// SPDX-License-Identifier: GPL-2.0+ /* * Atmel DataFlash probing * * Copyright (C) 2004-2009, 2015 Freescale Semiconductor, Inc. * Haikun Wang (haikun.wang@freescale.com) */ #include <common.h> #include <dm.h> #include <errno.h> #include <fdtdec.h> #include <spi.h> #include <spi_flash.h> #include <div64.h> #include <linux/err.h> #include <linux/math64.h> #include "sf_internal.h" #define CMD_READ_ID 0x9f /* reads can bypass the buffers */ #define OP_READ_CONTINUOUS 0xE8 #define OP_READ_PAGE 0xD2 /* group B requests can run even while status reports "busy" */ #define OP_READ_STATUS 0xD7 /* group B */ /* move data between host and buffer */ #define OP_READ_BUFFER1 0xD4 /* group B */ #define OP_READ_BUFFER2 0xD6 /* group B */ #define OP_WRITE_BUFFER1 0x84 /* group B */ #define OP_WRITE_BUFFER2 0x87 /* group B */ /* erasing flash */ #define OP_ERASE_PAGE 0x81 #define OP_ERASE_BLOCK 0x50 /* move data between buffer and flash */ #define OP_TRANSFER_BUF1 0x53 #define OP_TRANSFER_BUF2 0x55 #define OP_MREAD_BUFFER1 0xD4 #define OP_MREAD_BUFFER2 0xD6 #define OP_MWERASE_BUFFER1 0x83 #define OP_MWERASE_BUFFER2 0x86 #define OP_MWRITE_BUFFER1 0x88 /* sector must be pre-erased */ #define OP_MWRITE_BUFFER2 0x89 /* sector must be pre-erased */ /* write to buffer, then write-erase to flash */ #define OP_PROGRAM_VIA_BUF1 0x82 #define OP_PROGRAM_VIA_BUF2 0x85 /* compare buffer to flash */ #define OP_COMPARE_BUF1 0x60 #define OP_COMPARE_BUF2 0x61 /* read flash to buffer, then write-erase to flash */ #define OP_REWRITE_VIA_BUF1 0x58 #define OP_REWRITE_VIA_BUF2 0x59 /* * newer chips report JEDEC manufacturer and device IDs; chip * serial number and OTP bits; and per-sector writeprotect. */ #define OP_READ_ID 0x9F #define OP_READ_SECURITY 0x77 #define OP_WRITE_SECURITY_REVC 0x9A #define OP_WRITE_SECURITY 0x9B /* revision D */ struct dataflash { uint8_t command[16]; unsigned short page_offset; /* offset in flash address */ }; /* Return the status of the DataFlash device */ static inline int dataflash_status(struct spi_slave *spi) { int ret; u8 opcode = OP_READ_STATUS; u8 status; /* * NOTE: at45db321c over 25 MHz wants to write * a dummy byte after the opcode... */ ret = spi_write_then_read(spi, &opcode, 1, NULL, &status, 1); return ret ? -EIO : status; } /* * Poll the DataFlash device until it is READY. * This usually takes 5-20 msec or so; more for sector erase. * ready: return > 0 */ static int dataflash_waitready(struct spi_slave *spi) { int status; int timeout = 2 * CONFIG_SYS_HZ; int timebase; timebase = get_timer(0); do { status = dataflash_status(spi); if (status < 0) status = 0; if (status & (1 << 7)) /* RDY/nBSY */ return status; mdelay(3); } while (get_timer(timebase) < timeout); return -ETIME; } /* Erase pages of flash */ static int spi_dataflash_erase(struct udevice *dev, u32 offset, size_t len) { struct dataflash *dataflash; struct spi_flash *spi_flash; struct spi_slave *spi; unsigned blocksize; uint8_t *command; uint32_t rem; int status; dataflash = dev_get_priv(dev); spi_flash = dev_get_uclass_priv(dev); spi = spi_flash->spi; blocksize = spi_flash->page_size << 3; memset(dataflash->command, 0 , sizeof(dataflash->command)); command = dataflash->command; debug("%s: erase addr=0x%x len 0x%x\n", dev->name, offset, len); div_u64_rem(len, spi_flash->page_size, &rem); if (rem) { printf("%s: len(0x%x) isn't the multiple of page size(0x%x)\n", dev->name, len, spi_flash->page_size); return -EINVAL; } div_u64_rem(offset, spi_flash->page_size, &rem); if (rem) { printf("%s: offset(0x%x) isn't the multiple of page size(0x%x)\n", dev->name, offset, spi_flash->page_size); return -EINVAL; } status = spi_claim_bus(spi); if (status) { debug("dataflash: unable to claim SPI bus\n"); return status; } while (len > 0) { unsigned int pageaddr; int do_block; /* * Calculate flash page address; use block erase (for speed) if * we're at a block boundary and need to erase the whole block. */ pageaddr = div_u64(offset, spi_flash->page_size); do_block = (pageaddr & 0x7) == 0 && len >= blocksize; pageaddr = pageaddr << dataflash->page_offset; command[0] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE; command[1] = (uint8_t)(pageaddr >> 16); command[2] = (uint8_t)(pageaddr >> 8); command[3] = 0; debug("%s ERASE %s: (%x) %x %x %x [%d]\n", dev->name, do_block ? "block" : "page", command[0], command[1], command[2], command[3], pageaddr); status = spi_write_then_read(spi, command, 4, NULL, NULL, 0); if (status < 0) { debug("%s: erase send command error!\n", dev->name); return -EIO; } status = dataflash_waitready(spi); if (status < 0) { debug("%s: erase waitready error!\n", dev->name); return status; } if (do_block) { offset += blocksize; len -= blocksize; } else { offset += spi_flash->page_size; len -= spi_flash->page_size; } } spi_release_bus(spi); return 0; } /* * Read from the DataFlash device. * offset : Start offset in flash device * len : Amount to read * buf : Buffer containing the data */ static int spi_dataflash_read(struct udevice *dev, u32 offset, size_t len, void *buf) { struct dataflash *dataflash; struct spi_flash *spi_flash; struct spi_slave *spi; unsigned int addr; uint8_t *command; int status; dataflash = dev_get_priv(dev); spi_flash = dev_get_uclass_priv(dev); spi = spi_flash->spi; memset(dataflash->command, 0 , sizeof(dataflash->command)); command = dataflash->command; debug("%s: erase addr=0x%x len 0x%x\n", dev->name, offset, len); debug("READ: (%x) %x %x %x\n", command[0], command[1], command[2], command[3]); /* Calculate flash page/byte address */ addr = (((unsigned)offset / spi_flash->page_size) << dataflash->page_offset) + ((unsigned)offset % spi_flash->page_size); status = spi_claim_bus(spi); if (status) { debug("dataflash: unable to claim SPI bus\n"); return status; } /* * Continuous read, max clock = f(car) which may be less than * the peak rate available. Some chips support commands with * fewer "don't care" bytes. Both buffers stay unchanged. */ command[0] = OP_READ_CONTINUOUS; command[1] = (uint8_t)(addr >> 16); command[2] = (uint8_t)(addr >> 8); command[3] = (uint8_t)(addr >> 0); /* plus 4 "don't care" bytes, command len: 4 + 4 "don't care" bytes */ status = spi_write_then_read(spi, command, 8, NULL, buf, len); spi_release_bus(spi); return status; } /* * Write to the DataFlash device. * offset : Start offset in flash device * len : Amount to write * buf : Buffer containing the data */ int spi_dataflash_write(struct udevice *dev, u32 offset, size_t len, const void *buf) { struct dataflash *dataflash; struct spi_flash *spi_flash; struct spi_slave *spi; uint8_t *command; unsigned int pageaddr, addr, to, writelen; size_t remaining = len; u_char *writebuf = (u_char *)buf; int status = -EINVAL; dataflash = dev_get_priv(dev); spi_flash = dev_get_uclass_priv(dev); spi = spi_flash->spi; memset(dataflash->command, 0 , sizeof(dataflash->command)); command = dataflash->command; debug("%s: write 0x%x..0x%x\n", dev->name, offset, (offset + len)); pageaddr = ((unsigned)offset / spi_flash->page_size); to = ((unsigned)offset % spi_flash->page_size); if (to + len > spi_flash->page_size) writelen = spi_flash->page_size - to; else writelen = len; status = spi_claim_bus(spi); if (status) { debug("dataflash: unable to claim SPI bus\n"); return status; } while (remaining > 0) { debug("write @ %d:%d len=%d\n", pageaddr, to, writelen); /* * REVISIT: * (a) each page in a sector must be rewritten at least * once every 10K sibling erase/program operations. * (b) for pages that are already erased, we could * use WRITE+MWRITE not PROGRAM for ~30% speedup. * (c) WRITE to buffer could be done while waiting for * a previous MWRITE/MWERASE to complete ... * (d) error handling here seems to be mostly missing. * * Two persistent bits per page, plus a per-sector counter, * could support (a) and (b) ... we might consider using * the second half of sector zero, which is just one block, * to track that state. (On AT91, that sector should also * support boot-from-DataFlash.) */ addr = pageaddr << dataflash->page_offset; /* (1) Maybe transfer partial page to Buffer1 */ if (writelen != spi_flash->page_size) { command[0] = OP_TRANSFER_BUF1; command[1] = (addr & 0x00FF0000) >> 16; command[2] = (addr & 0x0000FF00) >> 8; command[3] = 0; debug("TRANSFER: (%x) %x %x %x\n", command[0], command[1], command[2], command[3]); status = spi_write_then_read(spi, command, 4, NULL, NULL, 0); if (status < 0) { debug("%s: write(<pagesize) command error!\n", dev->name); return -EIO; } status = dataflash_waitready(spi); if (status < 0) { debug("%s: write(<pagesize) waitready error!\n", dev->name); return status; } } /* (2) Program full page via Buffer1 */ addr += to; command[0] = OP_PROGRAM_VIA_BUF1; command[1] = (addr & 0x00FF0000) >> 16; command[2] = (addr & 0x0000FF00) >> 8; command[3] = (addr & 0x000000FF); debug("PROGRAM: (%x) %x %x %x\n", command[0], command[1], command[2], command[3]); status = spi_write_then_read(spi, command, 4, writebuf, NULL, writelen); if (status < 0) { debug("%s: write send command error!\n", dev->name); return -EIO; } status = dataflash_waitready(spi); if (status < 0) { debug("%s: write waitready error!\n", dev->name); return status; } #ifdef CONFIG_SPI_DATAFLASH_WRITE_VERIFY /* (3) Compare to Buffer1 */ addr = pageaddr << dataflash->page_offset; command[0] = OP_COMPARE_BUF1; command[1] = (addr & 0x00FF0000) >> 16; command[2] = (addr & 0x0000FF00) >> 8; command[3] = 0; debug("COMPARE: (%x) %x %x %x\n", command[0], command[1], command[2], command[3]); status = spi_write_then_read(spi, command, 4, writebuf, NULL, writelen); if (status < 0) { debug("%s: write(compare) send command error!\n", dev->name); return -EIO; } status = dataflash_waitready(spi); /* Check result of the compare operation */ if (status & (1 << 6)) { printf("dataflash: write compare page %u, err %d\n", pageaddr, status); remaining = 0; status = -EIO; break; } else { status = 0; } #endif /* CONFIG_SPI_DATAFLASH_WRITE_VERIFY */ remaining = remaining - writelen; pageaddr++; to = 0; writebuf += writelen; if (remaining > spi_flash->page_size) writelen = spi_flash->page_size; else writelen = remaining; } spi_release_bus(spi); return 0; } static int add_dataflash(struct udevice *dev, char *name, int nr_pages, int pagesize, int pageoffset, char revision) { struct spi_flash *spi_flash; struct dataflash *dataflash; dataflash = dev_get_priv(dev); spi_flash = dev_get_uclass_priv(dev); dataflash->page_offset = pageoffset; spi_flash->name = name; spi_flash->page_size = pagesize; spi_flash->size = nr_pages * pagesize; spi_flash->erase_size = pagesize; #ifndef CONFIG_SPL_BUILD printf("SPI DataFlash: Detected %s with page size ", spi_flash->name); print_size(spi_flash->page_size, ", erase size "); print_size(spi_flash->erase_size, ", total "); print_size(spi_flash->size, ""); printf(", revision %c", revision); puts("\n"); #endif return 0; } struct data_flash_info { char *name; /* * JEDEC id has a high byte of zero plus three data bytes: * the manufacturer id, then a two byte device id. */ uint32_t jedec_id; /* The size listed here is what works with OP_ERASE_PAGE. */ unsigned nr_pages; uint16_t pagesize; uint16_t pageoffset; uint16_t flags; #define SUP_POW2PS 0x0002 /* supports 2^N byte pages */ #define IS_POW2PS 0x0001 /* uses 2^N byte pages */ }; static struct data_flash_info dataflash_data[] = { /* * NOTE: chips with SUP_POW2PS (rev D and up) need two entries, * one with IS_POW2PS and the other without. The entry with the * non-2^N byte page size can't name exact chip revisions without * losing backwards compatibility for cmdlinepart. * * Those two entries have different name spelling format in order to * show their difference obviously. * The upper case refer to the chip isn't in normal 2^N bytes page-size * mode. * The lower case refer to the chip is in normal 2^N bytes page-size * mode. * * These newer chips also support 128-byte security registers (with * 64 bytes one-time-programmable) and software write-protection. */ { "AT45DB011B", 0x1f2200, 512, 264, 9, SUP_POW2PS}, { "at45db011d", 0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS}, { "AT45DB021B", 0x1f2300, 1024, 264, 9, SUP_POW2PS}, { "at45db021d", 0x1f2300, 1024, 256, 8, SUP_POW2PS | IS_POW2PS}, { "AT45DB041x", 0x1f2400, 2048, 264, 9, SUP_POW2PS}, { "at45db041d", 0x1f2400, 2048, 256, 8, SUP_POW2PS | IS_POW2PS}, { "AT45DB081B", 0x1f2500, 4096, 264, 9, SUP_POW2PS}, { "at45db081d", 0x1f2500, 4096, 256, 8, SUP_POW2PS | IS_POW2PS}, { "AT45DB161x", 0x1f2600, 4096, 528, 10, SUP_POW2PS}, { "at45db161d", 0x1f2600, 4096, 512, 9, SUP_POW2PS | IS_POW2PS}, { "AT45DB321x", 0x1f2700, 8192, 528, 10, 0}, /* rev C */ { "AT45DB321x", 0x1f2701, 8192, 528, 10, SUP_POW2PS}, { "at45db321d", 0x1f2701, 8192, 512, 9, SUP_POW2PS | IS_POW2PS}, { "AT45DB642x", 0x1f2800, 8192, 1056, 11, SUP_POW2PS}, { "at45db642d", 0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS}, }; static struct data_flash_info *jedec_probe(struct spi_slave *spi) { int tmp; uint8_t id[5]; uint32_t jedec; struct data_flash_info *info; u8 opcode = CMD_READ_ID; int status; /* * JEDEC also defines an optional "extended device information" * string for after vendor-specific data, after the three bytes * we use here. Supporting some chips might require using it. * * If the vendor ID isn't Atmel's (0x1f), assume this call failed. * That's not an error; only rev C and newer chips handle it, and * only Atmel sells these chips. */ tmp = spi_write_then_read(spi, &opcode, 1, NULL, id, sizeof(id)); if (tmp < 0) { printf("dataflash: error %d reading JEDEC ID\n", tmp); return ERR_PTR(tmp); } if (id[0] != 0x1f) return NULL; jedec = id[0]; jedec = jedec << 8; jedec |= id[1]; jedec = jedec << 8; jedec |= id[2]; for (tmp = 0, info = dataflash_data; tmp < ARRAY_SIZE(dataflash_data); tmp++, info++) { if (info->jedec_id == jedec) { if (info->flags & SUP_POW2PS) { status = dataflash_status(spi); if (status < 0) { debug("dataflash: status error %d\n", status); return NULL; } if (status & 0x1) { if (info->flags & IS_POW2PS) return info; } else { if (!(info->flags & IS_POW2PS)) return info; } } else { return info; } } } /* * Treat other chips as errors ... we won't know the right page * size (it might be binary) even when we can tell which density * class is involved (legacy chip id scheme). */ printf("dataflash: JEDEC id %06x not handled\n", jedec); return ERR_PTR(-ENODEV); } /* * Detect and initialize DataFlash device, using JEDEC IDs on newer chips * or else the ID code embedded in the status bits: * * Device Density ID code #Pages PageSize Offset * AT45DB011B 1Mbit (128K) xx0011xx (0x0c) 512 264 9 * AT45DB021B 2Mbit (256K) xx0101xx (0x14) 1024 264 9 * AT45DB041B 4Mbit (512K) xx0111xx (0x1c) 2048 264 9 * AT45DB081B 8Mbit (1M) xx1001xx (0x24) 4096 264 9 * AT45DB0161B 16Mbit (2M) xx1011xx (0x2c) 4096 528 10 * AT45DB0321B 32Mbit (4M) xx1101xx (0x34) 8192 528 10 * AT45DB0642 64Mbit (8M) xx111xxx (0x3c) 8192 1056 11 * AT45DB1282 128Mbit (16M) xx0100xx (0x10) 16384 1056 11 */ static int spi_dataflash_probe(struct udevice *dev) { struct spi_slave *spi = dev_get_parent_priv(dev); struct spi_flash *spi_flash; struct data_flash_info *info; int status; spi_flash = dev_get_uclass_priv(dev); spi_flash->spi = spi; spi_flash->dev = dev; status = spi_claim_bus(spi); if (status) return status; /* * Try to detect dataflash by JEDEC ID. * If it succeeds we know we have either a C or D part. * D will support power of 2 pagesize option. * Both support the security register, though with different * write procedures. */ info = jedec_probe(spi); if (IS_ERR(info)) goto err_jedec_probe; if (info != NULL) { status = add_dataflash(dev, info->name, info->nr_pages, info->pagesize, info->pageoffset, (info->flags & SUP_POW2PS) ? 'd' : 'c'); if (status < 0) goto err_status; } /* * Older chips support only legacy commands, identifing * capacity using bits in the status byte. */ status = dataflash_status(spi); if (status <= 0 || status == 0xff) { printf("dataflash: read status error %d\n", status); if (status == 0 || status == 0xff) status = -ENODEV; goto err_jedec_probe; } /* * if there's a device there, assume it's dataflash. * board setup should have set spi->max_speed_max to * match f(car) for continuous reads, mode 0 or 3. */ switch (status & 0x3c) { case 0x0c: /* 0 0 1 1 x x */ status = add_dataflash(dev, "AT45DB011B", 512, 264, 9, 0); break; case 0x14: /* 0 1 0 1 x x */ status = add_dataflash(dev, "AT45DB021B", 1024, 264, 9, 0); break; case 0x1c: /* 0 1 1 1 x x */ status = add_dataflash(dev, "AT45DB041x", 2048, 264, 9, 0); break; case 0x24: /* 1 0 0 1 x x */ status = add_dataflash(dev, "AT45DB081B", 4096, 264, 9, 0); break; case 0x2c: /* 1 0 1 1 x x */ status = add_dataflash(dev, "AT45DB161x", 4096, 528, 10, 0); break; case 0x34: /* 1 1 0 1 x x */ status = add_dataflash(dev, "AT45DB321x", 8192, 528, 10, 0); break; case 0x38: /* 1 1 1 x x x */ case 0x3c: status = add_dataflash(dev, "AT45DB642x", 8192, 1056, 11, 0); break; /* obsolete AT45DB1282 not (yet?) supported */ default: printf("dataflash: unsupported device (%x)\n", status & 0x3c); status = -ENODEV; goto err_status; } return status; err_status: spi_free_slave(spi); err_jedec_probe: spi_release_bus(spi); return status; } static const struct dm_spi_flash_ops spi_dataflash_ops = { .read = spi_dataflash_read, .write = spi_dataflash_write, .erase = spi_dataflash_erase, }; static const struct udevice_id spi_dataflash_ids[] = { { .compatible = "atmel,at45", }, { .compatible = "atmel,dataflash", }, { } }; U_BOOT_DRIVER(spi_dataflash) = { .name = "spi_dataflash", .id = UCLASS_SPI_FLASH, .of_match = spi_dataflash_ids, .probe = spi_dataflash_probe, .priv_auto_alloc_size = sizeof(struct dataflash), .ops = &spi_dataflash_ops, };