// SPDX-License-Identifier: GPL-2.0+ /* Freescale Enhanced Local Bus Controller FCM NAND driver * * Copyright (c) 2006-2008 Freescale Semiconductor * * Authors: Nick Spence , * Scott Wood */ #include #include #include #include #include #include #include #include #include #ifdef VERBOSE_DEBUG #define DEBUG_ELBC #define vdbg(format, arg...) printf("DEBUG: " format, ##arg) #else #define vdbg(format, arg...) do {} while (0) #endif /* Can't use plain old DEBUG because the linux mtd * headers define it as a macro. */ #ifdef DEBUG_ELBC #define dbg(format, arg...) printf("DEBUG: " format, ##arg) #else #define dbg(format, arg...) do {} while (0) #endif #define MAX_BANKS 8 #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */ #define LTESR_NAND_MASK (LTESR_FCT | LTESR_PAR | LTESR_CC) struct fsl_elbc_ctrl; /* mtd information per set */ struct fsl_elbc_mtd { struct nand_chip chip; struct fsl_elbc_ctrl *ctrl; struct device *dev; int bank; /* Chip select bank number */ u8 __iomem *vbase; /* Chip select base virtual address */ int page_size; /* NAND page size (0=512, 1=2048) */ unsigned int fmr; /* FCM Flash Mode Register value */ }; /* overview of the fsl elbc controller */ struct fsl_elbc_ctrl { struct nand_hw_control controller; struct fsl_elbc_mtd *chips[MAX_BANKS]; /* device info */ fsl_lbc_t *regs; u8 __iomem *addr; /* Address of assigned FCM buffer */ unsigned int page; /* Last page written to / read from */ unsigned int read_bytes; /* Number of bytes read during command */ unsigned int column; /* Saved column from SEQIN */ unsigned int index; /* Pointer to next byte to 'read' */ unsigned int status; /* status read from LTESR after last op */ unsigned int mdr; /* UPM/FCM Data Register value */ unsigned int use_mdr; /* Non zero if the MDR is to be set */ unsigned int oob; /* Non zero if operating on OOB data */ }; /* These map to the positions used by the FCM hardware ECC generator */ /* Small Page FLASH with FMR[ECCM] = 0 */ static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = { .eccbytes = 3, .eccpos = {6, 7, 8}, .oobfree = { {0, 5}, {9, 7} }, }; /* Small Page FLASH with FMR[ECCM] = 1 */ static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = { .eccbytes = 3, .eccpos = {8, 9, 10}, .oobfree = { {0, 5}, {6, 2}, {11, 5} }, }; /* Large Page FLASH with FMR[ECCM] = 0 */ static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = { .eccbytes = 12, .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56}, .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} }, }; /* Large Page FLASH with FMR[ECCM] = 1 */ static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = { .eccbytes = 12, .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58}, .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} }, }; /* * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset * 1, so we have to adjust bad block pattern. This pattern should be used for * x8 chips only. So far hardware does not support x16 chips anyway. */ static u8 scan_ff_pattern[] = { 0xff, }; static struct nand_bbt_descr largepage_memorybased = { .options = 0, .offs = 0, .len = 1, .pattern = scan_ff_pattern, }; /* * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt, * interfere with ECC positions, that's why we implement our own descriptors. * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0. */ static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; static struct nand_bbt_descr bbt_main_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION, .offs = 11, .len = 4, .veroffs = 15, .maxblocks = 4, .pattern = bbt_pattern, }; static struct nand_bbt_descr bbt_mirror_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION, .offs = 11, .len = 4, .veroffs = 15, .maxblocks = 4, .pattern = mirror_pattern, }; /*=================================*/ /* * Set up the FCM hardware block and page address fields, and the fcm * structure addr field to point to the correct FCM buffer in memory */ static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob) { struct nand_chip *chip = mtd_to_nand(mtd); struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); struct fsl_elbc_ctrl *ctrl = priv->ctrl; fsl_lbc_t *lbc = ctrl->regs; int buf_num; ctrl->page = page_addr; if (priv->page_size) { out_be32(&lbc->fbar, page_addr >> 6); out_be32(&lbc->fpar, ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) | (oob ? FPAR_LP_MS : 0) | column); buf_num = (page_addr & 1) << 2; } else { out_be32(&lbc->fbar, page_addr >> 5); out_be32(&lbc->fpar, ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) | (oob ? FPAR_SP_MS : 0) | column); buf_num = page_addr & 7; } ctrl->addr = priv->vbase + buf_num * 1024; ctrl->index = column; /* for OOB data point to the second half of the buffer */ if (oob) ctrl->index += priv->page_size ? 2048 : 512; vdbg("set_addr: bank=%d, ctrl->addr=0x%p (0x%p), " "index %x, pes %d ps %d\n", buf_num, ctrl->addr, priv->vbase, ctrl->index, chip->phys_erase_shift, chip->page_shift); } /* * execute FCM command and wait for it to complete */ static int fsl_elbc_run_command(struct mtd_info *mtd) { struct nand_chip *chip = mtd_to_nand(mtd); struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); struct fsl_elbc_ctrl *ctrl = priv->ctrl; fsl_lbc_t *lbc = ctrl->regs; u32 timeo = (CONFIG_SYS_HZ * 10) / 1000; u32 time_start; u32 ltesr; /* Setup the FMR[OP] to execute without write protection */ out_be32(&lbc->fmr, priv->fmr | 3); if (ctrl->use_mdr) out_be32(&lbc->mdr, ctrl->mdr); vdbg("fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n", in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr)); vdbg("fsl_elbc_run_command: fbar=%08x fpar=%08x " "fbcr=%08x bank=%d\n", in_be32(&lbc->fbar), in_be32(&lbc->fpar), in_be32(&lbc->fbcr), priv->bank); /* execute special operation */ out_be32(&lbc->lsor, priv->bank); /* wait for FCM complete flag or timeout */ time_start = get_timer(0); ltesr = 0; while (get_timer(time_start) < timeo) { ltesr = in_be32(&lbc->ltesr); if (ltesr & LTESR_CC) break; } ctrl->status = ltesr & LTESR_NAND_MASK; out_be32(&lbc->ltesr, ctrl->status); out_be32(&lbc->lteatr, 0); /* store mdr value in case it was needed */ if (ctrl->use_mdr) ctrl->mdr = in_be32(&lbc->mdr); ctrl->use_mdr = 0; vdbg("fsl_elbc_run_command: stat=%08x mdr=%08x fmr=%08x\n", ctrl->status, ctrl->mdr, in_be32(&lbc->fmr)); /* returns 0 on success otherwise non-zero) */ return ctrl->status == LTESR_CC ? 0 : -EIO; } static void fsl_elbc_do_read(struct nand_chip *chip, int oob) { struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); struct fsl_elbc_ctrl *ctrl = priv->ctrl; fsl_lbc_t *lbc = ctrl->regs; if (priv->page_size) { out_be32(&lbc->fir, (FIR_OP_CW0 << FIR_OP0_SHIFT) | (FIR_OP_CA << FIR_OP1_SHIFT) | (FIR_OP_PA << FIR_OP2_SHIFT) | (FIR_OP_CW1 << FIR_OP3_SHIFT) | (FIR_OP_RBW << FIR_OP4_SHIFT)); out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) | (NAND_CMD_READSTART << FCR_CMD1_SHIFT)); } else { out_be32(&lbc->fir, (FIR_OP_CW0 << FIR_OP0_SHIFT) | (FIR_OP_CA << FIR_OP1_SHIFT) | (FIR_OP_PA << FIR_OP2_SHIFT) | (FIR_OP_RBW << FIR_OP3_SHIFT)); if (oob) out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT); else out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT); } } /* cmdfunc send commands to the FCM */ static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command, int column, int page_addr) { struct nand_chip *chip = mtd_to_nand(mtd); struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); struct fsl_elbc_ctrl *ctrl = priv->ctrl; fsl_lbc_t *lbc = ctrl->regs; ctrl->use_mdr = 0; /* clear the read buffer */ ctrl->read_bytes = 0; if (command != NAND_CMD_PAGEPROG) ctrl->index = 0; switch (command) { /* READ0 and READ1 read the entire buffer to use hardware ECC. */ case NAND_CMD_READ1: column += 256; /* fall-through */ case NAND_CMD_READ0: vdbg("fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:" " 0x%x, column: 0x%x.\n", page_addr, column); out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */ set_addr(mtd, 0, page_addr, 0); ctrl->read_bytes = mtd->writesize + mtd->oobsize; ctrl->index += column; fsl_elbc_do_read(chip, 0); fsl_elbc_run_command(mtd); return; /* READOOB reads only the OOB because no ECC is performed. */ case NAND_CMD_READOOB: vdbg("fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:" " 0x%x, column: 0x%x.\n", page_addr, column); out_be32(&lbc->fbcr, mtd->oobsize - column); set_addr(mtd, column, page_addr, 1); ctrl->read_bytes = mtd->writesize + mtd->oobsize; fsl_elbc_do_read(chip, 1); fsl_elbc_run_command(mtd); return; /* READID must read all 5 possible bytes while CEB is active */ case NAND_CMD_READID: case NAND_CMD_PARAM: vdbg("fsl_elbc_cmdfunc: NAND_CMD 0x%x.\n", command); out_be32(&lbc->fir, (FIR_OP_CW0 << FIR_OP0_SHIFT) | (FIR_OP_UA << FIR_OP1_SHIFT) | (FIR_OP_RBW << FIR_OP2_SHIFT)); out_be32(&lbc->fcr, command << FCR_CMD0_SHIFT); /* * although currently it's 8 bytes for READID, we always read * the maximum 256 bytes(for PARAM) */ out_be32(&lbc->fbcr, 256); ctrl->read_bytes = 256; ctrl->use_mdr = 1; ctrl->mdr = column; set_addr(mtd, 0, 0, 0); fsl_elbc_run_command(mtd); return; /* ERASE1 stores the block and page address */ case NAND_CMD_ERASE1: vdbg("fsl_elbc_cmdfunc: NAND_CMD_ERASE1, " "page_addr: 0x%x.\n", page_addr); set_addr(mtd, 0, page_addr, 0); return; /* ERASE2 uses the block and page address from ERASE1 */ case NAND_CMD_ERASE2: vdbg("fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n"); out_be32(&lbc->fir, (FIR_OP_CW0 << FIR_OP0_SHIFT) | (FIR_OP_PA << FIR_OP1_SHIFT) | (FIR_OP_CM1 << FIR_OP2_SHIFT)); out_be32(&lbc->fcr, (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) | (NAND_CMD_ERASE2 << FCR_CMD1_SHIFT)); out_be32(&lbc->fbcr, 0); ctrl->read_bytes = 0; fsl_elbc_run_command(mtd); return; /* SEQIN sets up the addr buffer and all registers except the length */ case NAND_CMD_SEQIN: { u32 fcr; vdbg("fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, " "page_addr: 0x%x, column: 0x%x.\n", page_addr, column); ctrl->column = column; ctrl->oob = 0; if (priv->page_size) { fcr = (NAND_CMD_SEQIN << FCR_CMD0_SHIFT) | (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT); out_be32(&lbc->fir, (FIR_OP_CW0 << FIR_OP0_SHIFT) | (FIR_OP_CA << FIR_OP1_SHIFT) | (FIR_OP_PA << FIR_OP2_SHIFT) | (FIR_OP_WB << FIR_OP3_SHIFT) | (FIR_OP_CW1 << FIR_OP4_SHIFT)); } else { fcr = (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT) | (NAND_CMD_SEQIN << FCR_CMD2_SHIFT); out_be32(&lbc->fir, (FIR_OP_CW0 << FIR_OP0_SHIFT) | (FIR_OP_CM2 << FIR_OP1_SHIFT) | (FIR_OP_CA << FIR_OP2_SHIFT) | (FIR_OP_PA << FIR_OP3_SHIFT) | (FIR_OP_WB << FIR_OP4_SHIFT) | (FIR_OP_CW1 << FIR_OP5_SHIFT)); if (column >= mtd->writesize) { /* OOB area --> READOOB */ column -= mtd->writesize; fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT; ctrl->oob = 1; } else if (column < 256) { /* First 256 bytes --> READ0 */ fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT; } else { /* Second 256 bytes --> READ1 */ fcr |= NAND_CMD_READ1 << FCR_CMD0_SHIFT; } } out_be32(&lbc->fcr, fcr); set_addr(mtd, column, page_addr, ctrl->oob); return; } /* PAGEPROG reuses all of the setup from SEQIN and adds the length */ case NAND_CMD_PAGEPROG: { vdbg("fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG " "writing %d bytes.\n", ctrl->index); /* if the write did not start at 0 or is not a full page * then set the exact length, otherwise use a full page * write so the HW generates the ECC. */ if (ctrl->oob || ctrl->column != 0 || ctrl->index != mtd->writesize + mtd->oobsize) out_be32(&lbc->fbcr, ctrl->index); else out_be32(&lbc->fbcr, 0); fsl_elbc_run_command(mtd); return; } /* CMD_STATUS must read the status byte while CEB is active */ /* Note - it does not wait for the ready line */ case NAND_CMD_STATUS: out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) | (FIR_OP_RBW << FIR_OP1_SHIFT)); out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT); out_be32(&lbc->fbcr, 1); set_addr(mtd, 0, 0, 0); ctrl->read_bytes = 1; fsl_elbc_run_command(mtd); /* The chip always seems to report that it is * write-protected, even when it is not. */ out_8(ctrl->addr, in_8(ctrl->addr) | NAND_STATUS_WP); return; /* RESET without waiting for the ready line */ case NAND_CMD_RESET: dbg("fsl_elbc_cmdfunc: NAND_CMD_RESET.\n"); out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT); out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT); fsl_elbc_run_command(mtd); return; default: printf("fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n", command); } } static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip) { /* The hardware does not seem to support multiple * chips per bank. */ } /* * Write buf to the FCM Controller Data Buffer */ static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len) { struct nand_chip *chip = mtd_to_nand(mtd); struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); struct fsl_elbc_ctrl *ctrl = priv->ctrl; unsigned int bufsize = mtd->writesize + mtd->oobsize; if (len <= 0) { printf("write_buf of %d bytes", len); ctrl->status = 0; return; } if ((unsigned int)len > bufsize - ctrl->index) { printf("write_buf beyond end of buffer " "(%d requested, %u available)\n", len, bufsize - ctrl->index); len = bufsize - ctrl->index; } memcpy_toio(&ctrl->addr[ctrl->index], buf, len); /* * This is workaround for the weird elbc hangs during nand write, * Scott Wood says: "...perhaps difference in how long it takes a * write to make it through the localbus compared to a write to IMMR * is causing problems, and sync isn't helping for some reason." * Reading back the last byte helps though. */ in_8(&ctrl->addr[ctrl->index] + len - 1); ctrl->index += len; } /* * read a byte from either the FCM hardware buffer if it has any data left * otherwise issue a command to read a single byte. */ static u8 fsl_elbc_read_byte(struct mtd_info *mtd) { struct nand_chip *chip = mtd_to_nand(mtd); struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); struct fsl_elbc_ctrl *ctrl = priv->ctrl; /* If there are still bytes in the FCM, then use the next byte. */ if (ctrl->index < ctrl->read_bytes) return in_8(&ctrl->addr[ctrl->index++]); printf("read_byte beyond end of buffer\n"); return ERR_BYTE; } /* * Read from the FCM Controller Data Buffer */ static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len) { struct nand_chip *chip = mtd_to_nand(mtd); struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); struct fsl_elbc_ctrl *ctrl = priv->ctrl; int avail; if (len < 0) return; avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index); memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail); ctrl->index += avail; if (len > avail) printf("read_buf beyond end of buffer " "(%d requested, %d available)\n", len, avail); } /* This function is called after Program and Erase Operations to * check for success or failure. */ static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip) { struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); struct fsl_elbc_ctrl *ctrl = priv->ctrl; fsl_lbc_t *lbc = ctrl->regs; if (ctrl->status != LTESR_CC) return NAND_STATUS_FAIL; /* Use READ_STATUS command, but wait for the device to be ready */ ctrl->use_mdr = 0; out_be32(&lbc->fir, (FIR_OP_CW0 << FIR_OP0_SHIFT) | (FIR_OP_RBW << FIR_OP1_SHIFT)); out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT); out_be32(&lbc->fbcr, 1); set_addr(mtd, 0, 0, 0); ctrl->read_bytes = 1; fsl_elbc_run_command(mtd); if (ctrl->status != LTESR_CC) return NAND_STATUS_FAIL; /* The chip always seems to report that it is * write-protected, even when it is not. */ out_8(ctrl->addr, in_8(ctrl->addr) | NAND_STATUS_WP); return fsl_elbc_read_byte(mtd); } static int fsl_elbc_read_page(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { fsl_elbc_read_buf(mtd, buf, mtd->writesize); fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize); if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL) mtd->ecc_stats.failed++; return 0; } /* ECC will be calculated automatically, and errors will be detected in * waitfunc. */ static int fsl_elbc_write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required, int page) { fsl_elbc_write_buf(mtd, buf, mtd->writesize); fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize); return 0; } static struct fsl_elbc_ctrl *elbc_ctrl; /* ECC will be calculated automatically, and errors will be detected in * waitfunc. */ static int fsl_elbc_write_subpage(struct mtd_info *mtd, struct nand_chip *chip, uint32_t offset, uint32_t data_len, const uint8_t *buf, int oob_required, int page) { fsl_elbc_write_buf(mtd, buf, mtd->writesize); fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize); return 0; } static void fsl_elbc_ctrl_init(void) { elbc_ctrl = kzalloc(sizeof(*elbc_ctrl), GFP_KERNEL); if (!elbc_ctrl) return; elbc_ctrl->regs = LBC_BASE_ADDR; /* clear event registers */ out_be32(&elbc_ctrl->regs->ltesr, LTESR_NAND_MASK); out_be32(&elbc_ctrl->regs->lteatr, 0); /* Enable interrupts for any detected events */ out_be32(&elbc_ctrl->regs->lteir, LTESR_NAND_MASK); elbc_ctrl->read_bytes = 0; elbc_ctrl->index = 0; elbc_ctrl->addr = NULL; } static int fsl_elbc_chip_init(int devnum, u8 *addr) { struct mtd_info *mtd; struct nand_chip *nand; struct fsl_elbc_mtd *priv; uint32_t br = 0, or = 0; int ret; if (!elbc_ctrl) { fsl_elbc_ctrl_init(); if (!elbc_ctrl) return -1; } priv = kzalloc(sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->ctrl = elbc_ctrl; priv->vbase = addr; /* Find which chip select it is connected to. It'd be nice * if we could pass more than one datum to the NAND driver... */ for (priv->bank = 0; priv->bank < MAX_BANKS; priv->bank++) { phys_addr_t phys_addr = virt_to_phys(addr); br = in_be32(&elbc_ctrl->regs->bank[priv->bank].br); or = in_be32(&elbc_ctrl->regs->bank[priv->bank].or); if ((br & BR_V) && (br & BR_MSEL) == BR_MS_FCM && (br & or & BR_BA) == BR_PHYS_ADDR(phys_addr)) break; } if (priv->bank >= MAX_BANKS) { printf("fsl_elbc_nand: address did not match any " "chip selects\n"); kfree(priv); return -ENODEV; } nand = &priv->chip; mtd = nand_to_mtd(nand); elbc_ctrl->chips[priv->bank] = priv; /* fill in nand_chip structure */ /* set up function call table */ nand->read_byte = fsl_elbc_read_byte; nand->write_buf = fsl_elbc_write_buf; nand->read_buf = fsl_elbc_read_buf; nand->select_chip = fsl_elbc_select_chip; nand->cmdfunc = fsl_elbc_cmdfunc; nand->waitfunc = fsl_elbc_wait; /* set up nand options */ nand->bbt_td = &bbt_main_descr; nand->bbt_md = &bbt_mirror_descr; /* set up nand options */ nand->options = NAND_NO_SUBPAGE_WRITE; nand->bbt_options = NAND_BBT_USE_FLASH; nand->controller = &elbc_ctrl->controller; nand_set_controller_data(nand, priv); nand->ecc.read_page = fsl_elbc_read_page; nand->ecc.write_page = fsl_elbc_write_page; nand->ecc.write_subpage = fsl_elbc_write_subpage; priv->fmr = (15 << FMR_CWTO_SHIFT) | (2 << FMR_AL_SHIFT); /* If CS Base Register selects full hardware ECC then use it */ if ((br & BR_DECC) == BR_DECC_CHK_GEN) { nand->ecc.mode = NAND_ECC_HW; nand->ecc.layout = (priv->fmr & FMR_ECCM) ? &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0; nand->ecc.size = 512; nand->ecc.bytes = 3; nand->ecc.steps = 1; nand->ecc.strength = 1; } else { /* otherwise fall back to software ECC */ #if defined(CONFIG_NAND_ECC_BCH) nand->ecc.mode = NAND_ECC_SOFT_BCH; #else nand->ecc.mode = NAND_ECC_SOFT; #endif } ret = nand_scan_ident(mtd, 1, NULL); if (ret) return ret; /* Large-page-specific setup */ if (mtd->writesize == 2048) { setbits_be32(&elbc_ctrl->regs->bank[priv->bank].or, OR_FCM_PGS); in_be32(&elbc_ctrl->regs->bank[priv->bank].or); priv->page_size = 1; nand->badblock_pattern = &largepage_memorybased; /* * Hardware expects small page has ECCM0, large page has * ECCM1 when booting from NAND, and we follow that even * when not booting from NAND. */ priv->fmr |= FMR_ECCM; /* adjust ecc setup if needed */ if ((br & BR_DECC) == BR_DECC_CHK_GEN) { nand->ecc.steps = 4; nand->ecc.layout = (priv->fmr & FMR_ECCM) ? &fsl_elbc_oob_lp_eccm1 : &fsl_elbc_oob_lp_eccm0; } } else if (mtd->writesize == 512) { clrbits_be32(&elbc_ctrl->regs->bank[priv->bank].or, OR_FCM_PGS); in_be32(&elbc_ctrl->regs->bank[priv->bank].or); } else { return -ENODEV; } ret = nand_scan_tail(mtd); if (ret) return ret; ret = nand_register(devnum, mtd); if (ret) return ret; return 0; } #ifndef CONFIG_SYS_NAND_BASE_LIST #define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE } #endif static unsigned long base_address[CONFIG_SYS_MAX_NAND_DEVICE] = CONFIG_SYS_NAND_BASE_LIST; void board_nand_init(void) { int i; for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++) fsl_elbc_chip_init(i, (u8 *)base_address[i]); }