// SPDX-License-Identifier: GPL-2.0 /* * drivers/mtd/nand/raw/nand_util.c * * Copyright (C) 2006 by Weiss-Electronic GmbH. * All rights reserved. * * @author: Guido Classen * @descr: NAND Flash support * @references: borrowed heavily from Linux mtd-utils code: * flash_eraseall.c by Arcom Control System Ltd * nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com) * and Thomas Gleixner (tglx@linutronix.de) * * Copyright (C) 2008 Nokia Corporation: drop_ffs() function by * Artem Bityutskiy from mtd-utils * * Copyright 2010 Freescale Semiconductor */ #include #include #include #include #include #include #include #include #include #include #include typedef struct erase_info erase_info_t; typedef struct mtd_info mtd_info_t; /* support only for native endian JFFS2 */ #define cpu_to_je16(x) (x) #define cpu_to_je32(x) (x) /** * nand_erase_opts: - erase NAND flash with support for various options * (jffs2 formatting) * * @param mtd nand mtd instance to erase * @param opts options, @see struct nand_erase_options * @return 0 in case of success * * This code is ported from flash_eraseall.c from Linux mtd utils by * Arcom Control System Ltd. */ int nand_erase_opts(struct mtd_info *mtd, const nand_erase_options_t *opts) { struct jffs2_unknown_node cleanmarker; erase_info_t erase; unsigned long erase_length, erased_length; /* in blocks */ int result; int percent_complete = -1; const char *mtd_device = mtd->name; struct mtd_oob_ops oob_opts; struct nand_chip *chip = mtd_to_nand(mtd); if ((opts->offset & (mtd->erasesize - 1)) != 0) { printf("Attempt to erase non block-aligned data\n"); return -1; } memset(&erase, 0, sizeof(erase)); memset(&oob_opts, 0, sizeof(oob_opts)); erase.mtd = mtd; erase.len = mtd->erasesize; erase.addr = opts->offset; erase_length = lldiv(opts->length + mtd->erasesize - 1, mtd->erasesize); cleanmarker.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); cleanmarker.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER); cleanmarker.totlen = cpu_to_je32(8); /* scrub option allows to erase badblock. To prevent internal * check from erase() method, set block check method to dummy * and disable bad block table while erasing. */ if (opts->scrub) { erase.scrub = opts->scrub; /* * We don't need the bad block table anymore... * after scrub, there are no bad blocks left! */ if (chip->bbt) { kfree(chip->bbt); } chip->bbt = NULL; chip->options &= ~NAND_BBT_SCANNED; } for (erased_length = 0; erased_length < erase_length; erase.addr += mtd->erasesize) { WATCHDOG_RESET(); if (opts->lim && (erase.addr >= (opts->offset + opts->lim))) { puts("Size of erase exceeds limit\n"); return -EFBIG; } if (!opts->scrub) { int ret = mtd_block_isbad(mtd, erase.addr); if (ret > 0) { if (!opts->quiet) printf("\rSkipping bad block at " "0x%08llx " " \n", erase.addr); if (!opts->spread) erased_length++; continue; } else if (ret < 0) { printf("\n%s: MTD get bad block failed: %d\n", mtd_device, ret); return -1; } } erased_length++; result = mtd_erase(mtd, &erase); if (result != 0) { printf("\n%s: MTD Erase failure: %d\n", mtd_device, result); continue; } /* format for JFFS2 ? */ if (opts->jffs2 && chip->ecc.layout->oobavail >= 8) { struct mtd_oob_ops ops; ops.ooblen = 8; ops.datbuf = NULL; ops.oobbuf = (uint8_t *)&cleanmarker; ops.ooboffs = 0; ops.mode = MTD_OPS_AUTO_OOB; result = mtd_write_oob(mtd, erase.addr, &ops); if (result != 0) { printf("\n%s: MTD writeoob failure: %d\n", mtd_device, result); continue; } } if (!opts->quiet) { unsigned long long n = erased_length * 100ULL; int percent; do_div(n, erase_length); percent = (int)n; /* output progress message only at whole percent * steps to reduce the number of messages printed * on (slow) serial consoles */ if (percent != percent_complete) { percent_complete = percent; printf("\rErasing at 0x%llx -- %3d%% complete.", erase.addr, percent); if (opts->jffs2 && result == 0) printf(" Cleanmarker written at 0x%llx.", erase.addr); } } } if (!opts->quiet) printf("\n"); return 0; } #ifdef CONFIG_CMD_NAND_LOCK_UNLOCK #define NAND_CMD_LOCK_TIGHT 0x2c #define NAND_CMD_LOCK_STATUS 0x7a /****************************************************************************** * Support for locking / unlocking operations of some NAND devices *****************************************************************************/ /** * nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT * state * * @param mtd nand mtd instance * @param tight bring device in lock tight mode * * @return 0 on success, -1 in case of error * * The lock / lock-tight command only applies to the whole chip. To get some * parts of the chip lock and others unlocked use the following sequence: * * - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin) * - Call nand_unlock() once for each consecutive area to be unlocked * - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1) * * If the device is in lock-tight state software can't change the * current active lock/unlock state of all pages. nand_lock() / nand_unlock() * calls will fail. It is only posible to leave lock-tight state by * an hardware signal (low pulse on _WP pin) or by power down. */ int nand_lock(struct mtd_info *mtd, int tight) { int ret = 0; int status; struct nand_chip *chip = mtd_to_nand(mtd); /* select the NAND device */ chip->select_chip(mtd, 0); /* check the Lock Tight Status */ chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, 0); if (chip->read_byte(mtd) & NAND_LOCK_STATUS_TIGHT) { printf("nand_lock: Device is locked tight!\n"); ret = -1; goto out; } chip->cmdfunc(mtd, (tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK), -1, -1); /* call wait ready function */ status = chip->waitfunc(mtd, chip); /* see if device thinks it succeeded */ if (status & 0x01) { ret = -1; } out: /* de-select the NAND device */ chip->select_chip(mtd, -1); return ret; } /** * nand_get_lock_status: - query current lock state from one page of NAND * flash * * @param mtd nand mtd instance * @param offset page address to query (must be page-aligned!) * * @return -1 in case of error * >0 lock status: * bitfield with the following combinations: * NAND_LOCK_STATUS_TIGHT: page in tight state * NAND_LOCK_STATUS_UNLOCK: page unlocked * */ int nand_get_lock_status(struct mtd_info *mtd, loff_t offset) { int ret = 0; int chipnr; int page; struct nand_chip *chip = mtd_to_nand(mtd); /* select the NAND device */ chipnr = (int)(offset >> chip->chip_shift); chip->select_chip(mtd, chipnr); if ((offset & (mtd->writesize - 1)) != 0) { printf("nand_get_lock_status: " "Start address must be beginning of " "nand page!\n"); ret = -1; goto out; } /* check the Lock Status */ page = (int)(offset >> chip->page_shift); chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask); ret = chip->read_byte(mtd) & (NAND_LOCK_STATUS_TIGHT | NAND_LOCK_STATUS_UNLOCK); out: /* de-select the NAND device */ chip->select_chip(mtd, -1); return ret; } /** * nand_unlock: - Unlock area of NAND pages * only one consecutive area can be unlocked at one time! * * @param mtd nand mtd instance * @param start start byte address * @param length number of bytes to unlock (must be a multiple of * page size mtd->writesize) * @param allexcept if set, unlock everything not selected * * @return 0 on success, -1 in case of error */ int nand_unlock(struct mtd_info *mtd, loff_t start, size_t length, int allexcept) { int ret = 0; int chipnr; int status; int page; struct nand_chip *chip = mtd_to_nand(mtd); debug("nand_unlock%s: start: %08llx, length: %zd!\n", allexcept ? " (allexcept)" : "", start, length); /* select the NAND device */ chipnr = (int)(start >> chip->chip_shift); chip->select_chip(mtd, chipnr); /* check the WP bit */ chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); if (!(chip->read_byte(mtd) & NAND_STATUS_WP)) { printf("nand_unlock: Device is write protected!\n"); ret = -1; goto out; } /* check the Lock Tight Status */ page = (int)(start >> chip->page_shift); chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask); if (chip->read_byte(mtd) & NAND_LOCK_STATUS_TIGHT) { printf("nand_unlock: Device is locked tight!\n"); ret = -1; goto out; } if ((start & (mtd->erasesize - 1)) != 0) { printf("nand_unlock: Start address must be beginning of " "nand block!\n"); ret = -1; goto out; } if (length == 0 || (length & (mtd->erasesize - 1)) != 0) { printf("nand_unlock: Length must be a multiple of nand block " "size %08x!\n", mtd->erasesize); ret = -1; goto out; } /* * Set length so that the last address is set to the * starting address of the last block */ length -= mtd->erasesize; /* submit address of first page to unlock */ chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask); /* submit ADDRESS of LAST page to unlock */ page += (int)(length >> chip->page_shift); /* * Page addresses for unlocking are supposed to be block-aligned. * At least some NAND chips use the low bit to indicate that the * page range should be inverted. */ if (allexcept) page |= 1; chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1, page & chip->pagemask); /* call wait ready function */ status = chip->waitfunc(mtd, chip); /* see if device thinks it succeeded */ if (status & 0x01) { /* there was an error */ ret = -1; goto out; } out: /* de-select the NAND device */ chip->select_chip(mtd, -1); return ret; } #endif /** * check_skip_len * * Check if there are any bad blocks, and whether length including bad * blocks fits into device * * @param mtd nand mtd instance * @param offset offset in flash * @param length image length * @param used length of flash needed for the requested length * @return 0 if the image fits and there are no bad blocks * 1 if the image fits, but there are bad blocks * -1 if the image does not fit */ static int check_skip_len(struct mtd_info *mtd, loff_t offset, size_t length, size_t *used) { size_t len_excl_bad = 0; int ret = 0; while (len_excl_bad < length) { size_t block_len, block_off; loff_t block_start; if (offset >= mtd->size) return -1; block_start = offset & ~(loff_t)(mtd->erasesize - 1); block_off = offset & (mtd->erasesize - 1); block_len = mtd->erasesize - block_off; if (!nand_block_isbad(mtd, block_start)) len_excl_bad += block_len; else ret = 1; offset += block_len; *used += block_len; } /* If the length is not a multiple of block_len, adjust. */ if (len_excl_bad > length) *used -= (len_excl_bad - length); return ret; } #ifdef CONFIG_CMD_NAND_TRIMFFS static size_t drop_ffs(const struct mtd_info *mtd, const u_char *buf, const size_t *len) { size_t l = *len; ssize_t i; for (i = l - 1; i >= 0; i--) if (buf[i] != 0xFF) break; /* The resulting length must be aligned to the minimum flash I/O size */ l = i + 1; l = (l + mtd->writesize - 1) / mtd->writesize; l *= mtd->writesize; /* * since the input length may be unaligned, prevent access past the end * of the buffer */ return min(l, *len); } #endif /** * nand_verify_page_oob: * * Verify a page of NAND flash, including the OOB. * Reads page of NAND and verifies the contents and OOB against the * values in ops. * * @param mtd nand mtd instance * @param ops MTD operations, including data to verify * @param ofs offset in flash * @return 0 in case of success */ int nand_verify_page_oob(struct mtd_info *mtd, struct mtd_oob_ops *ops, loff_t ofs) { int rval; struct mtd_oob_ops vops; size_t verlen = mtd->writesize + mtd->oobsize; memcpy(&vops, ops, sizeof(vops)); vops.datbuf = memalign(ARCH_DMA_MINALIGN, verlen); if (!vops.datbuf) return -ENOMEM; vops.oobbuf = vops.datbuf + mtd->writesize; rval = mtd_read_oob(mtd, ofs, &vops); if (!rval) rval = memcmp(ops->datbuf, vops.datbuf, vops.len); if (!rval) rval = memcmp(ops->oobbuf, vops.oobbuf, vops.ooblen); free(vops.datbuf); return rval ? -EIO : 0; } /** * nand_verify: * * Verify a region of NAND flash. * Reads NAND in page-sized chunks and verifies the contents against * the contents of a buffer. The offset into the NAND must be * page-aligned, and the function doesn't handle skipping bad blocks. * * @param mtd nand mtd instance * @param ofs offset in flash * @param len buffer length * @param buf buffer to read from * @return 0 in case of success */ int nand_verify(struct mtd_info *mtd, loff_t ofs, size_t len, u_char *buf) { int rval = 0; size_t verofs; size_t verlen = mtd->writesize; uint8_t *verbuf = memalign(ARCH_DMA_MINALIGN, verlen); if (!verbuf) return -ENOMEM; /* Read the NAND back in page-size groups to limit malloc size */ for (verofs = ofs; verofs < ofs + len; verofs += verlen, buf += verlen) { verlen = min(mtd->writesize, (uint32_t)(ofs + len - verofs)); rval = nand_read(mtd, verofs, &verlen, verbuf); if (!rval || (rval == -EUCLEAN)) rval = memcmp(buf, verbuf, verlen); if (rval) break; } free(verbuf); return rval ? -EIO : 0; } /** * nand_write_skip_bad: * * Write image to NAND flash. * Blocks that are marked bad are skipped and the is written to the next * block instead as long as the image is short enough to fit even after * skipping the bad blocks. Due to bad blocks we may not be able to * perform the requested write. In the case where the write would * extend beyond the end of the NAND device, both length and actual (if * not NULL) are set to 0. In the case where the write would extend * beyond the limit we are passed, length is set to 0 and actual is set * to the required length. * * @param mtd nand mtd instance * @param offset offset in flash * @param length buffer length * @param actual set to size required to write length worth of * buffer or 0 on error, if not NULL * @param lim maximum size that actual may be in order to not * exceed the buffer * @param buffer buffer to read from * @param flags flags modifying the behaviour of the write to NAND * @return 0 in case of success */ int nand_write_skip_bad(struct mtd_info *mtd, loff_t offset, size_t *length, size_t *actual, loff_t lim, u_char *buffer, int flags) { int rval = 0, blocksize; size_t left_to_write = *length; size_t used_for_write = 0; u_char *p_buffer = buffer; int need_skip; if (actual) *actual = 0; blocksize = mtd->erasesize; /* * nand_write() handles unaligned, partial page writes. * * We allow length to be unaligned, for convenience in * using the $filesize variable. * * However, starting at an unaligned offset makes the * semantics of bad block skipping ambiguous (really, * you should only start a block skipping access at a * partition boundary). So don't try to handle that. */ if ((offset & (mtd->writesize - 1)) != 0) { printf("Attempt to write non page-aligned data\n"); *length = 0; return -EINVAL; } need_skip = check_skip_len(mtd, offset, *length, &used_for_write); if (actual) *actual = used_for_write; if (need_skip < 0) { printf("Attempt to write outside the flash area\n"); *length = 0; return -EINVAL; } if (used_for_write > lim) { puts("Size of write exceeds partition or device limit\n"); *length = 0; return -EFBIG; } if (!need_skip && !(flags & WITH_DROP_FFS)) { rval = nand_write(mtd, offset, length, buffer); if ((flags & WITH_WR_VERIFY) && !rval) rval = nand_verify(mtd, offset, *length, buffer); if (rval == 0) return 0; *length = 0; printf("NAND write to offset %llx failed %d\n", offset, rval); return rval; } while (left_to_write > 0) { size_t block_offset = offset & (mtd->erasesize - 1); size_t write_size, truncated_write_size; WATCHDOG_RESET(); if (nand_block_isbad(mtd, offset & ~(mtd->erasesize - 1))) { printf("Skip bad block 0x%08llx\n", offset & ~(mtd->erasesize - 1)); offset += mtd->erasesize - block_offset; continue; } if (left_to_write < (blocksize - block_offset)) write_size = left_to_write; else write_size = blocksize - block_offset; truncated_write_size = write_size; #ifdef CONFIG_CMD_NAND_TRIMFFS if (flags & WITH_DROP_FFS) truncated_write_size = drop_ffs(mtd, p_buffer, &write_size); #endif rval = nand_write(mtd, offset, &truncated_write_size, p_buffer); if ((flags & WITH_WR_VERIFY) && !rval) rval = nand_verify(mtd, offset, truncated_write_size, p_buffer); offset += write_size; p_buffer += write_size; if (rval != 0) { printf("NAND write to offset %llx failed %d\n", offset, rval); *length -= left_to_write; return rval; } left_to_write -= write_size; } return 0; } /** * nand_read_skip_bad: * * Read image from NAND flash. * Blocks that are marked bad are skipped and the next block is read * instead as long as the image is short enough to fit even after * skipping the bad blocks. Due to bad blocks we may not be able to * perform the requested read. In the case where the read would extend * beyond the end of the NAND device, both length and actual (if not * NULL) are set to 0. In the case where the read would extend beyond * the limit we are passed, length is set to 0 and actual is set to the * required length. * * @param mtd nand mtd instance * @param offset offset in flash * @param length buffer length, on return holds number of read bytes * @param actual set to size required to read length worth of buffer or 0 * on error, if not NULL * @param lim maximum size that actual may be in order to not exceed the * buffer * @param buffer buffer to write to * @return 0 in case of success */ int nand_read_skip_bad(struct mtd_info *mtd, loff_t offset, size_t *length, size_t *actual, loff_t lim, u_char *buffer) { int rval; size_t left_to_read = *length; size_t used_for_read = 0; u_char *p_buffer = buffer; int need_skip; if ((offset & (mtd->writesize - 1)) != 0) { printf("Attempt to read non page-aligned data\n"); *length = 0; if (actual) *actual = 0; return -EINVAL; } need_skip = check_skip_len(mtd, offset, *length, &used_for_read); if (actual) *actual = used_for_read; if (need_skip < 0) { printf("Attempt to read outside the flash area\n"); *length = 0; return -EINVAL; } if (used_for_read > lim) { puts("Size of read exceeds partition or device limit\n"); *length = 0; return -EFBIG; } if (!need_skip) { rval = nand_read(mtd, offset, length, buffer); if (!rval || rval == -EUCLEAN) return 0; *length = 0; printf("NAND read from offset %llx failed %d\n", offset, rval); return rval; } while (left_to_read > 0) { size_t block_offset = offset & (mtd->erasesize - 1); size_t read_length; WATCHDOG_RESET(); if (nand_block_isbad(mtd, offset & ~(mtd->erasesize - 1))) { printf("Skipping bad block 0x%08llx\n", offset & ~(mtd->erasesize - 1)); offset += mtd->erasesize - block_offset; continue; } if (left_to_read < (mtd->erasesize - block_offset)) read_length = left_to_read; else read_length = mtd->erasesize - block_offset; rval = nand_read(mtd, offset, &read_length, p_buffer); if (rval && rval != -EUCLEAN) { printf("NAND read from offset %llx failed %d\n", offset, rval); *length -= left_to_read; return rval; } left_to_read -= read_length; offset += read_length; p_buffer += read_length; } return 0; } #ifdef CONFIG_CMD_NAND_TORTURE /** * check_pattern: * * Check if buffer contains only a certain byte pattern. * * @param buf buffer to check * @param patt the pattern to check * @param size buffer size in bytes * @return 1 if there are only patt bytes in buf * 0 if something else was found */ static int check_pattern(const u_char *buf, u_char patt, int size) { int i; for (i = 0; i < size; i++) if (buf[i] != patt) return 0; return 1; } /** * nand_torture: * * Torture a block of NAND flash. * This is useful to determine if a block that caused a write error is still * good or should be marked as bad. * * @param mtd nand mtd instance * @param offset offset in flash * @return 0 if the block is still good */ int nand_torture(struct mtd_info *mtd, loff_t offset) { u_char patterns[] = {0xa5, 0x5a, 0x00}; struct erase_info instr = { .mtd = mtd, .addr = offset, .len = mtd->erasesize, }; size_t retlen; int err, ret = -1, i, patt_count; u_char *buf; if ((offset & (mtd->erasesize - 1)) != 0) { puts("Attempt to torture a block at a non block-aligned offset\n"); return -EINVAL; } if (offset + mtd->erasesize > mtd->size) { puts("Attempt to torture a block outside the flash area\n"); return -EINVAL; } patt_count = ARRAY_SIZE(patterns); buf = malloc_cache_aligned(mtd->erasesize); if (buf == NULL) { puts("Out of memory for erase block buffer\n"); return -ENOMEM; } for (i = 0; i < patt_count; i++) { err = mtd_erase(mtd, &instr); if (err) { printf("%s: erase() failed for block at 0x%llx: %d\n", mtd->name, instr.addr, err); goto out; } /* Make sure the block contains only 0xff bytes */ err = mtd_read(mtd, offset, mtd->erasesize, &retlen, buf); if ((err && err != -EUCLEAN) || retlen != mtd->erasesize) { printf("%s: read() failed for block at 0x%llx: %d\n", mtd->name, instr.addr, err); goto out; } err = check_pattern(buf, 0xff, mtd->erasesize); if (!err) { printf("Erased block at 0x%llx, but a non-0xff byte was found\n", offset); ret = -EIO; goto out; } /* Write a pattern and check it */ memset(buf, patterns[i], mtd->erasesize); err = mtd_write(mtd, offset, mtd->erasesize, &retlen, buf); if (err || retlen != mtd->erasesize) { printf("%s: write() failed for block at 0x%llx: %d\n", mtd->name, instr.addr, err); goto out; } err = mtd_read(mtd, offset, mtd->erasesize, &retlen, buf); if ((err && err != -EUCLEAN) || retlen != mtd->erasesize) { printf("%s: read() failed for block at 0x%llx: %d\n", mtd->name, instr.addr, err); goto out; } err = check_pattern(buf, patterns[i], mtd->erasesize); if (!err) { printf("Pattern 0x%.2x checking failed for block at " "0x%llx\n", patterns[i], offset); ret = -EIO; goto out; } } ret = 0; out: free(buf); return ret; } #endif