/* * Copyright 2004-2007 Freescale Semiconductor, Inc. * Copyright 2008 Sascha Hauer, kernel@pengutronix.de * Copyright 2009 Ilya Yanok, <yanok@emcraft.com> * * SPDX-License-Identifier: GPL-2.0+ */ #include <common.h> #include <nand.h> #include <linux/err.h> #include <asm/io.h> #if defined(CONFIG_MX25) || defined(CONFIG_MX27) || defined(CONFIG_MX35) || \ defined(CONFIG_MX51) || defined(CONFIG_MX53) #include <asm/arch/imx-regs.h> #endif #include "mxc_nand.h" #define DRIVER_NAME "mxc_nand" struct mxc_nand_host { struct nand_chip *nand; struct mxc_nand_regs __iomem *regs; #ifdef MXC_NFC_V3_2 struct mxc_nand_ip_regs __iomem *ip_regs; #endif int spare_only; int status_request; int pagesize_2k; int clk_act; uint16_t col_addr; unsigned int page_addr; }; static struct mxc_nand_host mxc_host; static struct mxc_nand_host *host = &mxc_host; /* Define delays in microsec for NAND device operations */ #define TROP_US_DELAY 2000 /* Macros to get byte and bit positions of ECC */ #define COLPOS(x) ((x) >> 3) #define BITPOS(x) ((x) & 0xf) /* Define single bit Error positions in Main & Spare area */ #define MAIN_SINGLEBIT_ERROR 0x4 #define SPARE_SINGLEBIT_ERROR 0x1 /* OOB placement block for use with hardware ecc generation */ #if defined(MXC_NFC_V1) #ifndef CONFIG_SYS_NAND_LARGEPAGE static struct nand_ecclayout nand_hw_eccoob = { .eccbytes = 5, .eccpos = {6, 7, 8, 9, 10}, .oobfree = { {0, 5}, {11, 5}, } }; #else static struct nand_ecclayout nand_hw_eccoob2k = { .eccbytes = 20, .eccpos = { 6, 7, 8, 9, 10, 22, 23, 24, 25, 26, 38, 39, 40, 41, 42, 54, 55, 56, 57, 58, }, .oobfree = { {2, 4}, {11, 11}, {27, 11}, {43, 11}, {59, 5} }, }; #endif #elif defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2) #ifndef CONFIG_SYS_NAND_LARGEPAGE static struct nand_ecclayout nand_hw_eccoob = { .eccbytes = 9, .eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15}, .oobfree = { {2, 5} } }; #else static struct nand_ecclayout nand_hw_eccoob2k = { .eccbytes = 36, .eccpos = { 7, 8, 9, 10, 11, 12, 13, 14, 15, 23, 24, 25, 26, 27, 28, 29, 30, 31, 39, 40, 41, 42, 43, 44, 45, 46, 47, 55, 56, 57, 58, 59, 60, 61, 62, 63, }, .oobfree = { {2, 5}, {16, 7}, {32, 7}, {48, 7} }, }; #endif #endif static int is_16bit_nand(void) { #if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT) return 1; #else return 0; #endif } static uint32_t *mxc_nand_memcpy32(uint32_t *dest, uint32_t *source, size_t size) { uint32_t *d = dest; size >>= 2; while (size--) __raw_writel(__raw_readl(source++), d++); return dest; } /* * This function polls the NANDFC to wait for the basic operation to * complete by checking the INT bit. */ static void wait_op_done(struct mxc_nand_host *host, int max_retries, uint16_t param) { uint32_t tmp; while (max_retries-- > 0) { #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) tmp = readnfc(&host->regs->config2); if (tmp & NFC_V1_V2_CONFIG2_INT) { tmp &= ~NFC_V1_V2_CONFIG2_INT; writenfc(tmp, &host->regs->config2); #elif defined(MXC_NFC_V3_2) tmp = readnfc(&host->ip_regs->ipc); if (tmp & NFC_V3_IPC_INT) { tmp &= ~NFC_V3_IPC_INT; writenfc(tmp, &host->ip_regs->ipc); #endif break; } udelay(1); } if (max_retries < 0) { MTDDEBUG(MTD_DEBUG_LEVEL0, "%s(%d): INT not set\n", __func__, param); } } /* * This function issues the specified command to the NAND device and * waits for completion. */ static void send_cmd(struct mxc_nand_host *host, uint16_t cmd) { MTDDEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x)\n", cmd); writenfc(cmd, &host->regs->flash_cmd); writenfc(NFC_CMD, &host->regs->operation); /* Wait for operation to complete */ wait_op_done(host, TROP_US_DELAY, cmd); } /* * This function sends an address (or partial address) to the * NAND device. The address is used to select the source/destination for * a NAND command. */ static void send_addr(struct mxc_nand_host *host, uint16_t addr) { MTDDEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x)\n", addr); writenfc(addr, &host->regs->flash_addr); writenfc(NFC_ADDR, &host->regs->operation); /* Wait for operation to complete */ wait_op_done(host, TROP_US_DELAY, addr); } /* * This function requests the NANDFC to initiate the transfer * of data currently in the NANDFC RAM buffer to the NAND device. */ static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id, int spare_only) { if (spare_only) MTDDEBUG(MTD_DEBUG_LEVEL1, "send_prog_page (%d)\n", spare_only); if (is_mxc_nfc_21() || is_mxc_nfc_32()) { int i; /* * The controller copies the 64 bytes of spare data from * the first 16 bytes of each of the 4 64 byte spare buffers. * Copy the contiguous data starting in spare_area[0] to * the four spare area buffers. */ for (i = 1; i < 4; i++) { void __iomem *src = &host->regs->spare_area[0][i * 16]; void __iomem *dst = &host->regs->spare_area[i][0]; mxc_nand_memcpy32(dst, src, 16); } } #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) writenfc(buf_id, &host->regs->buf_addr); #elif defined(MXC_NFC_V3_2) uint32_t tmp = readnfc(&host->regs->config1); tmp &= ~NFC_V3_CONFIG1_RBA_MASK; tmp |= NFC_V3_CONFIG1_RBA(buf_id); writenfc(tmp, &host->regs->config1); #endif /* Configure spare or page+spare access */ if (!host->pagesize_2k) { uint32_t config1 = readnfc(&host->regs->config1); if (spare_only) config1 |= NFC_CONFIG1_SP_EN; else config1 &= ~NFC_CONFIG1_SP_EN; writenfc(config1, &host->regs->config1); } writenfc(NFC_INPUT, &host->regs->operation); /* Wait for operation to complete */ wait_op_done(host, TROP_US_DELAY, spare_only); } /* * Requests NANDFC to initiate the transfer of data from the * NAND device into in the NANDFC ram buffer. */ static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id, int spare_only) { MTDDEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only); #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) writenfc(buf_id, &host->regs->buf_addr); #elif defined(MXC_NFC_V3_2) uint32_t tmp = readnfc(&host->regs->config1); tmp &= ~NFC_V3_CONFIG1_RBA_MASK; tmp |= NFC_V3_CONFIG1_RBA(buf_id); writenfc(tmp, &host->regs->config1); #endif /* Configure spare or page+spare access */ if (!host->pagesize_2k) { uint32_t config1 = readnfc(&host->regs->config1); if (spare_only) config1 |= NFC_CONFIG1_SP_EN; else config1 &= ~NFC_CONFIG1_SP_EN; writenfc(config1, &host->regs->config1); } writenfc(NFC_OUTPUT, &host->regs->operation); /* Wait for operation to complete */ wait_op_done(host, TROP_US_DELAY, spare_only); if (is_mxc_nfc_21() || is_mxc_nfc_32()) { int i; /* * The controller copies the 64 bytes of spare data to * the first 16 bytes of each of the 4 spare buffers. * Make the data contiguous starting in spare_area[0]. */ for (i = 1; i < 4; i++) { void __iomem *src = &host->regs->spare_area[i][0]; void __iomem *dst = &host->regs->spare_area[0][i * 16]; mxc_nand_memcpy32(dst, src, 16); } } } /* Request the NANDFC to perform a read of the NAND device ID. */ static void send_read_id(struct mxc_nand_host *host) { uint32_t tmp; #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) /* NANDFC buffer 0 is used for device ID output */ writenfc(0x0, &host->regs->buf_addr); #elif defined(MXC_NFC_V3_2) tmp = readnfc(&host->regs->config1); tmp &= ~NFC_V3_CONFIG1_RBA_MASK; writenfc(tmp, &host->regs->config1); #endif /* Read ID into main buffer */ tmp = readnfc(&host->regs->config1); tmp &= ~NFC_CONFIG1_SP_EN; writenfc(tmp, &host->regs->config1); writenfc(NFC_ID, &host->regs->operation); /* Wait for operation to complete */ wait_op_done(host, TROP_US_DELAY, 0); } /* * This function requests the NANDFC to perform a read of the * NAND device status and returns the current status. */ static uint16_t get_dev_status(struct mxc_nand_host *host) { #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) void __iomem *main_buf = host->regs->main_area[1]; uint32_t store; #endif uint32_t ret, tmp; /* Issue status request to NAND device */ #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) /* store the main area1 first word, later do recovery */ store = readl(main_buf); /* NANDFC buffer 1 is used for device status */ writenfc(1, &host->regs->buf_addr); #endif /* Read status into main buffer */ tmp = readnfc(&host->regs->config1); tmp &= ~NFC_CONFIG1_SP_EN; writenfc(tmp, &host->regs->config1); writenfc(NFC_STATUS, &host->regs->operation); /* Wait for operation to complete */ wait_op_done(host, TROP_US_DELAY, 0); #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) /* * Status is placed in first word of main buffer * get status, then recovery area 1 data */ ret = readw(main_buf); writel(store, main_buf); #elif defined(MXC_NFC_V3_2) ret = readnfc(&host->regs->config1) >> 16; #endif return ret; } /* This function is used by upper layer to checks if device is ready */ static int mxc_nand_dev_ready(struct mtd_info *mtd) { /* * NFC handles R/B internally. Therefore, this function * always returns status as ready. */ return 1; } static void _mxc_nand_enable_hwecc(struct mtd_info *mtd, int on) { struct nand_chip *nand_chip = mtd_to_nand(mtd); struct mxc_nand_host *host = nand_get_controller_data(nand_chip); #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) uint16_t tmp = readnfc(&host->regs->config1); if (on) tmp |= NFC_V1_V2_CONFIG1_ECC_EN; else tmp &= ~NFC_V1_V2_CONFIG1_ECC_EN; writenfc(tmp, &host->regs->config1); #elif defined(MXC_NFC_V3_2) uint32_t tmp = readnfc(&host->ip_regs->config2); if (on) tmp |= NFC_V3_CONFIG2_ECC_EN; else tmp &= ~NFC_V3_CONFIG2_ECC_EN; writenfc(tmp, &host->ip_regs->config2); #endif } #ifdef CONFIG_MXC_NAND_HWECC static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode) { /* * If HW ECC is enabled, we turn it on during init. There is * no need to enable again here. */ } #if defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2) static int mxc_nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip, int page) { struct mxc_nand_host *host = nand_get_controller_data(chip); uint8_t *buf = chip->oob_poi; int length = mtd->oobsize; int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; uint8_t *bufpoi = buf; int i, toread; MTDDEBUG(MTD_DEBUG_LEVEL0, "%s: Reading OOB area of page %u to oob %p\n", __func__, page, buf); chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page); for (i = 0; i < chip->ecc.steps; i++) { toread = min_t(int, length, chip->ecc.prepad); if (toread) { chip->read_buf(mtd, bufpoi, toread); bufpoi += toread; length -= toread; } bufpoi += chip->ecc.bytes; host->col_addr += chip->ecc.bytes; length -= chip->ecc.bytes; toread = min_t(int, length, chip->ecc.postpad); if (toread) { chip->read_buf(mtd, bufpoi, toread); bufpoi += toread; length -= toread; } } if (length > 0) chip->read_buf(mtd, bufpoi, length); _mxc_nand_enable_hwecc(mtd, 0); chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize + chip->ecc.prepad, page); bufpoi = buf + chip->ecc.prepad; length = mtd->oobsize - chip->ecc.prepad; for (i = 0; i < chip->ecc.steps; i++) { toread = min_t(int, length, chip->ecc.bytes); chip->read_buf(mtd, bufpoi, toread); bufpoi += eccpitch; length -= eccpitch; host->col_addr += chip->ecc.postpad + chip->ecc.prepad; } _mxc_nand_enable_hwecc(mtd, 1); return 1; } static int mxc_nand_read_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { struct mxc_nand_host *host = nand_get_controller_data(chip); int eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad; uint8_t *oob = chip->oob_poi; int steps, size; int n; _mxc_nand_enable_hwecc(mtd, 0); chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page); for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) { host->col_addr = n * eccsize; chip->read_buf(mtd, buf, eccsize); buf += eccsize; host->col_addr = mtd->writesize + n * eccpitch; if (chip->ecc.prepad) { chip->read_buf(mtd, oob, chip->ecc.prepad); oob += chip->ecc.prepad; } chip->read_buf(mtd, oob, eccbytes); oob += eccbytes; if (chip->ecc.postpad) { chip->read_buf(mtd, oob, chip->ecc.postpad); oob += chip->ecc.postpad; } } size = mtd->oobsize - (oob - chip->oob_poi); if (size) chip->read_buf(mtd, oob, size); _mxc_nand_enable_hwecc(mtd, 1); return 0; } static int mxc_nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { struct mxc_nand_host *host = nand_get_controller_data(chip); int n, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad; int eccsteps = chip->ecc.steps; uint8_t *p = buf; uint8_t *oob = chip->oob_poi; MTDDEBUG(MTD_DEBUG_LEVEL1, "Reading page %u to buf %p oob %p\n", page, buf, oob); /* first read the data area and the available portion of OOB */ for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) { int stat; host->col_addr = n * eccsize; chip->read_buf(mtd, p, eccsize); host->col_addr = mtd->writesize + n * eccpitch; if (chip->ecc.prepad) { chip->read_buf(mtd, oob, chip->ecc.prepad); oob += chip->ecc.prepad; } stat = chip->ecc.correct(mtd, p, oob, NULL); if (stat < 0) mtd->ecc_stats.failed++; else mtd->ecc_stats.corrected += stat; oob += eccbytes; if (chip->ecc.postpad) { chip->read_buf(mtd, oob, chip->ecc.postpad); oob += chip->ecc.postpad; } } /* Calculate remaining oob bytes */ n = mtd->oobsize - (oob - chip->oob_poi); if (n) chip->read_buf(mtd, oob, n); /* Then switch ECC off and read the OOB area to get the ECC code */ _mxc_nand_enable_hwecc(mtd, 0); chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page); eccsteps = chip->ecc.steps; oob = chip->oob_poi + chip->ecc.prepad; for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) { host->col_addr = mtd->writesize + n * eccpitch + chip->ecc.prepad; chip->read_buf(mtd, oob, eccbytes); oob += eccbytes + chip->ecc.postpad; } _mxc_nand_enable_hwecc(mtd, 1); return 0; } static int mxc_nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip, int page) { struct mxc_nand_host *host = nand_get_controller_data(chip); int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; int length = mtd->oobsize; int i, len, status, steps = chip->ecc.steps; const uint8_t *bufpoi = chip->oob_poi; chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); for (i = 0; i < steps; i++) { len = min_t(int, length, eccpitch); chip->write_buf(mtd, bufpoi, len); bufpoi += len; length -= len; host->col_addr += chip->ecc.prepad + chip->ecc.postpad; } if (length > 0) chip->write_buf(mtd, bufpoi, length); chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); status = chip->waitfunc(mtd, chip); return status & NAND_STATUS_FAIL ? -EIO : 0; } static int mxc_nand_write_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required, int page) { struct mxc_nand_host *host = nand_get_controller_data(chip); int eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad; uint8_t *oob = chip->oob_poi; int steps, size; int n; for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) { host->col_addr = n * eccsize; chip->write_buf(mtd, buf, eccsize); buf += eccsize; host->col_addr = mtd->writesize + n * eccpitch; if (chip->ecc.prepad) { chip->write_buf(mtd, oob, chip->ecc.prepad); oob += chip->ecc.prepad; } host->col_addr += eccbytes; oob += eccbytes; if (chip->ecc.postpad) { chip->write_buf(mtd, oob, chip->ecc.postpad); oob += chip->ecc.postpad; } } size = mtd->oobsize - (oob - chip->oob_poi); if (size) chip->write_buf(mtd, oob, size); return 0; } static int mxc_nand_write_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required, int page) { struct mxc_nand_host *host = nand_get_controller_data(chip); int i, n, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad; int eccsteps = chip->ecc.steps; const uint8_t *p = buf; uint8_t *oob = chip->oob_poi; chip->ecc.hwctl(mtd, NAND_ECC_WRITE); for (i = n = 0; eccsteps; n++, eccsteps--, i += eccbytes, p += eccsize) { host->col_addr = n * eccsize; chip->write_buf(mtd, p, eccsize); host->col_addr = mtd->writesize + n * eccpitch; if (chip->ecc.prepad) { chip->write_buf(mtd, oob, chip->ecc.prepad); oob += chip->ecc.prepad; } chip->write_buf(mtd, oob, eccbytes); oob += eccbytes; if (chip->ecc.postpad) { chip->write_buf(mtd, oob, chip->ecc.postpad); oob += chip->ecc.postpad; } } /* Calculate remaining oob bytes */ i = mtd->oobsize - (oob - chip->oob_poi); if (i) chip->write_buf(mtd, oob, i); return 0; } static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc) { struct nand_chip *nand_chip = mtd_to_nand(mtd); struct mxc_nand_host *host = nand_get_controller_data(nand_chip); uint32_t ecc_status = readl(&host->regs->ecc_status_result); int subpages = mtd->writesize / nand_chip->subpagesize; int pg2blk_shift = nand_chip->phys_erase_shift - nand_chip->page_shift; do { if ((ecc_status & 0xf) > 4) { static int last_bad = -1; if (last_bad != host->page_addr >> pg2blk_shift) { last_bad = host->page_addr >> pg2blk_shift; printk(KERN_DEBUG "MXC_NAND: HWECC uncorrectable ECC error" " in block %u page %u subpage %d\n", last_bad, host->page_addr, mtd->writesize / nand_chip->subpagesize - subpages); } return -EBADMSG; } ecc_status >>= 4; subpages--; } while (subpages > 0); return 0; } #else #define mxc_nand_read_page_syndrome NULL #define mxc_nand_read_page_raw_syndrome NULL #define mxc_nand_read_oob_syndrome NULL #define mxc_nand_write_page_syndrome NULL #define mxc_nand_write_page_raw_syndrome NULL #define mxc_nand_write_oob_syndrome NULL static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc) { struct nand_chip *nand_chip = mtd_to_nand(mtd); struct mxc_nand_host *host = nand_get_controller_data(nand_chip); /* * 1-Bit errors are automatically corrected in HW. No need for * additional correction. 2-Bit errors cannot be corrected by * HW ECC, so we need to return failure */ uint16_t ecc_status = readnfc(&host->regs->ecc_status_result); if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) { MTDDEBUG(MTD_DEBUG_LEVEL0, "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n"); return -EBADMSG; } return 0; } #endif static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) { return 0; } #endif static u_char mxc_nand_read_byte(struct mtd_info *mtd) { struct nand_chip *nand_chip = mtd_to_nand(mtd); struct mxc_nand_host *host = nand_get_controller_data(nand_chip); uint8_t ret = 0; uint16_t col; uint16_t __iomem *main_buf = (uint16_t __iomem *)host->regs->main_area[0]; uint16_t __iomem *spare_buf = (uint16_t __iomem *)host->regs->spare_area[0]; union { uint16_t word; uint8_t bytes[2]; } nfc_word; /* Check for status request */ if (host->status_request) return get_dev_status(host) & 0xFF; /* Get column for 16-bit access */ col = host->col_addr >> 1; /* If we are accessing the spare region */ if (host->spare_only) nfc_word.word = readw(&spare_buf[col]); else nfc_word.word = readw(&main_buf[col]); /* Pick upper/lower byte of word from RAM buffer */ ret = nfc_word.bytes[host->col_addr & 0x1]; /* Update saved column address */ if (nand_chip->options & NAND_BUSWIDTH_16) host->col_addr += 2; else host->col_addr++; return ret; } static uint16_t mxc_nand_read_word(struct mtd_info *mtd) { struct nand_chip *nand_chip = mtd_to_nand(mtd); struct mxc_nand_host *host = nand_get_controller_data(nand_chip); uint16_t col, ret; uint16_t __iomem *p; MTDDEBUG(MTD_DEBUG_LEVEL3, "mxc_nand_read_word(col = %d)\n", host->col_addr); col = host->col_addr; /* Adjust saved column address */ if (col < mtd->writesize && host->spare_only) col += mtd->writesize; if (col < mtd->writesize) { p = (uint16_t __iomem *)(host->regs->main_area[0] + (col >> 1)); } else { p = (uint16_t __iomem *)(host->regs->spare_area[0] + ((col - mtd->writesize) >> 1)); } if (col & 1) { union { uint16_t word; uint8_t bytes[2]; } nfc_word[3]; nfc_word[0].word = readw(p); nfc_word[1].word = readw(p + 1); nfc_word[2].bytes[0] = nfc_word[0].bytes[1]; nfc_word[2].bytes[1] = nfc_word[1].bytes[0]; ret = nfc_word[2].word; } else { ret = readw(p); } /* Update saved column address */ host->col_addr = col + 2; return ret; } /* * Write data of length len to buffer buf. The data to be * written on NAND Flash is first copied to RAMbuffer. After the Data Input * Operation by the NFC, the data is written to NAND Flash */ static void mxc_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) { struct nand_chip *nand_chip = mtd_to_nand(mtd); struct mxc_nand_host *host = nand_get_controller_data(nand_chip); int n, col, i = 0; MTDDEBUG(MTD_DEBUG_LEVEL3, "mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr, len); col = host->col_addr; /* Adjust saved column address */ if (col < mtd->writesize && host->spare_only) col += mtd->writesize; n = mtd->writesize + mtd->oobsize - col; n = min(len, n); MTDDEBUG(MTD_DEBUG_LEVEL3, "%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n); while (n > 0) { void __iomem *p; if (col < mtd->writesize) { p = host->regs->main_area[0] + (col & ~3); } else { p = host->regs->spare_area[0] - mtd->writesize + (col & ~3); } MTDDEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n", __func__, __LINE__, p); if (((col | (unsigned long)&buf[i]) & 3) || n < 4) { union { uint32_t word; uint8_t bytes[4]; } nfc_word; nfc_word.word = readl(p); nfc_word.bytes[col & 3] = buf[i++]; n--; col++; writel(nfc_word.word, p); } else { int m = mtd->writesize - col; if (col >= mtd->writesize) m += mtd->oobsize; m = min(n, m) & ~3; MTDDEBUG(MTD_DEBUG_LEVEL3, "%s:%d: n = %d, m = %d, i = %d, col = %d\n", __func__, __LINE__, n, m, i, col); mxc_nand_memcpy32(p, (uint32_t *)&buf[i], m); col += m; i += m; n -= m; } } /* Update saved column address */ host->col_addr = col; } /* * Read the data buffer from the NAND Flash. To read the data from NAND * Flash first the data output cycle is initiated by the NFC, which copies * the data to RAMbuffer. This data of length len is then copied to buffer buf. */ static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) { struct nand_chip *nand_chip = mtd_to_nand(mtd); struct mxc_nand_host *host = nand_get_controller_data(nand_chip); int n, col, i = 0; MTDDEBUG(MTD_DEBUG_LEVEL3, "mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr, len); col = host->col_addr; /* Adjust saved column address */ if (col < mtd->writesize && host->spare_only) col += mtd->writesize; n = mtd->writesize + mtd->oobsize - col; n = min(len, n); while (n > 0) { void __iomem *p; if (col < mtd->writesize) { p = host->regs->main_area[0] + (col & ~3); } else { p = host->regs->spare_area[0] - mtd->writesize + (col & ~3); } if (((col | (int)&buf[i]) & 3) || n < 4) { union { uint32_t word; uint8_t bytes[4]; } nfc_word; nfc_word.word = readl(p); buf[i++] = nfc_word.bytes[col & 3]; n--; col++; } else { int m = mtd->writesize - col; if (col >= mtd->writesize) m += mtd->oobsize; m = min(n, m) & ~3; mxc_nand_memcpy32((uint32_t *)&buf[i], p, m); col += m; i += m; n -= m; } } /* Update saved column address */ host->col_addr = col; } /* * This function is used by upper layer for select and * deselect of the NAND chip */ static void mxc_nand_select_chip(struct mtd_info *mtd, int chip) { struct nand_chip *nand_chip = mtd_to_nand(mtd); struct mxc_nand_host *host = nand_get_controller_data(nand_chip); switch (chip) { case -1: /* TODO: Disable the NFC clock */ if (host->clk_act) host->clk_act = 0; break; case 0: /* TODO: Enable the NFC clock */ if (!host->clk_act) host->clk_act = 1; break; default: break; } } /* * Used by the upper layer to write command to NAND Flash for * different operations to be carried out on NAND Flash */ void mxc_nand_command(struct mtd_info *mtd, unsigned command, int column, int page_addr) { struct nand_chip *nand_chip = mtd_to_nand(mtd); struct mxc_nand_host *host = nand_get_controller_data(nand_chip); MTDDEBUG(MTD_DEBUG_LEVEL3, "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n", command, column, page_addr); /* Reset command state information */ host->status_request = false; /* Command pre-processing step */ switch (command) { case NAND_CMD_STATUS: host->col_addr = 0; host->status_request = true; break; case NAND_CMD_READ0: host->page_addr = page_addr; host->col_addr = column; host->spare_only = false; break; case NAND_CMD_READOOB: host->col_addr = column; host->spare_only = true; if (host->pagesize_2k) command = NAND_CMD_READ0; /* only READ0 is valid */ break; case NAND_CMD_SEQIN: if (column >= mtd->writesize) { /* * before sending SEQIN command for partial write, * we need read one page out. FSL NFC does not support * partial write. It always sends out 512+ecc+512+ecc * for large page nand flash. But for small page nand * flash, it does support SPARE ONLY operation. */ if (host->pagesize_2k) { /* call ourself to read a page */ mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr); } host->col_addr = column - mtd->writesize; host->spare_only = true; /* Set program pointer to spare region */ if (!host->pagesize_2k) send_cmd(host, NAND_CMD_READOOB); } else { host->spare_only = false; host->col_addr = column; /* Set program pointer to page start */ if (!host->pagesize_2k) send_cmd(host, NAND_CMD_READ0); } break; case NAND_CMD_PAGEPROG: send_prog_page(host, 0, host->spare_only); if (host->pagesize_2k && is_mxc_nfc_1()) { /* data in 4 areas */ send_prog_page(host, 1, host->spare_only); send_prog_page(host, 2, host->spare_only); send_prog_page(host, 3, host->spare_only); } break; } /* Write out the command to the device. */ send_cmd(host, command); /* Write out column address, if necessary */ if (column != -1) { /* * MXC NANDFC can only perform full page+spare or * spare-only read/write. When the upper layers perform * a read/write buffer operation, we will use the saved * column address to index into the full page. */ send_addr(host, 0); if (host->pagesize_2k) /* another col addr cycle for 2k page */ send_addr(host, 0); } /* Write out page address, if necessary */ if (page_addr != -1) { u32 page_mask = nand_chip->pagemask; do { send_addr(host, page_addr & 0xFF); page_addr >>= 8; page_mask >>= 8; } while (page_mask); } /* Command post-processing step */ switch (command) { case NAND_CMD_RESET: break; case NAND_CMD_READOOB: case NAND_CMD_READ0: if (host->pagesize_2k) { /* send read confirm command */ send_cmd(host, NAND_CMD_READSTART); /* read for each AREA */ send_read_page(host, 0, host->spare_only); if (is_mxc_nfc_1()) { send_read_page(host, 1, host->spare_only); send_read_page(host, 2, host->spare_only); send_read_page(host, 3, host->spare_only); } } else { send_read_page(host, 0, host->spare_only); } break; case NAND_CMD_READID: host->col_addr = 0; send_read_id(host); break; case NAND_CMD_PAGEPROG: break; case NAND_CMD_STATUS: break; case NAND_CMD_ERASE2: break; } } #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; static struct nand_bbt_descr bbt_main_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, .offs = 0, .len = 4, .veroffs = 4, .maxblocks = 4, .pattern = bbt_pattern, }; static struct nand_bbt_descr bbt_mirror_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, .offs = 0, .len = 4, .veroffs = 4, .maxblocks = 4, .pattern = mirror_pattern, }; #endif int board_nand_init(struct nand_chip *this) { struct mtd_info *mtd; #if defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2) uint32_t tmp; #endif #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT this->bbt_options |= NAND_BBT_USE_FLASH; this->bbt_td = &bbt_main_descr; this->bbt_md = &bbt_mirror_descr; #endif /* structures must be linked */ mtd = &this->mtd; host->nand = this; /* 5 us command delay time */ this->chip_delay = 5; nand_set_controller_data(this, host); this->dev_ready = mxc_nand_dev_ready; this->cmdfunc = mxc_nand_command; this->select_chip = mxc_nand_select_chip; this->read_byte = mxc_nand_read_byte; this->read_word = mxc_nand_read_word; this->write_buf = mxc_nand_write_buf; this->read_buf = mxc_nand_read_buf; host->regs = (struct mxc_nand_regs __iomem *)CONFIG_MXC_NAND_REGS_BASE; #ifdef MXC_NFC_V3_2 host->ip_regs = (struct mxc_nand_ip_regs __iomem *)CONFIG_MXC_NAND_IP_REGS_BASE; #endif host->clk_act = 1; #ifdef CONFIG_MXC_NAND_HWECC this->ecc.calculate = mxc_nand_calculate_ecc; this->ecc.hwctl = mxc_nand_enable_hwecc; this->ecc.correct = mxc_nand_correct_data; if (is_mxc_nfc_21() || is_mxc_nfc_32()) { this->ecc.mode = NAND_ECC_HW_SYNDROME; this->ecc.read_page = mxc_nand_read_page_syndrome; this->ecc.read_page_raw = mxc_nand_read_page_raw_syndrome; this->ecc.read_oob = mxc_nand_read_oob_syndrome; this->ecc.write_page = mxc_nand_write_page_syndrome; this->ecc.write_page_raw = mxc_nand_write_page_raw_syndrome; this->ecc.write_oob = mxc_nand_write_oob_syndrome; this->ecc.bytes = 9; this->ecc.prepad = 7; } else { this->ecc.mode = NAND_ECC_HW; } if (is_mxc_nfc_1()) this->ecc.strength = 1; else this->ecc.strength = 4; host->pagesize_2k = 0; this->ecc.size = 512; _mxc_nand_enable_hwecc(mtd, 1); #else this->ecc.layout = &nand_soft_eccoob; this->ecc.mode = NAND_ECC_SOFT; _mxc_nand_enable_hwecc(mtd, 0); #endif /* Reset NAND */ this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); /* NAND bus width determines access functions used by upper layer */ if (is_16bit_nand()) this->options |= NAND_BUSWIDTH_16; #ifdef CONFIG_SYS_NAND_LARGEPAGE host->pagesize_2k = 1; this->ecc.layout = &nand_hw_eccoob2k; #else host->pagesize_2k = 0; this->ecc.layout = &nand_hw_eccoob; #endif #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1) #ifdef MXC_NFC_V2_1 tmp = readnfc(&host->regs->config1); tmp |= NFC_V2_CONFIG1_ONE_CYCLE; tmp |= NFC_V2_CONFIG1_ECC_MODE_4; writenfc(tmp, &host->regs->config1); if (host->pagesize_2k) writenfc(64/2, &host->regs->spare_area_size); else writenfc(16/2, &host->regs->spare_area_size); #endif /* * preset operation * Unlock the internal RAM Buffer */ writenfc(0x2, &host->regs->config); /* Blocks to be unlocked */ writenfc(0x0, &host->regs->unlockstart_blkaddr); /* Originally (Freescale LTIB 2.6.21) 0x4000 was written to the * unlockend_blkaddr, but the magic 0x4000 does not always work * when writing more than some 32 megabytes (on 2k page nands) * However 0xFFFF doesn't seem to have this kind * of limitation (tried it back and forth several times). * The linux kernel driver sets this to 0xFFFF for the v2 controller * only, but probably this was not tested there for v1. * The very same limitation seems to apply to this kernel driver. * This might be NAND chip specific and the i.MX31 datasheet is * extremely vague about the semantics of this register. */ writenfc(0xFFFF, &host->regs->unlockend_blkaddr); /* Unlock Block Command for given address range */ writenfc(0x4, &host->regs->wrprot); #elif defined(MXC_NFC_V3_2) writenfc(NFC_V3_CONFIG1_RBA(0), &host->regs->config1); writenfc(NFC_V3_IPC_CREQ, &host->ip_regs->ipc); /* Unlock the internal RAM Buffer */ writenfc(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK, &host->ip_regs->wrprot); /* Blocks to be unlocked */ for (tmp = 0; tmp < CONFIG_SYS_NAND_MAX_CHIPS; tmp++) writenfc(0x0 | 0xFFFF << 16, &host->ip_regs->wrprot_unlock_blkaddr[tmp]); writenfc(0, &host->ip_regs->ipc); tmp = readnfc(&host->ip_regs->config2); tmp &= ~(NFC_V3_CONFIG2_SPAS_MASK | NFC_V3_CONFIG2_EDC_MASK | NFC_V3_CONFIG2_ECC_MODE_8 | NFC_V3_CONFIG2_PS_MASK); tmp |= NFC_V3_CONFIG2_ONE_CYCLE; if (host->pagesize_2k) { tmp |= NFC_V3_CONFIG2_SPAS(64/2); tmp |= NFC_V3_CONFIG2_PS_2048; } else { tmp |= NFC_V3_CONFIG2_SPAS(16/2); tmp |= NFC_V3_CONFIG2_PS_512; } writenfc(tmp, &host->ip_regs->config2); tmp = NFC_V3_CONFIG3_NUM_OF_DEVS(0) | NFC_V3_CONFIG3_NO_SDMA | NFC_V3_CONFIG3_RBB_MODE | NFC_V3_CONFIG3_SBB(6) | /* Reset default */ NFC_V3_CONFIG3_ADD_OP(0); if (!(this->options & NAND_BUSWIDTH_16)) tmp |= NFC_V3_CONFIG3_FW8; writenfc(tmp, &host->ip_regs->config3); writenfc(0, &host->ip_regs->delay_line); #endif return 0; }