response[0]; } mmc->version = MMC_VERSION_UNKNOWN; mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS); mmc->rca = 1; return 0; } static int mmc_send_ext_csd(struct mmc *mmc, u8 *ext_csd) { struct mmc_cmd cmd; struct mmc_data data; int err; /* Get the Card Status Register */ cmd.cmdidx = MMC_CMD_SEND_EXT_CSD; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = 0; data.dest = (char *)ext_csd; data.blocks = 1; data.blocksize = MMC_MAX_BLOCK_LEN; data.flags = MMC_DATA_READ; err = mmc_send_cmd(mmc, &cmd, &data); return err; } static int mmc_switch(struct mmc *mmc, u8 set, u8 index, u8 value) { struct mmc_cmd cmd; int timeout = 1000; int ret; cmd.cmdidx = MMC_CMD_SWITCH; cmd.resp_type = MMC_RSP_R1b; cmd.cmdarg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | (index << 16) | (value << 8); ret = mmc_send_cmd(mmc, &cmd, NULL); /* Waiting for the ready status */ if (!ret) ret = mmc_send_status(mmc, timeout); return ret; } static int mmc_change_freq(struct mmc *mmc) { ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN); char cardtype; int err; mmc->card_caps = 0; if (mmc_host_is_spi(mmc)) return 0; /* Only version 4 supports high-speed */ if (mmc->version < MMC_VERSION_4) return 0; mmc->card_caps |= MMC_MODE_4BIT | MMC_MODE_8BIT; err = mmc_send_ext_csd(mmc, ext_csd); if (err) return err; cardtype = ext_csd[EXT_CSD_CARD_TYPE] & 0xf; err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1); if (err) return err == SWITCH_ERR ? 0 : err; /* Now check to see that it worked */ err = mmc_send_ext_csd(mmc, ext_csd); if (err) return err; /* No high-speed support */ if (!ext_csd[EXT_CSD_HS_TIMING]) return 0; /* High Speed is set, there are two types: 52MHz and 26MHz */ if (cardtype & EXT_CSD_CARD_TYPE_52) { if (cardtype & EXT_CSD_CARD_TYPE_DDR_1_8V) mmc->card_caps |= MMC_MODE_DDR_52MHz; mmc->card_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS; } else { mmc->card_caps |= MMC_MODE_HS; } return 0; } static int mmc_set_capacity(struct mmc *mmc, int part_num) { switch (part_num) { case 0: mmc->capacity = mmc->capacity_user; break; case 1: case 2: mmc->capacity = mmc->capacity_boot; break; case 3: mmc->capacity = mmc->capacity_rpmb; break; case 4: case 5: case 6: case 7: mmc->capacity = mmc->capacity_gp[part_num - 4]; break; default: return -1; } mmc->block_dev.lba = lldiv(mmc->capacity, mmc->read_bl_len); return 0; } int mmc_switch_part(int dev_num, unsigned int part_num) { struct mmc *mmc = find_mmc_device(dev_num); int ret; if (!mmc) return -1; ret = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONF, (mmc->part_config & ~PART_ACCESS_MASK) | (part_num & PART_ACCESS_MASK)); /* * Set the capacity if the switch succeeded or was intended * to return to representing the raw device. */ if ((ret == 0) || ((ret == -ENODEV) && (part_num == 0))) { ret = mmc_set_capacity(mmc, part_num); mmc->block_dev.hwpart = part_num; } return ret; } int mmc_select_hwpart(int dev_num, int hwpart) { struct mmc *mmc = find_mmc_device(dev_num); int ret; if (!mmc) return -ENODEV; if (mmc->block_dev.hwpart == hwpart) return 0; if (mmc->part_config == MMCPART_NOAVAILABLE) return -EMEDIUMTYPE; ret = mmc_switch_part(dev_num, hwpart); if (ret) return ret; return 0; } int mmc_hwpart_config(struct mmc *mmc, const struct mmc_hwpart_conf *conf, enum mmc_hwpart_conf_mode mode) { u8 part_attrs = 0; u32 enh_size_mult; u32 enh_start_addr; u32 gp_size_mult[4]; u32 max_enh_size_mult; u32 tot_enh_size_mult = 0; u8 wr_rel_set; int i, pidx, err; ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN); if (mode < MMC_HWPART_CONF_CHECK || mode > MMC_HWPART_CONF_COMPLETE) return -EINVAL; if (IS_SD(mmc) || (mmc->version < MMC_VERSION_4_41)) { printf("eMMC >= 4.4 required for enhanced user data area\n"); return -EMEDIUMTYPE; } if (!(mmc->part_support & PART_SUPPORT)) { printf("Card does not support partitioning\n"); return -EMEDIUMTYPE; } if (!mmc->hc_wp_grp_size) { printf("Card does not define HC WP group size\n"); return -EMEDIUMTYPE; } /* check partition alignment and total enhanced size */ if (conf->user.enh_size) { if (conf->user.enh_size % mmc->hc_wp_grp_size || conf->user.enh_start % mmc->hc_wp_grp_size) { printf("User data enhanced area not HC WP group " "size aligned\n"); return -EINVAL; } part_attrs |= EXT_CSD_ENH_USR; enh_size_mult = conf->user.enh_size / mmc->hc_wp_grp_size; if (mmc->high_capacity) { enh_start_addr = conf->user.enh_start; } else { enh_start_addr = (conf->user.enh_start << 9); } } else { enh_size_mult = 0; enh_start_addr = 0; } tot_enh_size_mult += enh_size_mult; for (pidx = 0; pidx < 4; pidx++) { if (conf->gp_part[pidx].size % mmc->hc_wp_grp_size) { printf("GP%i partition not HC WP group size " "aligned\n", pidx+1); return -EINVAL; } gp_size_mult[pidx] = conf->gp_part[pidx].size / mmc->hc_wp_grp_size; if (conf->gp_part[pidx].size && conf->gp_part[pidx].enhanced) { part_attrs |= EXT_CSD_ENH_GP(pidx); tot_enh_size_mult += gp_size_mult[pidx]; } } if (part_attrs && ! (mmc->part_support & ENHNCD_SUPPORT)) { printf("Card does not support enhanced attribute\n"); return -EMEDIUMTYPE; } err = mmc_send_ext_csd(mmc, ext_csd); if (err) return err; max_enh_size_mult = (ext_csd[EXT_CSD_MAX_ENH_SIZE_MULT+2] << 16) + (ext_csd[EXT_CSD_MAX_ENH_SIZE_MULT+1] << 8) + ext_csd[EXT_CSD_MAX_ENH_SIZE_MULT]; if (tot_enh_size_mult > max_enh_size_mult) { printf("Total enhanced size exceeds maximum (%u > %u)\n", tot_enh_size_mult, max_enh_size_mult); return -EMEDIUMTYPE; } /* The default value of EXT_CSD_WR_REL_SET is device * dependent, the values can only be changed if the * EXT_CSD_HS_CTRL_REL bit is set. The values can be * changed only once and before partitioning is completed. */ wr_rel_set = ext_csd[EXT_CSD_WR_REL_SET]; if (conf->user.wr_rel_change) { if (conf->user.wr_rel_set) wr_rel_set |= EXT_CSD_WR_DATA_REL_USR; else wr_rel_set &= ~EXT_CSD_WR_DATA_REL_USR; } for (pidx = 0; pidx < 4; pidx++) { if (conf->gp_part[pidx].wr_rel_change) { if (conf->gp_part[pidx].wr_rel_set) wr_rel_set |= EXT_CSD_WR_DATA_REL_GP(pidx); else wr_rel_set &= ~EXT_CSD_WR_DATA_REL_GP(pidx); } } if (wr_rel_set != ext_csd[EXT_CSD_WR_REL_SET] && !(ext_csd[EXT_CSD_WR_REL_PARAM] & EXT_CSD_HS_CTRL_REL)) { puts("Card does not support host controlled partition write " "reliability settings\n"); return -EMEDIUMTYPE; } if (ext_csd[EXT_CSD_PARTITION_SETTING] & EXT_CSD_PARTITION_SETTING_COMPLETED) { printf("Card already partitioned\n"); return -EPERM; } if (mode == MMC_HWPART_CONF_CHECK) return 0; /* Partitioning requires high-capacity size definitions */ if (!(ext_csd[EXT_CSD_ERASE_GROUP_DEF] & 0x01)) { err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_ERASE_GROUP_DEF, 1); if (err) return err; ext_csd[EXT_CSD_ERASE_GROUP_DEF] = 1; /* update erase group size to be high-capacity */ mmc->erase_grp_size = ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] * 1024; } /* all OK, write the configuration */ for (i = 0; i < 4; i++) { err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_ENH_START_ADDR+i, (enh_start_addr >> (i*8)) & 0xFF); if (err) return err; } for (i = 0; i < 3; i++) { err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_ENH_SIZE_MULT+i, (enh_size_mult >> (i*8)) & 0xFF); if (err) return err; } for (pidx = 0; pidx < 4; pidx++) { for (i = 0; i < 3; i++) { err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_GP_SIZE_MULT+pidx*3+i, (gp_size_mult[pidx] >> (i*8)) & 0xFF); if (err) return err; } } err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PARTITIONS_ATTRIBUTE, part_attrs); if (err) return err; if (mode == MMC_HWPART_CONF_SET) return 0; /* The WR_REL_SET is a write-once register but shall be * written before setting PART_SETTING_COMPLETED. As it is * write-once we can only write it when completing the * partitioning. */ if (wr_rel_set != ext_csd[EXT_CSD_WR_REL_SET]) { err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_WR_REL_SET, wr_rel_set); if (err) return err; } /* Setting PART_SETTING_COMPLETED confirms the partition * configuration but it only becomes effective after power * cycle, so we do not adjust the partition related settings * in the mmc struct. */ err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PARTITION_SETTING, EXT_CSD_PARTITION_SETTING_COMPLETED); if (err) return err; return 0; } int mmc_getcd(struct mmc *mmc) { int cd; cd = board_mmc_getcd(mmc); if (cd < 0) { if (mmc->cfg->ops->getcd) cd = mmc->cfg->ops->getcd(mmc); else cd = 1; } return cd; } static int sd_switch(struct mmc *mmc, int mode, int group, u8 value, u8 *resp) { struct mmc_cmd cmd; struct mmc_data data; /* Switch the frequency */ cmd.cmdidx = SD_CMD_SWITCH_FUNC; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = (mode << 31) | 0xffffff; cmd.cmdarg &= ~(0xf << (group * 4)); cmd.cmdarg |= value << (group * 4); data.dest = (char *)resp; data.blocksize = 64; data.blocks = 1; data.flags = MMC_DATA_READ; return mmc_send_cmd(mmc, &cmd, &data); } static int sd_change_freq(struct mmc *mmc) { int err; struct mmc_cmd cmd; ALLOC_CACHE_ALIGN_BUFFER(uint, scr, 2); ALLOC_CACHE_ALIGN_BUFFER(uint, switch_status, 16); struct mmc_data data; int timeout; mmc->card_caps = 0; if (mmc_host_is_spi(mmc)) return 0; /* Read the SCR to find out if this card supports higher speeds */ cmd.cmdidx = MMC_CMD_APP_CMD; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = mmc->rca << 16; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; cmd.cmdidx = SD_CMD_APP_SEND_SCR; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = 0; timeout = 3; retry_scr: data.dest = (char *)scr; data.blocksize = 8; data.blocks = 1; data.flags = MMC_DATA_READ; err = mmc_send_cmd(mmc, &cmd, &data); if (err) { if (timeout--) goto retry_scr; return err; } mmc->scr[0] = __be32_to_cpu(scr[0]); mmc->scr[1] = __be32_to_cpu(scr[1]); switch ((mmc->scr[0] >> 24) & 0xf) { case 0: mmc->version = SD_VERSION_1_0; break; case 1: mmc->version = SD_VERSION_1_10; break; case 2: mmc->version = SD_VERSION_2; if ((mmc->scr[0] >> 15) & 0x1) mmc->version = SD_VERSION_3; break; default: mmc->version = SD_VERSION_1_0; break; } if (mmc->scr[0] & SD_DATA_4BIT) mmc->card_caps |= MMC_MODE_4BIT; /* Version 1.0 doesn't support switching */ if (mmc->version == SD_VERSION_1_0) return 0; timeout = 4; while (timeout--) { err = sd_switch(mmc, SD_SWITCH_CHECK, 0, 1, (u8 *)switch_status); if (err) return err; /* The high-speed function is busy. Try again */ if (!(__be32_to_cpu(switch_status[7]) & SD_HIGHSPEED_BUSY)) break; } /* If high-speed isn't supported, we return */ if (!(__be32_to_cpu(switch_status[3]) & SD_HIGHSPEED_SUPPORTED)) return 0; /* * If the host doesn't support SD_HIGHSPEED, do not switch card to * HIGHSPEED mode even if the card support SD_HIGHSPPED. * This can avoid furthur problem when the card runs in different * mode between the host. */ if (!((mmc->cfg->host_caps & MMC_MODE_HS_52MHz) && (mmc->cfg->host_caps & MMC_MODE_HS))) return 0; err = sd_switch(mmc, SD_SWITCH_SWITCH, 0, 1, (u8 *)switch_status); if (err) return err; if ((__be32_to_cpu(switch_status[4]) & 0x0f000000) == 0x01000000) mmc->card_caps |= MMC_MODE_HS; return 0; } /* frequency bases */ /* divided by 10 to be nice to platforms without floating point */ static const int fbase[] = { 10000, 100000, 1000000, 10000000, }; /* Multiplier values for TRAN_SPEED. Multiplied by 10 to be nice * to platforms without floating point. */ static const int multipliers[] = { 0, /* reserved */ 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, }; static void mmc_set_ios(struct mmc *mmc) { if (mmc->cfg->ops->set_ios) mmc->cfg->ops->set_ios(mmc); } void mmc_set_clock(struct mmc *mmc, uint clock) { if (clock > mmc->cfg->f_max) clock = mmc->cfg->f_max; if (clock < mmc->cfg->f_min) clock = mmc->cfg->f_min; mmc->clock = clock; mmc_set_ios(mmc); } static void mmc_set_bus_width(struct mmc *mmc, uint width) { mmc->bus_width = width; mmc_set_ios(mmc); } static int mmc_startup(struct mmc *mmc) { int err, i; uint mult, freq; u64 cmult, csize, capacity; struct mmc_cmd cmd; ALLOC_CACHE_ALIGN_BUFFER(u8, ext_csd, MMC_MAX_BLOCK_LEN); ALLOC_CACHE_ALIGN_BUFFER(u8, test_csd, MMC_MAX_BLOCK_LEN); int timeout = 1000; bool has_parts = false; bool part_completed; #ifdef CONFIG_MMC_SPI_CRC_ON if (mmc_host_is_spi(mmc)) { /* enable CRC check for spi */ cmd.cmdidx = MMC_CMD_SPI_CRC_ON_OFF; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = 1; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; } #endif /* Put the Card in Identify Mode */ cmd.cmdidx = mmc_host_is_spi(mmc) ? MMC_CMD_SEND_CID : MMC_CMD_ALL_SEND_CID; /* cmd not supported in spi */ cmd.resp_type = MMC_RSP_R2; cmd.cmdarg = 0; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; memcpy(mmc->cid, cmd.response, 16); /* * For MMC cards, set the Relative Address. * For SD cards, get the Relatvie Address. * This also puts the cards into Standby State */ if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */ cmd.cmdidx = SD_CMD_SEND_RELATIVE_ADDR; cmd.cmdarg = mmc->rca << 16; cmd.resp_type = MMC_RSP_R6; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; if (IS_SD(mmc)) mmc->rca = (cmd.response[0] >> 16) & 0xffff; } /* Get the Card-Specific Data */ cmd.cmdidx = MMC_CMD_SEND_CSD; cmd.resp_type = MMC_RSP_R2; cmd.cmdarg = mmc->rca << 16; err = mmc_send_cmd(mmc, &cmd, NULL); /* Waiting for the ready status */ mmc_send_status(mmc, timeout); if (err) return err; mmc->csd[0] = cmd.response[0]; mmc->csd[1] = cmd.response[1]; mmc->csd[2] = cmd.response[2]; mmc->csd[3] = cmd.response[3]; if (mmc->version == MMC_VERSION_UNKNOWN) { int version = (cmd.response[0] >> 26) & 0xf; switch (version) { case 0: mmc->version = MMC_VERSION_1_2; break; case 1: mmc->version = MMC_VERSION_1_4; break; case 2: mmc->version = MMC_VERSION_2_2; break; case 3: mmc->version = MMC_VERSION_3; break; case 4: mmc->version = MMC_VERSION_4; break; default: mmc->version = MMC_VERSION_1_2; break; } } /* divide frequency by 10, since the mults are 10x bigger */ freq = fbase[(cmd.response[0] & 0x7)]; mult = multipliers[((cmd.response[0] >> 3) & 0xf)]; mmc->tran_speed = freq * mult; mmc->dsr_imp = ((cmd.response[1] >> 12) & 0x1); mmc->read_bl_len = 1 << ((cmd.response[1] >> 16) & 0xf); if (IS_SD(mmc)) mmc->write_bl_len = mmc->read_bl_len; else mmc->write_bl_len = 1 << ((cmd.response[3] >> 22) & 0xf); if (mmc->high_capacity) { csize = (mmc->csd[1] & 0x3f) << 16 | (mmc->csd[2] & 0xffff0000) >> 16; cmult = 8; } else { csize = (mmc->csd[1] & 0x3ff) << 2 | (mmc->csd[2] & 0xc0000000) >> 30; cmult = (mmc->csd[2] & 0x00038000) >> 15; } mmc->capacity_user = (csize + 1) << (cmult + 2); mmc->capacity_user *= mmc->read_bl_len; mmc->capacity_boot = 0; mmc->capacity_rpmb = 0; for (i = 0; i < 4; i++) mmc->capacity_gp[i] = 0; if (mmc->read_bl_len > MMC_MAX_BLOCK_LEN) mmc->read_bl_len = MMC_MAX_BLOCK_LEN; if (mmc->write_bl_len > MMC_MAX_BLOCK_LEN) mmc->write_bl_len = MMC_MAX_BLOCK_LEN; if ((mmc->dsr_imp) && (0xffffffff != mmc->dsr)) { cmd.cmdidx = MMC_CMD_SET_DSR; cmd.cmdarg = (mmc->dsr & 0xffff) << 16; cmd.resp_type = MMC_RSP_NONE; if (mmc_send_cmd(mmc, &cmd, NULL)) printf("MMC: SET_DSR failed\n"); } /* Select the card, and put it into Transfer Mode */ if (!mmc_host_is_spi(mmc)) { /* cmd not supported in spi */ cmd.cmdidx = MMC_CMD_SELECT_CARD; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = mmc->rca << 16; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; } /* * For SD, its erase group is always one sector */ mmc->erase_grp_size = 1; mmc->part_config = MMCPART_NOAVAILABLE; if (!IS_SD(mmc) && (mmc->version >= MMC_VERSION_4)) { /* check ext_csd version and capacity */ err = mmc_send_ext_csd(mmc, ext_csd); if (err) return err; if (ext_csd[EXT_CSD_REV] >= 2) { /* * According to the JEDEC Standard, the value of * ext_csd's capacity is valid if the value is more * than 2GB */ capacity = ext_csd[EXT_CSD_SEC_CNT] << 0 | ext_csd[EXT_CSD_SEC_CNT + 1] << 8 | ext_csd[EXT_CSD_SEC_CNT + 2] << 16 | ext_csd[EXT_CSD_SEC_CNT + 3] << 24; capacity *= MMC_MAX_BLOCK_LEN; if ((capacity >> 20) > 2 * 1024) mmc->capacity_user = capacity; } switch (ext_csd[EXT_CSD_REV]) { case 1: mmc->version = MMC_VERSION_4_1; break; case 2: mmc->version = MMC_VERSION_4_2; break; case 3: mmc->version = MMC_VERSION_4_3; break; case 5: mmc->version = MMC_VERSION_4_41; break; case 6: mmc->version = MMC_VERSION_4_5; break; case 7: mmc->version = MMC_VERSION_5_0; break; } /* The partition data may be non-zero but it is only * effective if PARTITION_SETTING_COMPLETED is set in * EXT_CSD, so ignore any data if this bit is not set, * except for enabling the high-capacity group size * definition (see below). */ part_completed = !!(ext_csd[EXT_CSD_PARTITION_SETTING] & EXT_CSD_PARTITION_SETTING_COMPLETED); /* store the partition info of emmc */ mmc->part_support = ext_csd[EXT_CSD_PARTITIONING_SUPPORT]; if ((ext_csd[EXT_CSD_PARTITIONING_SUPPORT] & PART_SUPPORT) || ext_csd[EXT_CSD_BOOT_MULT]) mmc->part_config = ext_csd[EXT_CSD_PART_CONF]; if (part_completed && (ext_csd[EXT_CSD_PARTITIONING_SUPPORT] & ENHNCD_SUPPORT)) mmc->part_attr = ext_csd[EXT_CSD_PARTITIONS_ATTRIBUTE]; mmc->capacity_boot = ext_csd[EXT_CSD_BOOT_MULT] << 17; mmc->capacity_rpmb = ext_csd[EXT_CSD_RPMB_MULT] << 17; for (i = 0; i < 4; i++) { int idx = EXT_CSD_GP_SIZE_MULT + i * 3; uint mult = (ext_csd[idx + 2] << 16) + (ext_csd[idx + 1] << 8) + ext_csd[idx]; if (mult) has_parts = true; if (!part_completed) continue; mmc->capacity_gp[i] = mult; mmc->capacity_gp[i] *= ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; mmc->capacity_gp[i] *= ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; mmc->capacity_gp[i] <<= 19; } if (part_completed) { mmc->enh_user_size = (ext_csd[EXT_CSD_ENH_SIZE_MULT+2] << 16) + (ext_csd[EXT_CSD_ENH_SIZE_MULT+1] << 8) + ext_csd[EXT_CSD_ENH_SIZE_MULT]; mmc->enh_user_size *= ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]; mmc->enh_user_size *= ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; mmc->enh_user_size <<= 19; mmc->enh_user_start = (ext_csd[EXT_CSD_ENH_START_ADDR+3] << 24) + (ext_csd[EXT_CSD_ENH_START_ADDR+2] << 16) + (ext_csd[EXT_CSD_ENH_START_ADDR+1] << 8) + ext_csd[EXT_CSD_ENH_START_ADDR]; if (mmc->high_capacity) mmc->enh_user_start <<= 9; } /* * Host needs to enable ERASE_GRP_DEF bit if device is * partitioned. This bit will be lost every time after a reset * or power off. This will affect erase size. */ if (part_completed) has_parts = true; if ((ext_csd[EXT_CSD_PARTITIONING_SUPPORT] & PART_SUPPORT) && (ext_csd[EXT_CSD_PARTITIONS_ATTRIBUTE] & PART_ENH_ATTRIB)) has_parts = true; if (has_parts) { err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_ERASE_GROUP_DEF, 1); if (err) return err; else ext_csd[EXT_CSD_ERASE_GROUP_DEF] = 1; } if (ext_csd[EXT_CSD_ERASE_GROUP_DEF] & 0x01) { /* Read out group size from ext_csd */ mmc->erase_grp_size = ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] * 1024; /* * if high capacity and partition setting completed * SEC_COUNT is valid even if it is smaller than 2 GiB * JEDEC Standard JESD84-B45, 6.2.4 */ if (mmc->high_capacity && part_completed) { capacity = (ext_csd[EXT_CSD_SEC_CNT]) | (ext_csd[EXT_CSD_SEC_CNT + 1] << 8) | (ext_csd[EXT_CSD_SEC_CNT + 2] << 16) | (ext_csd[EXT_CSD_SEC_CNT + 3] << 24); capacity *= MMC_MAX_BLOCK_LEN; mmc->capacity_user = capacity; } } else { /* Calculate the group size from the csd value. */ int erase_gsz, erase_gmul; erase_gsz = (mmc->csd[2] & 0x00007c00) >> 10; erase_gmul = (mmc->csd[2] & 0x000003e0) >> 5; mmc->erase_grp_size = (erase_gsz + 1) * (erase_gmul + 1); } mmc->hc_wp_grp_size = 1024 * ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] * ext_csd[EXT_CSD_HC_WP_GRP_SIZE]; mmc->wr_rel_set = ext_csd[EXT_CSD_WR_REL_SET]; } err = mmc_set_capacity(mmc, mmc->block_dev.hwpart); if (err) return err; if (IS_SD(mmc)) err = sd_change_freq(mmc); else err = mmc_change_freq(mmc); if (err) return err; /* Restrict card's capabilities by what the host can do */ mmc->card_caps &= mmc->cfg->host_caps; if (IS_SD(mmc)) { if (mmc->card_caps & MMC_MODE_4BIT) { cmd.cmdidx = MMC_CMD_APP_CMD; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = mmc->rca << 16; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; cmd.cmdidx = SD_CMD_APP_SET_BUS_WIDTH; cmd.resp_type = MMC_RSP_R1; cmd.cmdarg = 2; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; mmc_set_bus_width(mmc, 4); } if (mmc->card_caps & MMC_MODE_HS) mmc->tran_speed = 50000000; else mmc->tran_speed = 25000000; } else if (mmc->version >= MMC_VERSION_4) { /* Only version 4 of MMC supports wider bus widths */ int idx; /* An array of possible bus widths in order of preference */ static unsigned ext_csd_bits[] = { EXT_CSD_DDR_BUS_WIDTH_8, EXT_CSD_DDR_BUS_WIDTH_4, EXT_CSD_BUS_WIDTH_8, EXT_CSD_BUS_WIDTH_4, EXT_CSD_BUS_WIDTH_1, }; /* An array to map CSD bus widths to host cap bits */ static unsigned ext_to_hostcaps[] = { [EXT_CSD_DDR_BUS_WIDTH_4] = MMC_MODE_DDR_52MHz | MMC_MODE_4BIT, [EXT_CSD_DDR_BUS_WIDTH_8] = MMC_MODE_DDR_52MHz | MMC_MODE_8BIT, [EXT_CSD_BUS_WIDTH_4] = MMC_MODE_4BIT, [EXT_CSD_BUS_WIDTH_8] = MMC_MODE_8BIT, }; /* An array to map chosen bus width to an integer */ static unsigned widths[] = { 8, 4, 8, 4, 1, }; for (idx=0; idx < ARRAY_SIZE(ext_csd_bits); idx++) { unsigned int extw = ext_csd_bits[idx]; unsigned int caps = ext_to_hostcaps[extw]; /* * If the bus width is still not changed, * don't try to set the default again. * Otherwise, recover from switch attempts * by switching to 1-bit bus width. */ if (extw == EXT_CSD_BUS_WIDTH_1 && mmc->bus_width == 1) { err = 0; break; } /* * Check to make sure the card and controller support * these capabilities */ if ((mmc->card_caps & caps) != caps) continue; err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH, extw); if (err) continue; mmc->ddr_mode = (caps & MMC_MODE_DDR_52MHz) ? 1 : 0; mmc_set_bus_width(mmc, widths[idx]); err = mmc_send_ext_csd(mmc, test_csd); if (err) continue; /* Only compare read only fields */ if (ext_csd[EXT_CSD_PARTITIONING_SUPPORT] == test_csd[EXT_CSD_PARTITIONING_SUPPORT] && ext_csd[EXT_CSD_HC_WP_GRP_SIZE] == test_csd[EXT_CSD_HC_WP_GRP_SIZE] && ext_csd[EXT_CSD_REV] == test_csd[EXT_CSD_REV] && ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] == test_csd[EXT_CSD_HC_ERASE_GRP_SIZE] && memcmp(&ext_csd[EXT_CSD_SEC_CNT], &test_csd[EXT_CSD_SEC_CNT], 4) == 0) break; else err = SWITCH_ERR; } if (err) return err; if (mmc->card_caps & MMC_MODE_HS) { if (mmc->card_caps & MMC_MODE_HS_52MHz) mmc->tran_speed = 52000000; else mmc->tran_speed = 26000000; } } mmc_set_clock(mmc, mmc->tran_speed); /* Fix the block length for DDR mode */ if (mmc->ddr_mode) { mmc->read_bl_len = MMC_MAX_BLOCK_LEN; mmc->write_bl_len = MMC_MAX_BLOCK_LEN; } /* fill in device description */ mmc->block_dev.lun = 0; mmc->block_dev.hwpart = 0; mmc->block_dev.type = 0; mmc->block_dev.blksz = mmc->read_bl_len; mmc->block_dev.log2blksz = LOG2(mmc->block_dev.blksz); mmc->block_dev.lba = lldiv(mmc->capacity, mmc->read_bl_len); #if !defined(CONFIG_SPL_BUILD) || \ (defined(CONFIG_SPL_LIBCOMMON_SUPPORT) && \ !defined(CONFIG_USE_TINY_PRINTF)) sprintf(mmc->block_dev.vendor, "Man %06x Snr %04x%04x", mmc->cid[0] >> 24, (mmc->cid[2] & 0xffff), (mmc->cid[3] >> 16) & 0xffff); sprintf(mmc->block_dev.product, "%c%c%c%c%c%c", mmc->cid[0] & 0xff, (mmc->cid[1] >> 24), (mmc->cid[1] >> 16) & 0xff, (mmc->cid[1] >> 8) & 0xff, mmc->cid[1] & 0xff, (mmc->cid[2] >> 24) & 0xff); sprintf(mmc->block_dev.revision, "%d.%d", (mmc->cid[2] >> 20) & 0xf, (mmc->cid[2] >> 16) & 0xf); #else mmc->block_dev.vendor[0] = 0; mmc->block_dev.product[0] = 0; mmc->block_dev.revision[0] = 0; #endif #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBDISK_SUPPORT) part_init(&mmc->block_dev); #endif return 0; } static int mmc_send_if_cond(struct mmc *mmc) { struct mmc_cmd cmd; int err; cmd.cmdidx = SD_CMD_SEND_IF_COND; /* We set the bit if the host supports voltages between 2.7 and 3.6 V */ cmd.cmdarg = ((mmc->cfg->voltages & 0xff8000) != 0) << 8 | 0xaa; cmd.resp_type = MMC_RSP_R7; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) return err; if ((cmd.response[0] & 0xff) != 0xaa) return UNUSABLE_ERR; else mmc->version = SD_VERSION_2; return 0; } /* not used any more */ int __deprecated mmc_register(struct mmc *mmc) { #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) printf("%s is deprecated! use mmc_create() instead.\n", __func__); #endif return -1; } struct mmc *mmc_create(const struct mmc_config *cfg, void *priv) { struct mmc *mmc; /* quick validation */ if (cfg == NULL || cfg->ops == NULL || cfg->ops->send_cmd == NULL || cfg->f_min == 0 || cfg->f_max == 0 || cfg->b_max == 0) return NULL; mmc = calloc(1, sizeof(*mmc)); if (mmc == NULL) return NULL; mmc->cfg = cfg; mmc->priv = priv; /* the following chunk was mmc_register() */ /* Setup dsr related values */ mmc->dsr_imp = 0; mmc->dsr = 0xffffffff; /* Setup the universal parts of the block interface just once */ mmc->block_dev.if_type = IF_TYPE_MMC; mmc->block_dev.devnum = cur_dev_num++; mmc->block_dev.removable = 1; mmc->block_dev.block_read = mmc_bread; mmc->block_dev.block_write = mmc_bwrite; mmc->block_dev.block_erase = mmc_berase; /* setup initial part type */ mmc->block_dev.part_type = mmc->cfg->part_type; INIT_LIST_HEAD(&mmc->link); list_add_tail(&mmc->link, &mmc_devices); return mmc; } void mmc_destroy(struct mmc *mmc) { /* only freeing memory for now */ free(mmc); } static int mmc_get_dev(int dev, struct blk_desc **descp) { struct mmc *mmc = find_mmc_device(dev); int ret; if (!mmc) return -ENODEV; ret = mmc_init(mmc); if (ret) return ret; *descp = &mmc->block_dev; return 0; } /* board-specific MMC power initializations. */ __weak void board_mmc_power_init(void) { } int mmc_start_init(struct mmc *mmc) { int err; /* we pretend there's no card when init is NULL */ if (mmc_getcd(mmc) == 0 || mmc->cfg->ops->init == NULL) { mmc->has_init = 0; #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) printf("MMC: no card present\n"); #endif return NO_CARD_ERR; } if (mmc->has_init) return 0; #ifdef CONFIG_FSL_ESDHC_ADAPTER_IDENT mmc_adapter_card_type_ident(); #endif board_mmc_power_init(); /* made sure it's not NULL earlier */ err = mmc->cfg->ops->init(mmc); if (err) return err; mmc->ddr_mode = 0; mmc_set_bus_width(mmc, 1); mmc_set_clock(mmc, 1); /* Reset the Card */ err = mmc_go_idle(mmc); if (err) return err; /* The internal partition reset to user partition(0) at every CMD0*/ mmc->block_dev.hwpart = 0; /* Test for SD version 2 */ err = mmc_send_if_cond(mmc); /* Now try to get the SD card's operating condition */ err = sd_send_op_cond(mmc); /* If the command timed out, we check for an MMC card */ if (err == TIMEOUT) { err = mmc_send_op_cond(mmc); if (err) { #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) printf("Card did not respond to voltage select!\n"); #endif return UNUSABLE_ERR; } } if (!err) mmc->init_in_progress = 1; return err; } static int mmc_complete_init(struct mmc *mmc) { int err = 0; mmc->init_in_progress = 0; if (mmc->op_cond_pending) err = mmc_complete_op_cond(mmc); if (!err) err = mmc_startup(mmc); if (err) mmc->has_init = 0; else mmc->has_init = 1; return err; } int mmc_init(struct mmc *mmc) { int err = 0; unsigned start; if (mmc->has_init) return 0; start = get_timer(0); if (!mmc->init_in_progress) err = mmc_start_init(mmc); if (!err) err = mmc_complete_init(mmc); debug("%s: %d, time %lu\n", __func__, err, get_timer(start)); return err; } int mmc_set_dsr(struct mmc *mmc, u16 val) { mmc->dsr = val; return 0; } /* CPU-specific MMC initializations */ __weak int cpu_mmc_init(bd_t *bis) { return -1; } /* board-specific MMC initializations. */ __weak int board_mmc_init(bd_t *bis) { return -1; } #if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_LIBCOMMON_SUPPORT) void print_mmc_devices(char separator) { struct mmc *m; struct list_head *entry; char *mmc_type; list_for_each(entry, &mmc_devices) { m = list_entry(entry, struct mmc, link); if (m->has_init) mmc_type = IS_SD(m) ? "SD" : "eMMC"; else mmc_type = NULL; printf("%s: %d", m->cfg->name, m->block_dev.devnum); if (mmc_type) printf(" (%s)", mmc_type); if (entry->next != &mmc_devices) { printf("%c", separator); if (separator != '\n') puts (" "); } } printf("\n"); } #else void print_mmc_devices(char separator) { } #endif int get_mmc_num(void) { return cur_dev_num; } void mmc_set_preinit(struct mmc *mmc, int preinit) { mmc->preinit = preinit; } static void do_preinit(void) { struct mmc *m; struct list_head *entry; list_for_each(entry, &mmc_devices) { m = list_entry(entry, struct mmc, link); #ifdef CONFIG_FSL_ESDHC_ADAPTER_IDENT mmc_set_preinit(m, 1); #endif if (m->preinit) mmc_start_init(m); } } #if defined(CONFIG_DM_MMC) && defined(CONFIG_SPL_BUILD) static int mmc_probe(bd_t *bis) { return 0; } #elif defined(CONFIG_DM_MMC) static int mmc_probe(bd_t *bis) { int ret, i; struct uclass *uc; struct udevice *dev; ret = uclass_get(UCLASS_MMC, &uc); if (ret) return ret; /* * Try to add them in sequence order. Really with driver model we * should allow holes, but the current MMC list does not allow that. * So if we request 0, 1, 3 we will get 0, 1, 2. */ for (i = 0; ; i++) { ret = uclass_get_device_by_seq(UCLASS_MMC, i, &dev); if (ret == -ENODEV) break; } uclass_foreach_dev(dev, uc) { ret = device_probe(dev); if (ret) printf("%s - probe failed: %d\n", dev->name, ret); } return 0; } #else static int mmc_probe(bd_t *bis) { if (board_mmc_init(bis) < 0) cpu_mmc_init(bis); return 0; } #endif int mmc_initialize(bd_t *bis) { static int initialized = 0; int ret; if (initialized) /* Avoid initializing mmc multiple times */ return 0; initialized = 1; INIT_LIST_HEAD (&mmc_devices); cur_dev_num = 0; ret = mmc_probe(bis); if (ret) return ret; #ifndef CONFIG_SPL_BUILD print_mmc_devices(','); #endif do_preinit(); return 0; } #ifdef CONFIG_SUPPORT_EMMC_BOOT /* * This function changes the size of boot partition and the size of rpmb * partition present on EMMC devices. * * Input Parameters: * struct *mmc: pointer for the mmc device strcuture * bootsize: size of boot partition * rpmbsize: size of rpmb partition * * Returns 0 on success. */ int mmc_boot_partition_size_change(struct mmc *mmc, unsigned long bootsize, unsigned long rpmbsize) { int err; struct mmc_cmd cmd; /* Only use this command for raw EMMC moviNAND. Enter backdoor mode */ cmd.cmdidx = MMC_CMD_RES_MAN; cmd.resp_type = MMC_RSP_R1b; cmd.cmdarg = MMC_CMD62_ARG1; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) { debug("mmc_boot_partition_size_change: Error1 = %d\n", err); return err; } /* Boot partition changing mode */ cmd.cmdidx = MMC_CMD_RES_MAN; cmd.resp_type = MMC_RSP_R1b; cmd.cmdarg = MMC_CMD62_ARG2; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) { debug("mmc_boot_partition_size_change: Error2 = %d\n", err); return err; } /* boot partition size is multiple of 128KB */ bootsize = (bootsize * 1024) / 128; /* Arg: boot partition size */ cmd.cmdidx = MMC_CMD_RES_MAN; cmd.resp_type = MMC_RSP_R1b; cmd.cmdarg = bootsize; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) { debug("mmc_boot_partition_size_change: Error3 = %d\n", err); return err; } /* RPMB partition size is multiple of 128KB */ rpmbsize = (rpmbsize * 1024) / 128; /* Arg: RPMB partition size */ cmd.cmdidx = MMC_CMD_RES_MAN; cmd.resp_type = MMC_RSP_R1b; cmd.cmdarg = rpmbsize; err = mmc_send_cmd(mmc, &cmd, NULL); if (err) { debug("mmc_boot_partition_size_change: Error4 = %d\n", err); return err; } return 0; } /* * Modify EXT_CSD[177] which is BOOT_BUS_WIDTH * based on the passed in values for BOOT_BUS_WIDTH, RESET_BOOT_BUS_WIDTH * and BOOT_MODE. * * Returns 0 on success. */ int mmc_set_boot_bus_width(struct mmc *mmc, u8 width, u8 reset, u8 mode) { int err; err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_BUS_WIDTH, EXT_CSD_BOOT_BUS_WIDTH_MODE(mode) | EXT_CSD_BOOT_BUS_WIDTH_RESET(reset) | EXT_CSD_BOOT_BUS_WIDTH_WIDTH(width)); if (err) return err; return 0; } /* * Modify EXT_CSD[179] which is PARTITION_CONFIG (formerly BOOT_CONFIG) * based on the passed in values for BOOT_ACK, BOOT_PARTITION_ENABLE and * PARTITION_ACCESS. * * Returns 0 on success. */ int mmc_set_part_conf(struct mmc *mmc, u8 ack, u8 part_num, u8 access) { int err; err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONF, EXT_CSD_BOOT_ACK(ack) | EXT_CSD_BOOT_PART_NUM(part_num) | EXT_CSD_PARTITION_ACCESS(access)); if (err) return err; return 0; } /* * Modify EXT_CSD[162] which is RST_n_FUNCTION based on the given value * for enable. Note that this is a write-once field for non-zero values. * * Returns 0 on success. */ int mmc_set_rst_n_function(struct mmc *mmc, u8 enable) { return mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_RST_N_FUNCTION, enable); } #endif U_BOOT_LEGACY_BLK(mmc) = { .if_typename = "mmc", .if_type = IF_TYPE_MMC, .max_devs = -1, .get_dev = mmc_get_dev, };