// SPDX-License-Identifier: GPL-2.0+ /* * NAND driver for TI DaVinci based boards. * * Copyright (C) 2007 Sergey Kubushyn * * Based on Linux DaVinci NAND driver by TI. Original copyright follows: */ /* * * linux/drivers/mtd/nand/raw/nand_davinci.c * * NAND Flash Driver * * Copyright (C) 2006 Texas Instruments. * * ---------------------------------------------------------------------------- * * ---------------------------------------------------------------------------- * * Overview: * This is a device driver for the NAND flash device found on the * DaVinci board which utilizes the Samsung k9k2g08 part. * Modifications: ver. 1.0: Feb 2005, Vinod/Sudhakar - */ #include #include #include #include /* Definitions for 4-bit hardware ECC */ #define NAND_TIMEOUT 10240 #define NAND_ECC_BUSY 0xC #define NAND_4BITECC_MASK 0x03FF03FF #define EMIF_NANDFSR_ECC_STATE_MASK 0x00000F00 #define ECC_STATE_NO_ERR 0x0 #define ECC_STATE_TOO_MANY_ERRS 0x1 #define ECC_STATE_ERR_CORR_COMP_P 0x2 #define ECC_STATE_ERR_CORR_COMP_N 0x3 /* * Exploit the little endianness of the ARM to do multi-byte transfers * per device read. This can perform over twice as quickly as individual * byte transfers when buffer alignment is conducive. * * NOTE: This only works if the NAND is not connected to the 2 LSBs of * the address bus. On Davinci EVM platforms this has always been true. */ static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { struct nand_chip *chip = mtd_to_nand(mtd); const u32 *nand = chip->IO_ADDR_R; /* Make sure that buf is 32 bit aligned */ if (((int)buf & 0x3) != 0) { if (((int)buf & 0x1) != 0) { if (len) { *buf = readb(nand); buf += 1; len--; } } if (((int)buf & 0x3) != 0) { if (len >= 2) { *(u16 *)buf = readw(nand); buf += 2; len -= 2; } } } /* copy aligned data */ while (len >= 4) { *(u32 *)buf = __raw_readl(nand); buf += 4; len -= 4; } /* mop up any remaining bytes */ if (len) { if (len >= 2) { *(u16 *)buf = readw(nand); buf += 2; len -= 2; } if (len) *buf = readb(nand); } } static void nand_davinci_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { struct nand_chip *chip = mtd_to_nand(mtd); const u32 *nand = chip->IO_ADDR_W; /* Make sure that buf is 32 bit aligned */ if (((int)buf & 0x3) != 0) { if (((int)buf & 0x1) != 0) { if (len) { writeb(*buf, nand); buf += 1; len--; } } if (((int)buf & 0x3) != 0) { if (len >= 2) { writew(*(u16 *)buf, nand); buf += 2; len -= 2; } } } /* copy aligned data */ while (len >= 4) { __raw_writel(*(u32 *)buf, nand); buf += 4; len -= 4; } /* mop up any remaining bytes */ if (len) { if (len >= 2) { writew(*(u16 *)buf, nand); buf += 2; len -= 2; } if (len) writeb(*buf, nand); } } static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) { struct nand_chip *this = mtd_to_nand(mtd); u_int32_t IO_ADDR_W = (u_int32_t)this->IO_ADDR_W; if (ctrl & NAND_CTRL_CHANGE) { IO_ADDR_W &= ~(MASK_ALE|MASK_CLE); if (ctrl & NAND_CLE) IO_ADDR_W |= MASK_CLE; if (ctrl & NAND_ALE) IO_ADDR_W |= MASK_ALE; this->IO_ADDR_W = (void __iomem *) IO_ADDR_W; } if (cmd != NAND_CMD_NONE) writeb(cmd, IO_ADDR_W); } #ifdef CONFIG_SYS_NAND_HW_ECC static u_int32_t nand_davinci_readecc(struct mtd_info *mtd) { u_int32_t ecc = 0; ecc = __raw_readl(&(davinci_emif_regs->nandfecc[ CONFIG_SYS_NAND_CS - 2])); return ecc; } static void nand_davinci_enable_hwecc(struct mtd_info *mtd, int mode) { u_int32_t val; /* reading the ECC result register resets the ECC calculation */ nand_davinci_readecc(mtd); val = __raw_readl(&davinci_emif_regs->nandfcr); val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS); val |= DAVINCI_NANDFCR_1BIT_ECC_START(CONFIG_SYS_NAND_CS); __raw_writel(val, &davinci_emif_regs->nandfcr); } static int nand_davinci_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) { u_int32_t tmp; tmp = nand_davinci_readecc(mtd); /* Squeeze 4 bytes ECC into 3 bytes by removing RESERVED bits * and shifting. RESERVED bits are 31 to 28 and 15 to 12. */ tmp = (tmp & 0x00000fff) | ((tmp & 0x0fff0000) >> 4); /* Invert so that erased block ECC is correct */ tmp = ~tmp; *ecc_code++ = tmp; *ecc_code++ = tmp >> 8; *ecc_code++ = tmp >> 16; /* NOTE: the above code matches mainline Linux: * .PQR.stu ==> ~PQRstu * * MontaVista/TI kernels encode those bytes differently, use * complicated (and allegedly sometimes-wrong) correction code, * and usually shipped with U-Boot that uses software ECC: * .PQR.stu ==> PsQRtu * * If you need MV/TI compatible NAND I/O in U-Boot, it should * be possible to (a) change the mangling above, (b) reverse * that mangling in nand_davinci_correct_data() below. */ return 0; } static int nand_davinci_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc) { struct nand_chip *this = mtd_to_nand(mtd); u_int32_t ecc_nand = read_ecc[0] | (read_ecc[1] << 8) | (read_ecc[2] << 16); u_int32_t ecc_calc = calc_ecc[0] | (calc_ecc[1] << 8) | (calc_ecc[2] << 16); u_int32_t diff = ecc_calc ^ ecc_nand; if (diff) { if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) { /* Correctable error */ if ((diff >> (12 + 3)) < this->ecc.size) { uint8_t find_bit = 1 << ((diff >> 12) & 7); uint32_t find_byte = diff >> (12 + 3); dat[find_byte] ^= find_bit; pr_debug("Correcting single " "bit ECC error at offset: %d, bit: " "%d\n", find_byte, find_bit); return 1; } else { return -EBADMSG; } } else if (!(diff & (diff - 1))) { /* Single bit ECC error in the ECC itself, nothing to fix */ pr_debug("Single bit ECC error in " "ECC.\n"); return 1; } else { /* Uncorrectable error */ pr_debug("ECC UNCORRECTED_ERROR 1\n"); return -EBADMSG; } } return 0; } #endif /* CONFIG_SYS_NAND_HW_ECC */ #ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST static struct nand_ecclayout nand_davinci_4bit_layout_oobfirst = { #if defined(CONFIG_SYS_NAND_PAGE_2K) .eccbytes = 40, #ifdef CONFIG_NAND_6BYTES_OOB_FREE_10BYTES_ECC .eccpos = { 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, }, .oobfree = { {2, 4}, {16, 6}, {32, 6}, {48, 6}, }, #else .eccpos = { 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, }, .oobfree = { {.offset = 2, .length = 22, }, }, #endif /* #ifdef CONFIG_NAND_6BYTES_OOB_FREE_10BYTES_ECC */ #elif defined(CONFIG_SYS_NAND_PAGE_4K) .eccbytes = 80, .eccpos = { 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, }, .oobfree = { {.offset = 2, .length = 46, }, }, #endif }; #if defined CONFIG_KEYSTONE_RBL_NAND static struct nand_ecclayout nand_keystone_rbl_4bit_layout_oobfirst = { #if defined(CONFIG_SYS_NAND_PAGE_2K) .eccbytes = 40, .eccpos = { 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, }, .oobfree = { {.offset = 2, .length = 4, }, {.offset = 16, .length = 6, }, {.offset = 32, .length = 6, }, {.offset = 48, .length = 6, }, }, #elif defined(CONFIG_SYS_NAND_PAGE_4K) .eccbytes = 80, .eccpos = { 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, }, .oobfree = { {.offset = 2, .length = 4, }, {.offset = 16, .length = 6, }, {.offset = 32, .length = 6, }, {.offset = 48, .length = 6, }, {.offset = 64, .length = 6, }, {.offset = 80, .length = 6, }, {.offset = 96, .length = 6, }, {.offset = 112, .length = 6, }, }, #endif }; #ifdef CONFIG_SYS_NAND_PAGE_2K #define CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE CONFIG_KEYSTONE_NAND_MAX_RBL_SIZE >> 11 #elif defined(CONFIG_SYS_NAND_PAGE_4K) #define CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE CONFIG_KEYSTONE_NAND_MAX_RBL_SIZE >> 12 #endif /** * nand_davinci_write_page - write one page * @mtd: MTD device structure * @chip: NAND chip descriptor * @buf: the data to write * @oob_required: must write chip->oob_poi to OOB * @page: page number to write * @raw: use _raw version of write_page */ static int nand_davinci_write_page(struct mtd_info *mtd, struct nand_chip *chip, uint32_t offset, int data_len, const uint8_t *buf, int oob_required, int page, int raw) { int status; int ret = 0; struct nand_ecclayout *saved_ecc_layout; /* save current ECC layout and assign Keystone RBL ECC layout */ if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) { saved_ecc_layout = chip->ecc.layout; chip->ecc.layout = &nand_keystone_rbl_4bit_layout_oobfirst; mtd->oobavail = chip->ecc.layout->oobavail; } chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); if (unlikely(raw)) { status = chip->ecc.write_page_raw(mtd, chip, buf, oob_required, page); } else { status = chip->ecc.write_page(mtd, chip, buf, oob_required, page); } if (status < 0) { ret = status; goto err; } chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); status = chip->waitfunc(mtd, chip); if (status & NAND_STATUS_FAIL) { ret = -EIO; goto err; } err: /* restore ECC layout */ if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) { chip->ecc.layout = saved_ecc_layout; mtd->oobavail = saved_ecc_layout->oobavail; } return ret; } /** * nand_davinci_read_page_hwecc - hardware ECC based page read function * @mtd: mtd info structure * @chip: nand chip info structure * @buf: buffer to store read data * @oob_required: caller requires OOB data read to chip->oob_poi * @page: page number to read * * Not for syndrome calculating ECC controllers which need a special oob layout. */ static int nand_davinci_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { int i, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; int eccsteps = chip->ecc.steps; uint32_t *eccpos; uint8_t *p = buf; uint8_t *ecc_code = chip->buffers->ecccode; uint8_t *ecc_calc = chip->buffers->ecccalc; struct nand_ecclayout *saved_ecc_layout = chip->ecc.layout; /* save current ECC layout and assign Keystone RBL ECC layout */ if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) { chip->ecc.layout = &nand_keystone_rbl_4bit_layout_oobfirst; mtd->oobavail = chip->ecc.layout->oobavail; } eccpos = chip->ecc.layout->eccpos; /* Read the OOB area first */ chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page); chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); for (i = 0; i < chip->ecc.total; i++) ecc_code[i] = chip->oob_poi[eccpos[i]]; for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { int stat; chip->ecc.hwctl(mtd, NAND_ECC_READ); chip->read_buf(mtd, p, eccsize); chip->ecc.calculate(mtd, p, &ecc_calc[i]); stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL); if (stat < 0) mtd->ecc_stats.failed++; else mtd->ecc_stats.corrected += stat; } /* restore ECC layout */ if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) { chip->ecc.layout = saved_ecc_layout; mtd->oobavail = saved_ecc_layout->oobavail; } return 0; } #endif /* CONFIG_KEYSTONE_RBL_NAND */ static void nand_davinci_4bit_enable_hwecc(struct mtd_info *mtd, int mode) { u32 val; switch (mode) { case NAND_ECC_WRITE: case NAND_ECC_READ: /* * Start a new ECC calculation for reading or writing 512 bytes * of data. */ val = __raw_readl(&davinci_emif_regs->nandfcr); val &= ~DAVINCI_NANDFCR_4BIT_ECC_SEL_MASK; val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS); val |= DAVINCI_NANDFCR_4BIT_ECC_SEL(CONFIG_SYS_NAND_CS); val |= DAVINCI_NANDFCR_4BIT_ECC_START; __raw_writel(val, &davinci_emif_regs->nandfcr); break; case NAND_ECC_READSYN: val = __raw_readl(&davinci_emif_regs->nand4bitecc[0]); break; default: break; } } static u32 nand_davinci_4bit_readecc(struct mtd_info *mtd, unsigned int ecc[4]) { int i; for (i = 0; i < 4; i++) { ecc[i] = __raw_readl(&davinci_emif_regs->nand4bitecc[i]) & NAND_4BITECC_MASK; } return 0; } static int nand_davinci_4bit_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat, uint8_t *ecc_code) { unsigned int hw_4ecc[4]; unsigned int i; nand_davinci_4bit_readecc(mtd, hw_4ecc); /*Convert 10 bit ecc value to 8 bit */ for (i = 0; i < 2; i++) { unsigned int hw_ecc_low = hw_4ecc[i * 2]; unsigned int hw_ecc_hi = hw_4ecc[(i * 2) + 1]; /* Take first 8 bits from val1 (count1=0) or val5 (count1=1) */ *ecc_code++ = hw_ecc_low & 0xFF; /* * Take 2 bits as LSB bits from val1 (count1=0) or val5 * (count1=1) and 6 bits from val2 (count1=0) or * val5 (count1=1) */ *ecc_code++ = ((hw_ecc_low >> 8) & 0x3) | ((hw_ecc_low >> 14) & 0xFC); /* * Take 4 bits from val2 (count1=0) or val5 (count1=1) and * 4 bits from val3 (count1=0) or val6 (count1=1) */ *ecc_code++ = ((hw_ecc_low >> 22) & 0xF) | ((hw_ecc_hi << 4) & 0xF0); /* * Take 6 bits from val3(count1=0) or val6 (count1=1) and * 2 bits from val4 (count1=0) or val7 (count1=1) */ *ecc_code++ = ((hw_ecc_hi >> 4) & 0x3F) | ((hw_ecc_hi >> 10) & 0xC0); /* Take 8 bits from val4 (count1=0) or val7 (count1=1) */ *ecc_code++ = (hw_ecc_hi >> 18) & 0xFF; } return 0; } static int nand_davinci_4bit_correct_data(struct mtd_info *mtd, uint8_t *dat, uint8_t *read_ecc, uint8_t *calc_ecc) { int i; unsigned int hw_4ecc[4]; unsigned int iserror; unsigned short *ecc16; unsigned int numerrors, erroraddress, errorvalue; u32 val; /* * Check for an ECC where all bytes are 0xFF. If this is the case, we * will assume we are looking at an erased page and we should ignore * the ECC. */ for (i = 0; i < 10; i++) { if (read_ecc[i] != 0xFF) break; } if (i == 10) return 0; /* Convert 8 bit in to 10 bit */ ecc16 = (unsigned short *)&read_ecc[0]; /* * Write the parity values in the NAND Flash 4-bit ECC Load register. * Write each parity value one at a time starting from 4bit_ecc_val8 * to 4bit_ecc_val1. */ /*Take 2 bits from 8th byte and 8 bits from 9th byte */ __raw_writel(((ecc16[4]) >> 6) & 0x3FF, &davinci_emif_regs->nand4biteccload); /* Take 4 bits from 7th byte and 6 bits from 8th byte */ __raw_writel((((ecc16[3]) >> 12) & 0xF) | ((((ecc16[4])) << 4) & 0x3F0), &davinci_emif_regs->nand4biteccload); /* Take 6 bits from 6th byte and 4 bits from 7th byte */ __raw_writel((ecc16[3] >> 2) & 0x3FF, &davinci_emif_regs->nand4biteccload); /* Take 8 bits from 5th byte and 2 bits from 6th byte */ __raw_writel(((ecc16[2]) >> 8) | ((((ecc16[3])) << 8) & 0x300), &davinci_emif_regs->nand4biteccload); /*Take 2 bits from 3rd byte and 8 bits from 4th byte */ __raw_writel((((ecc16[1]) >> 14) & 0x3) | ((((ecc16[2])) << 2) & 0x3FC), &davinci_emif_regs->nand4biteccload); /* Take 4 bits form 2nd bytes and 6 bits from 3rd bytes */ __raw_writel(((ecc16[1]) >> 4) & 0x3FF, &davinci_emif_regs->nand4biteccload); /* Take 6 bits from 1st byte and 4 bits from 2nd byte */ __raw_writel((((ecc16[0]) >> 10) & 0x3F) | (((ecc16[1]) << 6) & 0x3C0), &davinci_emif_regs->nand4biteccload); /* Take 10 bits from 0th and 1st bytes */ __raw_writel((ecc16[0]) & 0x3FF, &davinci_emif_regs->nand4biteccload); /* * Perform a dummy read to the EMIF Revision Code and Status register. * This is required to ensure time for syndrome calculation after * writing the ECC values in previous step. */ val = __raw_readl(&davinci_emif_regs->nandfsr); /* * Read the syndrome from the NAND Flash 4-Bit ECC 1-4 registers. * A syndrome value of 0 means no bit errors. If the syndrome is * non-zero then go further otherwise return. */ nand_davinci_4bit_readecc(mtd, hw_4ecc); if (!(hw_4ecc[0] | hw_4ecc[1] | hw_4ecc[2] | hw_4ecc[3])) return 0; /* * Clear any previous address calculation by doing a dummy read of an * error address register. */ val = __raw_readl(&davinci_emif_regs->nanderradd1); /* * Set the addr_calc_st bit(bit no 13) in the NAND Flash Control * register to 1. */ __raw_writel(DAVINCI_NANDFCR_4BIT_CALC_START, &davinci_emif_regs->nandfcr); /* * Wait for the corr_state field (bits 8 to 11) in the * NAND Flash Status register to be not equal to 0x0, 0x1, 0x2, or 0x3. * Otherwise ECC calculation has not even begun and the next loop might * fail because of a false positive! */ i = NAND_TIMEOUT; do { val = __raw_readl(&davinci_emif_regs->nandfsr); val &= 0xc00; i--; } while ((i > 0) && !val); /* * Wait for the corr_state field (bits 8 to 11) in the * NAND Flash Status register to be equal to 0x0, 0x1, 0x2, or 0x3. */ i = NAND_TIMEOUT; do { val = __raw_readl(&davinci_emif_regs->nandfsr); val &= 0xc00; i--; } while ((i > 0) && val); iserror = __raw_readl(&davinci_emif_regs->nandfsr); iserror &= EMIF_NANDFSR_ECC_STATE_MASK; iserror = iserror >> 8; /* * ECC_STATE_TOO_MANY_ERRS (0x1) means errors cannot be * corrected (five or more errors). The number of errors * calculated (err_num field) differs from the number of errors * searched. ECC_STATE_ERR_CORR_COMP_P (0x2) means error * correction complete (errors on bit 8 or 9). * ECC_STATE_ERR_CORR_COMP_N (0x3) means error correction * complete (error exists). */ if (iserror == ECC_STATE_NO_ERR) { val = __raw_readl(&davinci_emif_regs->nanderrval1); return 0; } else if (iserror == ECC_STATE_TOO_MANY_ERRS) { val = __raw_readl(&davinci_emif_regs->nanderrval1); return -EBADMSG; } numerrors = ((__raw_readl(&davinci_emif_regs->nandfsr) >> 16) & 0x3) + 1; /* Read the error address, error value and correct */ for (i = 0; i < numerrors; i++) { if (i > 1) { erroraddress = ((__raw_readl(&davinci_emif_regs->nanderradd2) >> (16 * (i & 1))) & 0x3FF); erroraddress = ((512 + 7) - erroraddress); errorvalue = ((__raw_readl(&davinci_emif_regs->nanderrval2) >> (16 * (i & 1))) & 0xFF); } else { erroraddress = ((__raw_readl(&davinci_emif_regs->nanderradd1) >> (16 * (i & 1))) & 0x3FF); erroraddress = ((512 + 7) - erroraddress); errorvalue = ((__raw_readl(&davinci_emif_regs->nanderrval1) >> (16 * (i & 1))) & 0xFF); } /* xor the corrupt data with error value */ if (erroraddress < 512) dat[erroraddress] ^= errorvalue; } return numerrors; } #endif /* CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST */ static int nand_davinci_dev_ready(struct mtd_info *mtd) { return __raw_readl(&davinci_emif_regs->nandfsr) & 0x1; } void davinci_nand_init(struct nand_chip *nand) { #if defined CONFIG_KEYSTONE_RBL_NAND int i; struct nand_ecclayout *layout; layout = &nand_keystone_rbl_4bit_layout_oobfirst; layout->oobavail = 0; for (i = 0; layout->oobfree[i].length && i < ARRAY_SIZE(layout->oobfree); i++) layout->oobavail += layout->oobfree[i].length; nand->write_page = nand_davinci_write_page; nand->ecc.read_page = nand_davinci_read_page_hwecc; #endif nand->chip_delay = 0; #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT nand->bbt_options |= NAND_BBT_USE_FLASH; #endif #ifdef CONFIG_SYS_NAND_NO_SUBPAGE_WRITE nand->options |= NAND_NO_SUBPAGE_WRITE; #endif #ifdef CONFIG_SYS_NAND_BUSWIDTH_16BIT nand->options |= NAND_BUSWIDTH_16; #endif #ifdef CONFIG_SYS_NAND_HW_ECC nand->ecc.mode = NAND_ECC_HW; nand->ecc.size = 512; nand->ecc.bytes = 3; nand->ecc.strength = 1; nand->ecc.calculate = nand_davinci_calculate_ecc; nand->ecc.correct = nand_davinci_correct_data; nand->ecc.hwctl = nand_davinci_enable_hwecc; #else nand->ecc.mode = NAND_ECC_SOFT; #endif /* CONFIG_SYS_NAND_HW_ECC */ #ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST nand->ecc.mode = NAND_ECC_HW_OOB_FIRST; nand->ecc.size = 512; nand->ecc.bytes = 10; nand->ecc.strength = 4; nand->ecc.calculate = nand_davinci_4bit_calculate_ecc; nand->ecc.correct = nand_davinci_4bit_correct_data; nand->ecc.hwctl = nand_davinci_4bit_enable_hwecc; nand->ecc.layout = &nand_davinci_4bit_layout_oobfirst; #endif /* Set address of hardware control function */ nand->cmd_ctrl = nand_davinci_hwcontrol; nand->read_buf = nand_davinci_read_buf; nand->write_buf = nand_davinci_write_buf; nand->dev_ready = nand_davinci_dev_ready; } int board_nand_init(struct nand_chip *chip) __attribute__((weak)); int board_nand_init(struct nand_chip *chip) { davinci_nand_init(chip); return 0; }