// SPDX-License-Identifier: GPL-2.0 /* * Driver for Marvell SOC Platform Group Xenon SDHC as a platform device * * Copyright (C) 2016 Marvell, All Rights Reserved. * * Author: Victor Gu * Date: 2016-8-24 * * Included parts of the Linux driver version which was written by: * Hu Ziji * * Ported to from Marvell 2015.01 to mainline U-Boot 2017.01: * Stefan Roese */ #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; /* Register Offset of SD Host Controller SOCP self-defined register */ #define SDHC_SYS_CFG_INFO 0x0104 #define SLOT_TYPE_SDIO_SHIFT 24 #define SLOT_TYPE_EMMC_MASK 0xFF #define SLOT_TYPE_EMMC_SHIFT 16 #define SLOT_TYPE_SD_SDIO_MMC_MASK 0xFF #define SLOT_TYPE_SD_SDIO_MMC_SHIFT 8 #define NR_SUPPORTED_SLOT_MASK 0x7 #define SDHC_SYS_OP_CTRL 0x0108 #define AUTO_CLKGATE_DISABLE_MASK BIT(20) #define SDCLK_IDLEOFF_ENABLE_SHIFT 8 #define SLOT_ENABLE_SHIFT 0 #define SDHC_SYS_EXT_OP_CTRL 0x010C #define MASK_CMD_CONFLICT_ERROR BIT(8) #define SDHC_SLOT_EMMC_CTRL 0x0130 #define ENABLE_DATA_STROBE_SHIFT 24 #define SET_EMMC_RSTN_SHIFT 16 #define EMMC_VCCQ_MASK 0x3 #define EMMC_VCCQ_1_8V 0x1 #define EMMC_VCCQ_1_2V 0x2 #define EMMC_VCCQ_3_3V 0x3 #define SDHC_SLOT_RETUNING_REQ_CTRL 0x0144 /* retuning compatible */ #define RETUNING_COMPATIBLE 0x1 /* Xenon specific Mode Select value */ #define XENON_SDHCI_CTRL_HS200 0x5 #define XENON_SDHCI_CTRL_HS400 0x6 #define EMMC_PHY_REG_BASE 0x170 #define EMMC_PHY_TIMING_ADJUST EMMC_PHY_REG_BASE #define OUTPUT_QSN_PHASE_SELECT BIT(17) #define SAMPL_INV_QSP_PHASE_SELECT BIT(18) #define SAMPL_INV_QSP_PHASE_SELECT_SHIFT 18 #define EMMC_PHY_SLOW_MODE BIT(29) #define PHY_INITIALIZAION BIT(31) #define WAIT_CYCLE_BEFORE_USING_MASK 0xf #define WAIT_CYCLE_BEFORE_USING_SHIFT 12 #define FC_SYNC_EN_DURATION_MASK 0xf #define FC_SYNC_EN_DURATION_SHIFT 8 #define FC_SYNC_RST_EN_DURATION_MASK 0xf #define FC_SYNC_RST_EN_DURATION_SHIFT 4 #define FC_SYNC_RST_DURATION_MASK 0xf #define FC_SYNC_RST_DURATION_SHIFT 0 #define EMMC_PHY_FUNC_CONTROL (EMMC_PHY_REG_BASE + 0x4) #define DQ_ASYNC_MODE BIT(4) #define DQ_DDR_MODE_SHIFT 8 #define DQ_DDR_MODE_MASK 0xff #define CMD_DDR_MODE BIT(16) #define EMMC_PHY_PAD_CONTROL (EMMC_PHY_REG_BASE + 0x8) #define REC_EN_SHIFT 24 #define REC_EN_MASK 0xf #define FC_DQ_RECEN BIT(24) #define FC_CMD_RECEN BIT(25) #define FC_QSP_RECEN BIT(26) #define FC_QSN_RECEN BIT(27) #define OEN_QSN BIT(28) #define AUTO_RECEN_CTRL BIT(30) #define EMMC_PHY_PAD_CONTROL1 (EMMC_PHY_REG_BASE + 0xc) #define EMMC5_1_FC_QSP_PD BIT(9) #define EMMC5_1_FC_QSP_PU BIT(25) #define EMMC5_1_FC_CMD_PD BIT(8) #define EMMC5_1_FC_CMD_PU BIT(24) #define EMMC5_1_FC_DQ_PD 0xff #define EMMC5_1_FC_DQ_PU (0xff << 16) #define SDHCI_RETUNE_EVT_INTSIG 0x00001000 /* Hyperion only have one slot 0 */ #define XENON_MMC_SLOT_ID_HYPERION 0 #define MMC_TIMING_LEGACY 0 #define MMC_TIMING_MMC_HS 1 #define MMC_TIMING_SD_HS 2 #define MMC_TIMING_UHS_SDR12 3 #define MMC_TIMING_UHS_SDR25 4 #define MMC_TIMING_UHS_SDR50 5 #define MMC_TIMING_UHS_SDR104 6 #define MMC_TIMING_UHS_DDR50 7 #define MMC_TIMING_MMC_DDR52 8 #define MMC_TIMING_MMC_HS200 9 #define MMC_TIMING_MMC_HS400 10 #define XENON_MMC_MAX_CLK 400000000 #define XENON_MMC_3V3_UV 3300000 #define XENON_MMC_1V8_UV 1800000 enum soc_pad_ctrl_type { SOC_PAD_SD, SOC_PAD_FIXED_1_8V, }; struct xenon_sdhci_plat { struct mmc_config cfg; struct mmc mmc; }; struct xenon_sdhci_priv { struct sdhci_host host; u8 timing; unsigned int clock; void *pad_ctrl_reg; int pad_type; struct udevice *vqmmc; }; static int xenon_mmc_phy_init(struct sdhci_host *host) { struct xenon_sdhci_priv *priv = host->mmc->priv; u32 clock = priv->clock; u32 time; u32 var; /* Enable QSP PHASE SELECT */ var = sdhci_readl(host, EMMC_PHY_TIMING_ADJUST); var |= SAMPL_INV_QSP_PHASE_SELECT; if ((priv->timing == MMC_TIMING_UHS_SDR50) || (priv->timing == MMC_TIMING_UHS_SDR25) || (priv->timing == MMC_TIMING_UHS_SDR12) || (priv->timing == MMC_TIMING_SD_HS) || (priv->timing == MMC_TIMING_LEGACY)) var |= EMMC_PHY_SLOW_MODE; sdhci_writel(host, var, EMMC_PHY_TIMING_ADJUST); /* Poll for host MMC PHY clock init to be stable */ /* Wait up to 10ms */ time = 100; while (time--) { var = sdhci_readl(host, SDHCI_CLOCK_CONTROL); if (var & SDHCI_CLOCK_INT_STABLE) break; udelay(100); } if (time <= 0) { pr_err("Failed to enable MMC internal clock in time\n"); return -ETIMEDOUT; } /* Init PHY */ var = sdhci_readl(host, EMMC_PHY_TIMING_ADJUST); var |= PHY_INITIALIZAION; sdhci_writel(host, var, EMMC_PHY_TIMING_ADJUST); if (clock == 0) { /* Use the possibly slowest bus frequency value */ clock = 100000; } /* Poll for host eMMC PHY init to complete */ /* Wait up to 10ms */ time = 100; while (time--) { var = sdhci_readl(host, EMMC_PHY_TIMING_ADJUST); var &= PHY_INITIALIZAION; if (!var) break; /* wait for host eMMC PHY init to complete */ udelay(100); } if (time <= 0) { pr_err("Failed to init MMC PHY in time\n"); return -ETIMEDOUT; } return 0; } #define ARMADA_3700_SOC_PAD_1_8V 0x1 #define ARMADA_3700_SOC_PAD_3_3V 0x0 static void armada_3700_soc_pad_voltage_set(struct sdhci_host *host) { struct xenon_sdhci_priv *priv = host->mmc->priv; if (priv->pad_type == SOC_PAD_FIXED_1_8V) writel(ARMADA_3700_SOC_PAD_1_8V, priv->pad_ctrl_reg); else if (priv->pad_type == SOC_PAD_SD) writel(ARMADA_3700_SOC_PAD_3_3V, priv->pad_ctrl_reg); } static int xenon_mmc_start_signal_voltage_switch(struct sdhci_host *host) { struct xenon_sdhci_priv *priv = host->mmc->priv; u8 voltage; u32 ctrl; int ret = 0; /* If there is no vqmmc regulator, return */ if (!priv->vqmmc) return 0; if (priv->pad_type == SOC_PAD_FIXED_1_8V) { /* Switch to 1.8v */ ret = regulator_set_value(priv->vqmmc, XENON_MMC_1V8_UV); } else if (priv->pad_type == SOC_PAD_SD) { /* Get voltage info */ voltage = sdhci_readb(host, SDHCI_POWER_CONTROL); voltage &= ~SDHCI_POWER_ON; if (voltage == SDHCI_POWER_330) { /* Switch to 3.3v */ ret = regulator_set_value(priv->vqmmc, XENON_MMC_3V3_UV); } else { /* Switch to 1.8v */ ret = regulator_set_value(priv->vqmmc, XENON_MMC_1V8_UV); } } /* Set VCCQ, eMMC mode: 1.8V; SD/SDIO mode: 3.3V */ ctrl = sdhci_readl(host, SDHC_SLOT_EMMC_CTRL); if (IS_SD(host->mmc)) ctrl |= EMMC_VCCQ_3_3V; else ctrl |= EMMC_VCCQ_1_8V; sdhci_writel(host, ctrl, SDHC_SLOT_EMMC_CTRL); if (ret) printf("Signal voltage switch fail\n"); return ret; } static void xenon_mmc_phy_set(struct sdhci_host *host) { struct xenon_sdhci_priv *priv = host->mmc->priv; u32 var; /* Setup pad, set bit[30], bit[28] and bits[26:24] */ var = sdhci_readl(host, EMMC_PHY_PAD_CONTROL); var |= AUTO_RECEN_CTRL | OEN_QSN | FC_QSP_RECEN | FC_CMD_RECEN | FC_DQ_RECEN; sdhci_writel(host, var, EMMC_PHY_PAD_CONTROL); /* Set CMD and DQ Pull Up */ var = sdhci_readl(host, EMMC_PHY_PAD_CONTROL1); var |= (EMMC5_1_FC_CMD_PU | EMMC5_1_FC_DQ_PU); var &= ~(EMMC5_1_FC_CMD_PD | EMMC5_1_FC_DQ_PD); sdhci_writel(host, var, EMMC_PHY_PAD_CONTROL1); /* * If timing belongs to high speed, set bit[17] of * EMMC_PHY_TIMING_ADJUST register */ if ((priv->timing == MMC_TIMING_MMC_HS400) || (priv->timing == MMC_TIMING_MMC_HS200) || (priv->timing == MMC_TIMING_UHS_SDR50) || (priv->timing == MMC_TIMING_UHS_SDR104) || (priv->timing == MMC_TIMING_UHS_DDR50) || (priv->timing == MMC_TIMING_UHS_SDR25) || (priv->timing == MMC_TIMING_MMC_DDR52)) { var = sdhci_readl(host, EMMC_PHY_TIMING_ADJUST); var |= OUTPUT_QSN_PHASE_SELECT; sdhci_writel(host, var, EMMC_PHY_TIMING_ADJUST); } /* * When setting EMMC_PHY_FUNC_CONTROL register, * SD clock should be disabled */ var = sdhci_readl(host, SDHCI_CLOCK_CONTROL); var &= ~SDHCI_CLOCK_CARD_EN; sdhci_writew(host, var, SDHCI_CLOCK_CONTROL); var = sdhci_readl(host, EMMC_PHY_FUNC_CONTROL); if (host->mmc->ddr_mode) { var |= (DQ_DDR_MODE_MASK << DQ_DDR_MODE_SHIFT) | CMD_DDR_MODE; } else { var &= ~((DQ_DDR_MODE_MASK << DQ_DDR_MODE_SHIFT) | CMD_DDR_MODE); } sdhci_writel(host, var, EMMC_PHY_FUNC_CONTROL); /* Enable bus clock */ var = sdhci_readl(host, SDHCI_CLOCK_CONTROL); var |= SDHCI_CLOCK_CARD_EN; sdhci_writew(host, var, SDHCI_CLOCK_CONTROL); xenon_mmc_phy_init(host); } /* Enable/Disable the Auto Clock Gating function of this slot */ static void xenon_mmc_set_acg(struct sdhci_host *host, bool enable) { u32 var; var = sdhci_readl(host, SDHC_SYS_OP_CTRL); if (enable) var &= ~AUTO_CLKGATE_DISABLE_MASK; else var |= AUTO_CLKGATE_DISABLE_MASK; sdhci_writel(host, var, SDHC_SYS_OP_CTRL); } #define SLOT_MASK(slot) BIT(slot) /* Enable specific slot */ static void xenon_mmc_enable_slot(struct sdhci_host *host, u8 slot) { u32 var; var = sdhci_readl(host, SDHC_SYS_OP_CTRL); var |= SLOT_MASK(slot) << SLOT_ENABLE_SHIFT; sdhci_writel(host, var, SDHC_SYS_OP_CTRL); } /* Enable Parallel Transfer Mode */ static void xenon_mmc_enable_parallel_tran(struct sdhci_host *host, u8 slot) { u32 var; var = sdhci_readl(host, SDHC_SYS_EXT_OP_CTRL); var |= SLOT_MASK(slot); sdhci_writel(host, var, SDHC_SYS_EXT_OP_CTRL); } static void xenon_mmc_disable_tuning(struct sdhci_host *host, u8 slot) { u32 var; /* Clear the Re-Tuning Request functionality */ var = sdhci_readl(host, SDHC_SLOT_RETUNING_REQ_CTRL); var &= ~RETUNING_COMPATIBLE; sdhci_writel(host, var, SDHC_SLOT_RETUNING_REQ_CTRL); /* Clear the Re-tuning Event Signal Enable */ var = sdhci_readl(host, SDHCI_SIGNAL_ENABLE); var &= ~SDHCI_RETUNE_EVT_INTSIG; sdhci_writel(host, var, SDHCI_SIGNAL_ENABLE); } /* Mask command conflict error */ static void xenon_mask_cmd_conflict_err(struct sdhci_host *host) { u32 reg; reg = sdhci_readl(host, SDHC_SYS_EXT_OP_CTRL); reg |= MASK_CMD_CONFLICT_ERROR; sdhci_writel(host, reg, SDHC_SYS_EXT_OP_CTRL); } /* Platform specific function for post set_ios configuration */ static int xenon_sdhci_set_ios_post(struct sdhci_host *host) { struct xenon_sdhci_priv *priv = host->mmc->priv; uint speed = host->mmc->tran_speed; int pwr_18v = 0; /* * Signal Voltage Switching is only applicable for Host Controllers * v3.00 and above. */ if (SDHCI_GET_VERSION(host) >= SDHCI_SPEC_300) xenon_mmc_start_signal_voltage_switch(host); if ((sdhci_readb(host, SDHCI_POWER_CONTROL) & ~SDHCI_POWER_ON) == SDHCI_POWER_180) pwr_18v = 1; /* Set timing variable according to the configured speed */ if (IS_SD(host->mmc)) { /* SD/SDIO */ if (pwr_18v) { if (host->mmc->ddr_mode) priv->timing = MMC_TIMING_UHS_DDR50; else if (speed <= 25000000) priv->timing = MMC_TIMING_UHS_SDR25; else priv->timing = MMC_TIMING_UHS_SDR50; } else { if (speed <= 25000000) priv->timing = MMC_TIMING_LEGACY; else priv->timing = MMC_TIMING_SD_HS; } } else { /* eMMC */ if (host->mmc->ddr_mode) priv->timing = MMC_TIMING_MMC_DDR52; else if (speed <= 26000000) priv->timing = MMC_TIMING_LEGACY; else priv->timing = MMC_TIMING_MMC_HS; } /* Re-init the PHY */ xenon_mmc_phy_set(host); return 0; } /* Install a driver specific handler for post set_ios configuration */ static const struct sdhci_ops xenon_sdhci_ops = { .set_ios_post = xenon_sdhci_set_ios_post }; static int xenon_sdhci_probe(struct udevice *dev) { struct xenon_sdhci_plat *plat = dev_get_platdata(dev); struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev); struct xenon_sdhci_priv *priv = dev_get_priv(dev); struct sdhci_host *host = dev_get_priv(dev); int ret; host->mmc = &plat->mmc; host->mmc->priv = host; host->mmc->dev = dev; upriv->mmc = host->mmc; /* Set quirks */ host->quirks = SDHCI_QUIRK_WAIT_SEND_CMD | SDHCI_QUIRK_32BIT_DMA_ADDR; /* Set default timing */ priv->timing = MMC_TIMING_LEGACY; /* Get the vqmmc regulator if there is */ device_get_supply_regulator(dev, "vqmmc-supply", &priv->vqmmc); /* Set the initial voltage value to 3.3V if there is regulator */ if (priv->vqmmc) { ret = regulator_set_value(priv->vqmmc, XENON_MMC_3V3_UV); if (ret) { printf("Failed to set VQMMC regulator to 3.3V\n"); return ret; } } /* Disable auto clock gating during init */ xenon_mmc_set_acg(host, false); /* Enable slot */ xenon_mmc_enable_slot(host, XENON_MMC_SLOT_ID_HYPERION); /* * Set default power on SoC PHY PAD register (currently only * available on the Armada 3700) */ if (priv->pad_ctrl_reg) armada_3700_soc_pad_voltage_set(host); host->host_caps = MMC_MODE_HS | MMC_MODE_HS_52MHz | MMC_MODE_DDR_52MHz; switch (fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev), "bus-width", 1)) { case 8: host->host_caps |= MMC_MODE_8BIT; break; case 4: host->host_caps |= MMC_MODE_4BIT; break; case 1: break; default: printf("Invalid \"bus-width\" value\n"); return -EINVAL; } host->ops = &xenon_sdhci_ops; host->max_clk = XENON_MMC_MAX_CLK; ret = sdhci_setup_cfg(&plat->cfg, host, XENON_MMC_MAX_CLK, 0); if (ret) return ret; ret = sdhci_probe(dev); if (ret) return ret; /* Enable parallel transfer */ xenon_mmc_enable_parallel_tran(host, XENON_MMC_SLOT_ID_HYPERION); /* Disable tuning functionality of this slot */ xenon_mmc_disable_tuning(host, XENON_MMC_SLOT_ID_HYPERION); /* Enable auto clock gating after init */ xenon_mmc_set_acg(host, true); xenon_mask_cmd_conflict_err(host); return ret; } static int xenon_sdhci_ofdata_to_platdata(struct udevice *dev) { struct sdhci_host *host = dev_get_priv(dev); struct xenon_sdhci_priv *priv = dev_get_priv(dev); const char *name; host->name = dev->name; host->ioaddr = dev_read_addr_ptr(dev); if (device_is_compatible(dev, "marvell,armada-3700-sdhci")) priv->pad_ctrl_reg = (void *)devfdt_get_addr_index(dev, 1); name = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "marvell,pad-type", NULL); if (name) { if (0 == strncmp(name, "sd", 2)) { priv->pad_type = SOC_PAD_SD; } else if (0 == strncmp(name, "fixed-1-8v", 10)) { priv->pad_type = SOC_PAD_FIXED_1_8V; } else { printf("Unsupported SOC PHY PAD ctrl type %s\n", name); return -EINVAL; } } return 0; } static int xenon_sdhci_bind(struct udevice *dev) { struct xenon_sdhci_plat *plat = dev_get_platdata(dev); return sdhci_bind(dev, &plat->mmc, &plat->cfg); } static const struct udevice_id xenon_sdhci_ids[] = { { .compatible = "marvell,armada-8k-sdhci",}, { .compatible = "marvell,armada-3700-sdhci",}, { } }; U_BOOT_DRIVER(xenon_sdhci_drv) = { .name = "xenon_sdhci", .id = UCLASS_MMC, .of_match = xenon_sdhci_ids, .ofdata_to_platdata = xenon_sdhci_ofdata_to_platdata, .ops = &sdhci_ops, .bind = xenon_sdhci_bind, .probe = xenon_sdhci_probe, .priv_auto_alloc_size = sizeof(struct xenon_sdhci_priv), .platdata_auto_alloc_size = sizeof(struct xenon_sdhci_plat), };