// SPDX-License-Identifier: GPL-2.0+ /* * NAND boot for Freescale Integrated Flash Controller, NAND FCM * * Copyright 2011 Freescale Semiconductor, Inc. * Author: Dipen Dudhat */ #include #include #include #include #include #ifdef CONFIG_CHAIN_OF_TRUST #include #endif static inline int is_blank(uchar *addr, int page_size) { int i; for (i = 0; i < page_size; i++) { if (__raw_readb(&addr[i]) != 0xff) return 0; } /* * For the SPL, don't worry about uncorrectable errors * where the main area is all FFs but shouldn't be. */ return 1; } /* returns nonzero if entire page is blank */ static inline int check_read_ecc(uchar *buf, u32 *eccstat, unsigned int bufnum, int page_size) { u32 reg = eccstat[bufnum / 4]; int errors = (reg >> ((3 - bufnum % 4) * 8)) & 0xf; if (errors == 0xf) { /* uncorrectable */ /* Blank pages fail hw ECC checks */ if (is_blank(buf, page_size)) return 1; puts("ecc error\n"); for (;;) ; } return 0; } static inline struct fsl_ifc_runtime *runtime_regs_address(void) { struct fsl_ifc regs = {(void *)CONFIG_SYS_IFC_ADDR, NULL}; int ver = 0; ver = ifc_in32(®s.gregs->ifc_rev); if (ver >= FSL_IFC_V2_0_0) regs.rregs = (void *)CONFIG_SYS_IFC_ADDR + IFC_RREGS_64KOFFSET; else regs.rregs = (void *)CONFIG_SYS_IFC_ADDR + IFC_RREGS_4KOFFSET; return regs.rregs; } static inline void nand_wait(uchar *buf, int bufnum, int page_size) { struct fsl_ifc_runtime *ifc = runtime_regs_address(); u32 status; u32 eccstat[8]; int bufperpage = page_size / 512; int bufnum_end, i; bufnum *= bufperpage; bufnum_end = bufnum + bufperpage - 1; do { status = ifc_in32(&ifc->ifc_nand.nand_evter_stat); } while (!(status & IFC_NAND_EVTER_STAT_OPC)); if (status & IFC_NAND_EVTER_STAT_FTOER) { puts("flash time out error\n"); for (;;) ; } for (i = bufnum / 4; i <= bufnum_end / 4; i++) eccstat[i] = ifc_in32(&ifc->ifc_nand.nand_eccstat[i]); for (i = bufnum; i <= bufnum_end; i++) { if (check_read_ecc(buf, eccstat, i, page_size)) break; } ifc_out32(&ifc->ifc_nand.nand_evter_stat, status); } static inline int bad_block(uchar *marker, int port_size) { if (port_size == 8) return __raw_readb(marker) != 0xff; else return __raw_readw((u16 *)marker) != 0xffff; } int nand_spl_load_image(uint32_t offs, unsigned int uboot_size, void *vdst) { struct fsl_ifc_fcm *gregs = (void *)CONFIG_SYS_IFC_ADDR; struct fsl_ifc_runtime *ifc = NULL; uchar *buf = (uchar *)CONFIG_SYS_NAND_BASE; int page_size; int port_size; int pages_per_blk; int blk_size; int bad_marker = 0; int bufnum_mask, bufnum, ver = 0; int csor, cspr; int pos = 0; int j = 0; int sram_addr; int pg_no; uchar *dst = vdst; ifc = runtime_regs_address(); /* Get NAND Flash configuration */ csor = CONFIG_SYS_NAND_CSOR; cspr = CONFIG_SYS_NAND_CSPR; port_size = (cspr & CSPR_PORT_SIZE_16) ? 16 : 8; if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_8K) { page_size = 8192; bufnum_mask = 0x0; } else if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_4K) { page_size = 4096; bufnum_mask = 0x1; } else if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_2K) { page_size = 2048; bufnum_mask = 0x3; } else { page_size = 512; bufnum_mask = 0xf; if (port_size == 8) bad_marker = 5; } ver = ifc_in32(&gregs->ifc_rev); if (ver >= FSL_IFC_V2_0_0) bufnum_mask = (bufnum_mask * 2) + 1; pages_per_blk = 32 << ((csor & CSOR_NAND_PB_MASK) >> CSOR_NAND_PB_SHIFT); blk_size = pages_per_blk * page_size; /* Open Full SRAM mapping for spare are access */ ifc_out32(&ifc->ifc_nand.ncfgr, 0x0); /* Clear Boot events */ ifc_out32(&ifc->ifc_nand.nand_evter_stat, 0xffffffff); /* Program FIR/FCR for Large/Small page */ if (page_size > 512) { ifc_out32(&ifc->ifc_nand.nand_fir0, (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) | (IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP4_SHIFT)); ifc_out32(&ifc->ifc_nand.nand_fir1, 0x0); ifc_out32(&ifc->ifc_nand.nand_fcr0, (NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) | (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT)); } else { ifc_out32(&ifc->ifc_nand.nand_fir0, (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | (IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP3_SHIFT)); ifc_out32(&ifc->ifc_nand.nand_fir1, 0x0); ifc_out32(&ifc->ifc_nand.nand_fcr0, NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT); } /* Program FBCR = 0 for full page read */ ifc_out32(&ifc->ifc_nand.nand_fbcr, 0); /* Read and copy u-boot on SDRAM from NAND device, In parallel * check for Bad block if found skip it and read continue to * next Block */ while (pos < uboot_size) { int i = 0; do { pg_no = offs / page_size; bufnum = pg_no & bufnum_mask; sram_addr = bufnum * page_size * 2; ifc_out32(&ifc->ifc_nand.row0, pg_no); ifc_out32(&ifc->ifc_nand.col0, 0); /* start read */ ifc_out32(&ifc->ifc_nand.nandseq_strt, IFC_NAND_SEQ_STRT_FIR_STRT); /* wait for read to complete */ nand_wait(&buf[sram_addr], bufnum, page_size); /* * If either of the first two pages are marked bad, * continue to the next block. */ if (i++ < 2 && bad_block(&buf[sram_addr + page_size + bad_marker], port_size)) { puts("skipping\n"); offs = (offs + blk_size) & ~(blk_size - 1); pos &= ~(blk_size - 1); break; } for (j = 0; j < page_size; j++) dst[pos + j] = __raw_readb(&buf[sram_addr + j]); pos += page_size; offs += page_size; } while ((offs & (blk_size - 1)) && (pos < uboot_size)); } return 0; } /* * Main entrypoint for NAND Boot. It's necessary that SDRAM is already * configured and available since this code loads the main U-Boot image * from NAND into SDRAM and starts from there. */ void nand_boot(void) { __attribute__((noreturn)) void (*uboot)(void); /* * Load U-Boot image from NAND into RAM */ nand_spl_load_image(CONFIG_SYS_NAND_U_BOOT_OFFS, CONFIG_SYS_NAND_U_BOOT_SIZE, (uchar *)CONFIG_SYS_NAND_U_BOOT_DST); #ifdef CONFIG_NAND_ENV_DST nand_spl_load_image(CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE, (uchar *)CONFIG_NAND_ENV_DST); #ifdef CONFIG_ENV_OFFSET_REDUND nand_spl_load_image(CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE, (uchar *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE); #endif #endif /* * Jump to U-Boot image */ #ifdef CONFIG_SPL_FLUSH_IMAGE /* * Clean d-cache and invalidate i-cache, to * make sure that no stale data is executed. */ flush_cache(CONFIG_SYS_NAND_U_BOOT_DST, CONFIG_SYS_NAND_U_BOOT_SIZE); #endif #ifdef CONFIG_CHAIN_OF_TRUST /* * U-Boot header is appended at end of U-boot image, so * calculate U-boot header address using U-boot header size. */ #define CONFIG_U_BOOT_HDR_ADDR \ ((CONFIG_SYS_NAND_U_BOOT_START + \ CONFIG_SYS_NAND_U_BOOT_SIZE) - \ CONFIG_U_BOOT_HDR_SIZE) spl_validate_uboot(CONFIG_U_BOOT_HDR_ADDR, CONFIG_SYS_NAND_U_BOOT_START); /* * In case of failure in validation, spl_validate_uboot would * not return back in case of Production environment with ITS=1. * Thus U-Boot will not start. * In Development environment (ITS=0 and SB_EN=1), the function * may return back in case of non-fatal failures. */ #endif uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START; uboot(); } #ifndef CONFIG_SPL_NAND_INIT void nand_init(void) { } void nand_deselect(void) { } #endif