/* * CPSW Ethernet Switch Driver * * Copyright (C) 2010 Texas Instruments Incorporated - http://www.ti.com/ * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation version 2. * * This program is distributed "as is" WITHOUT ANY WARRANTY of any * kind, whether express or implied; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <common.h> #include <command.h> #include <net.h> #include <miiphy.h> #include <malloc.h> #include <net.h> #include <netdev.h> #include <cpsw.h> #include <asm/errno.h> #include <asm/io.h> #include <phy.h> #include <asm/arch/cpu.h> #include <dm.h> DECLARE_GLOBAL_DATA_PTR; #define BITMASK(bits) (BIT(bits) - 1) #define PHY_REG_MASK 0x1f #define PHY_ID_MASK 0x1f #define NUM_DESCS (PKTBUFSRX * 2) #define PKT_MIN 60 #define PKT_MAX (1500 + 14 + 4 + 4) #define CLEAR_BIT 1 #define GIGABITEN BIT(7) #define FULLDUPLEXEN BIT(0) #define MIIEN BIT(15) /* reg offset */ #define CPSW_HOST_PORT_OFFSET 0x108 #define CPSW_SLAVE0_OFFSET 0x208 #define CPSW_SLAVE1_OFFSET 0x308 #define CPSW_SLAVE_SIZE 0x100 #define CPSW_CPDMA_OFFSET 0x800 #define CPSW_HW_STATS 0x900 #define CPSW_STATERAM_OFFSET 0xa00 #define CPSW_CPTS_OFFSET 0xc00 #define CPSW_ALE_OFFSET 0xd00 #define CPSW_SLIVER0_OFFSET 0xd80 #define CPSW_SLIVER1_OFFSET 0xdc0 #define CPSW_BD_OFFSET 0x2000 #define CPSW_MDIO_DIV 0xff #define AM335X_GMII_SEL_OFFSET 0x630 /* DMA Registers */ #define CPDMA_TXCONTROL 0x004 #define CPDMA_RXCONTROL 0x014 #define CPDMA_SOFTRESET 0x01c #define CPDMA_RXFREE 0x0e0 #define CPDMA_TXHDP_VER1 0x100 #define CPDMA_TXHDP_VER2 0x200 #define CPDMA_RXHDP_VER1 0x120 #define CPDMA_RXHDP_VER2 0x220 #define CPDMA_TXCP_VER1 0x140 #define CPDMA_TXCP_VER2 0x240 #define CPDMA_RXCP_VER1 0x160 #define CPDMA_RXCP_VER2 0x260 /* Descriptor mode bits */ #define CPDMA_DESC_SOP BIT(31) #define CPDMA_DESC_EOP BIT(30) #define CPDMA_DESC_OWNER BIT(29) #define CPDMA_DESC_EOQ BIT(28) /* * This timeout definition is a worst-case ultra defensive measure against * unexpected controller lock ups. Ideally, we should never ever hit this * scenario in practice. */ #define MDIO_TIMEOUT 100 /* msecs */ #define CPDMA_TIMEOUT 100 /* msecs */ struct cpsw_mdio_regs { u32 version; u32 control; #define CONTROL_IDLE BIT(31) #define CONTROL_ENABLE BIT(30) u32 alive; u32 link; u32 linkintraw; u32 linkintmasked; u32 __reserved_0[2]; u32 userintraw; u32 userintmasked; u32 userintmaskset; u32 userintmaskclr; u32 __reserved_1[20]; struct { u32 access; u32 physel; #define USERACCESS_GO BIT(31) #define USERACCESS_WRITE BIT(30) #define USERACCESS_ACK BIT(29) #define USERACCESS_READ (0) #define USERACCESS_DATA (0xffff) } user[0]; }; struct cpsw_regs { u32 id_ver; u32 control; u32 soft_reset; u32 stat_port_en; u32 ptype; }; struct cpsw_slave_regs { u32 max_blks; u32 blk_cnt; u32 flow_thresh; u32 port_vlan; u32 tx_pri_map; #ifdef CONFIG_AM33XX u32 gap_thresh; #elif defined(CONFIG_TI814X) u32 ts_ctl; u32 ts_seq_ltype; u32 ts_vlan; #endif u32 sa_lo; u32 sa_hi; }; struct cpsw_host_regs { u32 max_blks; u32 blk_cnt; u32 flow_thresh; u32 port_vlan; u32 tx_pri_map; u32 cpdma_tx_pri_map; u32 cpdma_rx_chan_map; }; struct cpsw_sliver_regs { u32 id_ver; u32 mac_control; u32 mac_status; u32 soft_reset; u32 rx_maxlen; u32 __reserved_0; u32 rx_pause; u32 tx_pause; u32 __reserved_1; u32 rx_pri_map; }; #define ALE_ENTRY_BITS 68 #define ALE_ENTRY_WORDS DIV_ROUND_UP(ALE_ENTRY_BITS, 32) /* ALE Registers */ #define ALE_CONTROL 0x08 #define ALE_UNKNOWNVLAN 0x18 #define ALE_TABLE_CONTROL 0x20 #define ALE_TABLE 0x34 #define ALE_PORTCTL 0x40 #define ALE_TABLE_WRITE BIT(31) #define ALE_TYPE_FREE 0 #define ALE_TYPE_ADDR 1 #define ALE_TYPE_VLAN 2 #define ALE_TYPE_VLAN_ADDR 3 #define ALE_UCAST_PERSISTANT 0 #define ALE_UCAST_UNTOUCHED 1 #define ALE_UCAST_OUI 2 #define ALE_UCAST_TOUCHED 3 #define ALE_MCAST_FWD 0 #define ALE_MCAST_BLOCK_LEARN_FWD 1 #define ALE_MCAST_FWD_LEARN 2 #define ALE_MCAST_FWD_2 3 enum cpsw_ale_port_state { ALE_PORT_STATE_DISABLE = 0x00, ALE_PORT_STATE_BLOCK = 0x01, ALE_PORT_STATE_LEARN = 0x02, ALE_PORT_STATE_FORWARD = 0x03, }; /* ALE unicast entry flags - passed into cpsw_ale_add_ucast() */ #define ALE_SECURE 1 #define ALE_BLOCKED 2 struct cpsw_slave { struct cpsw_slave_regs *regs; struct cpsw_sliver_regs *sliver; int slave_num; u32 mac_control; struct cpsw_slave_data *data; }; struct cpdma_desc { /* hardware fields */ u32 hw_next; u32 hw_buffer; u32 hw_len; u32 hw_mode; /* software fields */ u32 sw_buffer; u32 sw_len; }; struct cpdma_chan { struct cpdma_desc *head, *tail; void *hdp, *cp, *rxfree; }; #define desc_write(desc, fld, val) __raw_writel((u32)(val), &(desc)->fld) #define desc_read(desc, fld) __raw_readl(&(desc)->fld) #define desc_read_ptr(desc, fld) ((void *)__raw_readl(&(desc)->fld)) #define chan_write(chan, fld, val) __raw_writel((u32)(val), (chan)->fld) #define chan_read(chan, fld) __raw_readl((chan)->fld) #define chan_read_ptr(chan, fld) ((void *)__raw_readl((chan)->fld)) #define for_active_slave(slave, priv) \ slave = (priv)->slaves + (priv)->data.active_slave; if (slave) #define for_each_slave(slave, priv) \ for (slave = (priv)->slaves; slave != (priv)->slaves + \ (priv)->data.slaves; slave++) struct cpsw_priv { #ifdef CONFIG_DM_ETH struct udevice *dev; #else struct eth_device *dev; #endif struct cpsw_platform_data data; int host_port; struct cpsw_regs *regs; void *dma_regs; struct cpsw_host_regs *host_port_regs; void *ale_regs; struct cpdma_desc *descs; struct cpdma_desc *desc_free; struct cpdma_chan rx_chan, tx_chan; struct cpsw_slave *slaves; struct phy_device *phydev; struct mii_dev *bus; u32 phy_mask; }; static inline int cpsw_ale_get_field(u32 *ale_entry, u32 start, u32 bits) { int idx; idx = start / 32; start -= idx * 32; idx = 2 - idx; /* flip */ return (ale_entry[idx] >> start) & BITMASK(bits); } static inline void cpsw_ale_set_field(u32 *ale_entry, u32 start, u32 bits, u32 value) { int idx; value &= BITMASK(bits); idx = start / 32; start -= idx * 32; idx = 2 - idx; /* flip */ ale_entry[idx] &= ~(BITMASK(bits) << start); ale_entry[idx] |= (value << start); } #define DEFINE_ALE_FIELD(name, start, bits) \ static inline int cpsw_ale_get_##name(u32 *ale_entry) \ { \ return cpsw_ale_get_field(ale_entry, start, bits); \ } \ static inline void cpsw_ale_set_##name(u32 *ale_entry, u32 value) \ { \ cpsw_ale_set_field(ale_entry, start, bits, value); \ } DEFINE_ALE_FIELD(entry_type, 60, 2) DEFINE_ALE_FIELD(mcast_state, 62, 2) DEFINE_ALE_FIELD(port_mask, 66, 3) DEFINE_ALE_FIELD(ucast_type, 62, 2) DEFINE_ALE_FIELD(port_num, 66, 2) DEFINE_ALE_FIELD(blocked, 65, 1) DEFINE_ALE_FIELD(secure, 64, 1) DEFINE_ALE_FIELD(mcast, 40, 1) /* The MAC address field in the ALE entry cannot be macroized as above */ static inline void cpsw_ale_get_addr(u32 *ale_entry, u8 *addr) { int i; for (i = 0; i < 6; i++) addr[i] = cpsw_ale_get_field(ale_entry, 40 - 8*i, 8); } static inline void cpsw_ale_set_addr(u32 *ale_entry, const u8 *addr) { int i; for (i = 0; i < 6; i++) cpsw_ale_set_field(ale_entry, 40 - 8*i, 8, addr[i]); } static int cpsw_ale_read(struct cpsw_priv *priv, int idx, u32 *ale_entry) { int i; __raw_writel(idx, priv->ale_regs + ALE_TABLE_CONTROL); for (i = 0; i < ALE_ENTRY_WORDS; i++) ale_entry[i] = __raw_readl(priv->ale_regs + ALE_TABLE + 4 * i); return idx; } static int cpsw_ale_write(struct cpsw_priv *priv, int idx, u32 *ale_entry) { int i; for (i = 0; i < ALE_ENTRY_WORDS; i++) __raw_writel(ale_entry[i], priv->ale_regs + ALE_TABLE + 4 * i); __raw_writel(idx | ALE_TABLE_WRITE, priv->ale_regs + ALE_TABLE_CONTROL); return idx; } static int cpsw_ale_match_addr(struct cpsw_priv *priv, const u8 *addr) { u32 ale_entry[ALE_ENTRY_WORDS]; int type, idx; for (idx = 0; idx < priv->data.ale_entries; idx++) { u8 entry_addr[6]; cpsw_ale_read(priv, idx, ale_entry); type = cpsw_ale_get_entry_type(ale_entry); if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR) continue; cpsw_ale_get_addr(ale_entry, entry_addr); if (memcmp(entry_addr, addr, 6) == 0) return idx; } return -ENOENT; } static int cpsw_ale_match_free(struct cpsw_priv *priv) { u32 ale_entry[ALE_ENTRY_WORDS]; int type, idx; for (idx = 0; idx < priv->data.ale_entries; idx++) { cpsw_ale_read(priv, idx, ale_entry); type = cpsw_ale_get_entry_type(ale_entry); if (type == ALE_TYPE_FREE) return idx; } return -ENOENT; } static int cpsw_ale_find_ageable(struct cpsw_priv *priv) { u32 ale_entry[ALE_ENTRY_WORDS]; int type, idx; for (idx = 0; idx < priv->data.ale_entries; idx++) { cpsw_ale_read(priv, idx, ale_entry); type = cpsw_ale_get_entry_type(ale_entry); if (type != ALE_TYPE_ADDR && type != ALE_TYPE_VLAN_ADDR) continue; if (cpsw_ale_get_mcast(ale_entry)) continue; type = cpsw_ale_get_ucast_type(ale_entry); if (type != ALE_UCAST_PERSISTANT && type != ALE_UCAST_OUI) return idx; } return -ENOENT; } static int cpsw_ale_add_ucast(struct cpsw_priv *priv, const u8 *addr, int port, int flags) { u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0}; int idx; cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR); cpsw_ale_set_addr(ale_entry, addr); cpsw_ale_set_ucast_type(ale_entry, ALE_UCAST_PERSISTANT); cpsw_ale_set_secure(ale_entry, (flags & ALE_SECURE) ? 1 : 0); cpsw_ale_set_blocked(ale_entry, (flags & ALE_BLOCKED) ? 1 : 0); cpsw_ale_set_port_num(ale_entry, port); idx = cpsw_ale_match_addr(priv, addr); if (idx < 0) idx = cpsw_ale_match_free(priv); if (idx < 0) idx = cpsw_ale_find_ageable(priv); if (idx < 0) return -ENOMEM; cpsw_ale_write(priv, idx, ale_entry); return 0; } static int cpsw_ale_add_mcast(struct cpsw_priv *priv, const u8 *addr, int port_mask) { u32 ale_entry[ALE_ENTRY_WORDS] = {0, 0, 0}; int idx, mask; idx = cpsw_ale_match_addr(priv, addr); if (idx >= 0) cpsw_ale_read(priv, idx, ale_entry); cpsw_ale_set_entry_type(ale_entry, ALE_TYPE_ADDR); cpsw_ale_set_addr(ale_entry, addr); cpsw_ale_set_mcast_state(ale_entry, ALE_MCAST_FWD_2); mask = cpsw_ale_get_port_mask(ale_entry); port_mask |= mask; cpsw_ale_set_port_mask(ale_entry, port_mask); if (idx < 0) idx = cpsw_ale_match_free(priv); if (idx < 0) idx = cpsw_ale_find_ageable(priv); if (idx < 0) return -ENOMEM; cpsw_ale_write(priv, idx, ale_entry); return 0; } static inline void cpsw_ale_control(struct cpsw_priv *priv, int bit, int val) { u32 tmp, mask = BIT(bit); tmp = __raw_readl(priv->ale_regs + ALE_CONTROL); tmp &= ~mask; tmp |= val ? mask : 0; __raw_writel(tmp, priv->ale_regs + ALE_CONTROL); } #define cpsw_ale_enable(priv, val) cpsw_ale_control(priv, 31, val) #define cpsw_ale_clear(priv, val) cpsw_ale_control(priv, 30, val) #define cpsw_ale_vlan_aware(priv, val) cpsw_ale_control(priv, 2, val) static inline void cpsw_ale_port_state(struct cpsw_priv *priv, int port, int val) { int offset = ALE_PORTCTL + 4 * port; u32 tmp, mask = 0x3; tmp = __raw_readl(priv->ale_regs + offset); tmp &= ~mask; tmp |= val & mask; __raw_writel(tmp, priv->ale_regs + offset); } static struct cpsw_mdio_regs *mdio_regs; /* wait until hardware is ready for another user access */ static inline u32 wait_for_user_access(void) { u32 reg = 0; int timeout = MDIO_TIMEOUT; while (timeout-- && ((reg = __raw_readl(&mdio_regs->user[0].access)) & USERACCESS_GO)) udelay(10); if (timeout == -1) { printf("wait_for_user_access Timeout\n"); return -ETIMEDOUT; } return reg; } /* wait until hardware state machine is idle */ static inline void wait_for_idle(void) { int timeout = MDIO_TIMEOUT; while (timeout-- && ((__raw_readl(&mdio_regs->control) & CONTROL_IDLE) == 0)) udelay(10); if (timeout == -1) printf("wait_for_idle Timeout\n"); } static int cpsw_mdio_read(struct mii_dev *bus, int phy_id, int dev_addr, int phy_reg) { int data; u32 reg; if (phy_reg & ~PHY_REG_MASK || phy_id & ~PHY_ID_MASK) return -EINVAL; wait_for_user_access(); reg = (USERACCESS_GO | USERACCESS_READ | (phy_reg << 21) | (phy_id << 16)); __raw_writel(reg, &mdio_regs->user[0].access); reg = wait_for_user_access(); data = (reg & USERACCESS_ACK) ? (reg & USERACCESS_DATA) : -1; return data; } static int cpsw_mdio_write(struct mii_dev *bus, int phy_id, int dev_addr, int phy_reg, u16 data) { u32 reg; if (phy_reg & ~PHY_REG_MASK || phy_id & ~PHY_ID_MASK) return -EINVAL; wait_for_user_access(); reg = (USERACCESS_GO | USERACCESS_WRITE | (phy_reg << 21) | (phy_id << 16) | (data & USERACCESS_DATA)); __raw_writel(reg, &mdio_regs->user[0].access); wait_for_user_access(); return 0; } static void cpsw_mdio_init(const char *name, u32 mdio_base, u32 div) { struct mii_dev *bus = mdio_alloc(); mdio_regs = (struct cpsw_mdio_regs *)mdio_base; /* set enable and clock divider */ __raw_writel(div | CONTROL_ENABLE, &mdio_regs->control); /* * wait for scan logic to settle: * the scan time consists of (a) a large fixed component, and (b) a * small component that varies with the mii bus frequency. These * were estimated using measurements at 1.1 and 2.2 MHz on tnetv107x * silicon. Since the effect of (b) was found to be largely * negligible, we keep things simple here. */ udelay(1000); bus->read = cpsw_mdio_read; bus->write = cpsw_mdio_write; sprintf(bus->name, name); mdio_register(bus); } /* Set a self-clearing bit in a register, and wait for it to clear */ static inline void setbit_and_wait_for_clear32(void *addr) { __raw_writel(CLEAR_BIT, addr); while (__raw_readl(addr) & CLEAR_BIT) ; } #define mac_hi(mac) (((mac)[0] << 0) | ((mac)[1] << 8) | \ ((mac)[2] << 16) | ((mac)[3] << 24)) #define mac_lo(mac) (((mac)[4] << 0) | ((mac)[5] << 8)) static void cpsw_set_slave_mac(struct cpsw_slave *slave, struct cpsw_priv *priv) { #ifdef CONFIG_DM_ETH struct eth_pdata *pdata = dev_get_platdata(priv->dev); writel(mac_hi(pdata->enetaddr), &slave->regs->sa_hi); writel(mac_lo(pdata->enetaddr), &slave->regs->sa_lo); #else __raw_writel(mac_hi(priv->dev->enetaddr), &slave->regs->sa_hi); __raw_writel(mac_lo(priv->dev->enetaddr), &slave->regs->sa_lo); #endif } static void cpsw_slave_update_link(struct cpsw_slave *slave, struct cpsw_priv *priv, int *link) { struct phy_device *phy; u32 mac_control = 0; phy = priv->phydev; if (!phy) return; phy_startup(phy); *link = phy->link; if (*link) { /* link up */ mac_control = priv->data.mac_control; if (phy->speed == 1000) mac_control |= GIGABITEN; if (phy->duplex == DUPLEX_FULL) mac_control |= FULLDUPLEXEN; if (phy->speed == 100) mac_control |= MIIEN; } if (mac_control == slave->mac_control) return; if (mac_control) { printf("link up on port %d, speed %d, %s duplex\n", slave->slave_num, phy->speed, (phy->duplex == DUPLEX_FULL) ? "full" : "half"); } else { printf("link down on port %d\n", slave->slave_num); } __raw_writel(mac_control, &slave->sliver->mac_control); slave->mac_control = mac_control; } static int cpsw_update_link(struct cpsw_priv *priv) { int link = 0; struct cpsw_slave *slave; for_active_slave(slave, priv) cpsw_slave_update_link(slave, priv, &link); return link; } static inline u32 cpsw_get_slave_port(struct cpsw_priv *priv, u32 slave_num) { if (priv->host_port == 0) return slave_num + 1; else return slave_num; } static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_priv *priv) { u32 slave_port; setbit_and_wait_for_clear32(&slave->sliver->soft_reset); /* setup priority mapping */ __raw_writel(0x76543210, &slave->sliver->rx_pri_map); __raw_writel(0x33221100, &slave->regs->tx_pri_map); /* setup max packet size, and mac address */ __raw_writel(PKT_MAX, &slave->sliver->rx_maxlen); cpsw_set_slave_mac(slave, priv); slave->mac_control = 0; /* no link yet */ /* enable forwarding */ slave_port = cpsw_get_slave_port(priv, slave->slave_num); cpsw_ale_port_state(priv, slave_port, ALE_PORT_STATE_FORWARD); cpsw_ale_add_mcast(priv, net_bcast_ethaddr, 1 << slave_port); priv->phy_mask |= 1 << slave->data->phy_addr; } static struct cpdma_desc *cpdma_desc_alloc(struct cpsw_priv *priv) { struct cpdma_desc *desc = priv->desc_free; if (desc) priv->desc_free = desc_read_ptr(desc, hw_next); return desc; } static void cpdma_desc_free(struct cpsw_priv *priv, struct cpdma_desc *desc) { if (desc) { desc_write(desc, hw_next, priv->desc_free); priv->desc_free = desc; } } static int cpdma_submit(struct cpsw_priv *priv, struct cpdma_chan *chan, void *buffer, int len) { struct cpdma_desc *desc, *prev; u32 mode; desc = cpdma_desc_alloc(priv); if (!desc) return -ENOMEM; if (len < PKT_MIN) len = PKT_MIN; mode = CPDMA_DESC_OWNER | CPDMA_DESC_SOP | CPDMA_DESC_EOP; desc_write(desc, hw_next, 0); desc_write(desc, hw_buffer, buffer); desc_write(desc, hw_len, len); desc_write(desc, hw_mode, mode | len); desc_write(desc, sw_buffer, buffer); desc_write(desc, sw_len, len); if (!chan->head) { /* simple case - first packet enqueued */ chan->head = desc; chan->tail = desc; chan_write(chan, hdp, desc); goto done; } /* not the first packet - enqueue at the tail */ prev = chan->tail; desc_write(prev, hw_next, desc); chan->tail = desc; /* next check if EOQ has been triggered already */ if (desc_read(prev, hw_mode) & CPDMA_DESC_EOQ) chan_write(chan, hdp, desc); done: if (chan->rxfree) chan_write(chan, rxfree, 1); return 0; } static int cpdma_process(struct cpsw_priv *priv, struct cpdma_chan *chan, void **buffer, int *len) { struct cpdma_desc *desc = chan->head; u32 status; if (!desc) return -ENOENT; status = desc_read(desc, hw_mode); if (len) *len = status & 0x7ff; if (buffer) *buffer = desc_read_ptr(desc, sw_buffer); if (status & CPDMA_DESC_OWNER) { if (chan_read(chan, hdp) == 0) { if (desc_read(desc, hw_mode) & CPDMA_DESC_OWNER) chan_write(chan, hdp, desc); } return -EBUSY; } chan->head = desc_read_ptr(desc, hw_next); chan_write(chan, cp, desc); cpdma_desc_free(priv, desc); return 0; } static int _cpsw_init(struct cpsw_priv *priv, u8 *enetaddr) { struct cpsw_slave *slave; int i, ret; /* soft reset the controller and initialize priv */ setbit_and_wait_for_clear32(&priv->regs->soft_reset); /* initialize and reset the address lookup engine */ cpsw_ale_enable(priv, 1); cpsw_ale_clear(priv, 1); cpsw_ale_vlan_aware(priv, 0); /* vlan unaware mode */ /* setup host port priority mapping */ __raw_writel(0x76543210, &priv->host_port_regs->cpdma_tx_pri_map); __raw_writel(0, &priv->host_port_regs->cpdma_rx_chan_map); /* disable priority elevation and enable statistics on all ports */ __raw_writel(0, &priv->regs->ptype); /* enable statistics collection only on the host port */ __raw_writel(BIT(priv->host_port), &priv->regs->stat_port_en); __raw_writel(0x7, &priv->regs->stat_port_en); cpsw_ale_port_state(priv, priv->host_port, ALE_PORT_STATE_FORWARD); cpsw_ale_add_ucast(priv, enetaddr, priv->host_port, ALE_SECURE); cpsw_ale_add_mcast(priv, net_bcast_ethaddr, 1 << priv->host_port); for_active_slave(slave, priv) cpsw_slave_init(slave, priv); cpsw_update_link(priv); /* init descriptor pool */ for (i = 0; i < NUM_DESCS; i++) { desc_write(&priv->descs[i], hw_next, (i == (NUM_DESCS - 1)) ? 0 : &priv->descs[i+1]); } priv->desc_free = &priv->descs[0]; /* initialize channels */ if (priv->data.version == CPSW_CTRL_VERSION_2) { memset(&priv->rx_chan, 0, sizeof(struct cpdma_chan)); priv->rx_chan.hdp = priv->dma_regs + CPDMA_RXHDP_VER2; priv->rx_chan.cp = priv->dma_regs + CPDMA_RXCP_VER2; priv->rx_chan.rxfree = priv->dma_regs + CPDMA_RXFREE; memset(&priv->tx_chan, 0, sizeof(struct cpdma_chan)); priv->tx_chan.hdp = priv->dma_regs + CPDMA_TXHDP_VER2; priv->tx_chan.cp = priv->dma_regs + CPDMA_TXCP_VER2; } else { memset(&priv->rx_chan, 0, sizeof(struct cpdma_chan)); priv->rx_chan.hdp = priv->dma_regs + CPDMA_RXHDP_VER1; priv->rx_chan.cp = priv->dma_regs + CPDMA_RXCP_VER1; priv->rx_chan.rxfree = priv->dma_regs + CPDMA_RXFREE; memset(&priv->tx_chan, 0, sizeof(struct cpdma_chan)); priv->tx_chan.hdp = priv->dma_regs + CPDMA_TXHDP_VER1; priv->tx_chan.cp = priv->dma_regs + CPDMA_TXCP_VER1; } /* clear dma state */ setbit_and_wait_for_clear32(priv->dma_regs + CPDMA_SOFTRESET); if (priv->data.version == CPSW_CTRL_VERSION_2) { for (i = 0; i < priv->data.channels; i++) { __raw_writel(0, priv->dma_regs + CPDMA_RXHDP_VER2 + 4 * i); __raw_writel(0, priv->dma_regs + CPDMA_RXFREE + 4 * i); __raw_writel(0, priv->dma_regs + CPDMA_RXCP_VER2 + 4 * i); __raw_writel(0, priv->dma_regs + CPDMA_TXHDP_VER2 + 4 * i); __raw_writel(0, priv->dma_regs + CPDMA_TXCP_VER2 + 4 * i); } } else { for (i = 0; i < priv->data.channels; i++) { __raw_writel(0, priv->dma_regs + CPDMA_RXHDP_VER1 + 4 * i); __raw_writel(0, priv->dma_regs + CPDMA_RXFREE + 4 * i); __raw_writel(0, priv->dma_regs + CPDMA_RXCP_VER1 + 4 * i); __raw_writel(0, priv->dma_regs + CPDMA_TXHDP_VER1 + 4 * i); __raw_writel(0, priv->dma_regs + CPDMA_TXCP_VER1 + 4 * i); } } __raw_writel(1, priv->dma_regs + CPDMA_TXCONTROL); __raw_writel(1, priv->dma_regs + CPDMA_RXCONTROL); /* submit rx descs */ for (i = 0; i < PKTBUFSRX; i++) { ret = cpdma_submit(priv, &priv->rx_chan, net_rx_packets[i], PKTSIZE); if (ret < 0) { printf("error %d submitting rx desc\n", ret); break; } } return 0; } static void _cpsw_halt(struct cpsw_priv *priv) { writel(0, priv->dma_regs + CPDMA_TXCONTROL); writel(0, priv->dma_regs + CPDMA_RXCONTROL); /* soft reset the controller and initialize priv */ setbit_and_wait_for_clear32(&priv->regs->soft_reset); /* clear dma state */ setbit_and_wait_for_clear32(priv->dma_regs + CPDMA_SOFTRESET); } static int _cpsw_send(struct cpsw_priv *priv, void *packet, int length) { void *buffer; int len; int timeout = CPDMA_TIMEOUT; flush_dcache_range((unsigned long)packet, (unsigned long)packet + length); /* first reap completed packets */ while (timeout-- && (cpdma_process(priv, &priv->tx_chan, &buffer, &len) >= 0)) ; if (timeout == -1) { printf("cpdma_process timeout\n"); return -ETIMEDOUT; } return cpdma_submit(priv, &priv->tx_chan, packet, length); } static int _cpsw_recv(struct cpsw_priv *priv, uchar **pkt) { void *buffer; int len; int ret = -EAGAIN; ret = cpdma_process(priv, &priv->rx_chan, &buffer, &len); if (ret < 0) return ret; invalidate_dcache_range((unsigned long)buffer, (unsigned long)buffer + PKTSIZE_ALIGN); *pkt = buffer; return len; } static void cpsw_slave_setup(struct cpsw_slave *slave, int slave_num, struct cpsw_priv *priv) { void *regs = priv->regs; struct cpsw_slave_data *data = priv->data.slave_data + slave_num; slave->slave_num = slave_num; slave->data = data; slave->regs = regs + data->slave_reg_ofs; slave->sliver = regs + data->sliver_reg_ofs; } static int cpsw_phy_init(struct cpsw_priv *priv, struct cpsw_slave *slave) { struct phy_device *phydev; u32 supported = PHY_GBIT_FEATURES; phydev = phy_connect(priv->bus, slave->data->phy_addr, priv->dev, slave->data->phy_if); if (!phydev) return -1; phydev->supported &= supported; phydev->advertising = phydev->supported; priv->phydev = phydev; phy_config(phydev); return 1; } int _cpsw_register(struct cpsw_priv *priv) { struct cpsw_slave *slave; struct cpsw_platform_data *data = &priv->data; void *regs = (void *)data->cpsw_base; priv->slaves = malloc(sizeof(struct cpsw_slave) * data->slaves); if (!priv->slaves) { return -ENOMEM; } priv->host_port = data->host_port_num; priv->regs = regs; priv->host_port_regs = regs + data->host_port_reg_ofs; priv->dma_regs = regs + data->cpdma_reg_ofs; priv->ale_regs = regs + data->ale_reg_ofs; priv->descs = (void *)regs + data->bd_ram_ofs; int idx = 0; for_each_slave(slave, priv) { cpsw_slave_setup(slave, idx, priv); idx = idx + 1; } cpsw_mdio_init(priv->dev->name, data->mdio_base, data->mdio_div); priv->bus = miiphy_get_dev_by_name(priv->dev->name); for_active_slave(slave, priv) cpsw_phy_init(priv, slave); return 0; } #ifndef CONFIG_DM_ETH static int cpsw_init(struct eth_device *dev, bd_t *bis) { struct cpsw_priv *priv = dev->priv; return _cpsw_init(priv, dev->enetaddr); } static void cpsw_halt(struct eth_device *dev) { struct cpsw_priv *priv = dev->priv; return _cpsw_halt(priv); } static int cpsw_send(struct eth_device *dev, void *packet, int length) { struct cpsw_priv *priv = dev->priv; return _cpsw_send(priv, packet, length); } static int cpsw_recv(struct eth_device *dev) { struct cpsw_priv *priv = dev->priv; uchar *pkt = NULL; int len; len = _cpsw_recv(priv, &pkt); if (len > 0) { net_process_received_packet(pkt, len); cpdma_submit(priv, &priv->rx_chan, pkt, PKTSIZE); } return len; } int cpsw_register(struct cpsw_platform_data *data) { struct cpsw_priv *priv; struct eth_device *dev; int ret; dev = calloc(sizeof(*dev), 1); if (!dev) return -ENOMEM; priv = calloc(sizeof(*priv), 1); if (!priv) { free(dev); return -ENOMEM; } priv->dev = dev; priv->data = *data; strcpy(dev->name, "cpsw"); dev->iobase = 0; dev->init = cpsw_init; dev->halt = cpsw_halt; dev->send = cpsw_send; dev->recv = cpsw_recv; dev->priv = priv; eth_register(dev); ret = _cpsw_register(priv); if (ret < 0) { eth_unregister(dev); free(dev); free(priv); return ret; } return 1; } #else static int cpsw_eth_start(struct udevice *dev) { struct eth_pdata *pdata = dev_get_platdata(dev); struct cpsw_priv *priv = dev_get_priv(dev); return _cpsw_init(priv, pdata->enetaddr); } static int cpsw_eth_send(struct udevice *dev, void *packet, int length) { struct cpsw_priv *priv = dev_get_priv(dev); return _cpsw_send(priv, packet, length); } static int cpsw_eth_recv(struct udevice *dev, int flags, uchar **packetp) { struct cpsw_priv *priv = dev_get_priv(dev); return _cpsw_recv(priv, packetp); } static int cpsw_eth_free_pkt(struct udevice *dev, uchar *packet, int length) { struct cpsw_priv *priv = dev_get_priv(dev); return cpdma_submit(priv, &priv->rx_chan, packet, PKTSIZE); } static void cpsw_eth_stop(struct udevice *dev) { struct cpsw_priv *priv = dev_get_priv(dev); return _cpsw_halt(priv); } static int cpsw_eth_probe(struct udevice *dev) { struct cpsw_priv *priv = dev_get_priv(dev); priv->dev = dev; return _cpsw_register(priv); } static const struct eth_ops cpsw_eth_ops = { .start = cpsw_eth_start, .send = cpsw_eth_send, .recv = cpsw_eth_recv, .free_pkt = cpsw_eth_free_pkt, .stop = cpsw_eth_stop, }; static int cpsw_eth_ofdata_to_platdata(struct udevice *dev) { struct eth_pdata *pdata = dev_get_platdata(dev); struct cpsw_priv *priv = dev_get_priv(dev); const char *phy_mode; const void *fdt = gd->fdt_blob; int node = dev->of_offset; int subnode; int slave_index = 0; uint32_t mac_hi, mac_lo; fdt32_t gmii = 0; int active_slave; pdata->iobase = dev_get_addr(dev); priv->data.version = CPSW_CTRL_VERSION_2; priv->data.bd_ram_ofs = CPSW_BD_OFFSET; priv->data.ale_reg_ofs = CPSW_ALE_OFFSET; priv->data.cpdma_reg_ofs = CPSW_CPDMA_OFFSET; priv->data.mdio_div = CPSW_MDIO_DIV; priv->data.host_port_reg_ofs = CPSW_HOST_PORT_OFFSET, pdata->phy_interface = -1; priv->data.cpsw_base = pdata->iobase; priv->data.channels = fdtdec_get_int(fdt, node, "cpdma_channels", -1); if (priv->data.channels <= 0) { printf("error: cpdma_channels not found in dt\n"); return -ENOENT; } priv->data.slaves = fdtdec_get_int(fdt, node, "slaves", -1); if (priv->data.slaves <= 0) { printf("error: slaves not found in dt\n"); return -ENOENT; } priv->data.slave_data = malloc(sizeof(struct cpsw_slave_data) * priv->data.slaves); priv->data.ale_entries = fdtdec_get_int(fdt, node, "ale_entries", -1); if (priv->data.ale_entries <= 0) { printf("error: ale_entries not found in dt\n"); return -ENOENT; } priv->data.bd_ram_ofs = fdtdec_get_int(fdt, node, "bd_ram_size", -1); if (priv->data.bd_ram_ofs <= 0) { printf("error: bd_ram_size not found in dt\n"); return -ENOENT; } priv->data.mac_control = fdtdec_get_int(fdt, node, "mac_control", -1); if (priv->data.mac_control <= 0) { printf("error: ale_entries not found in dt\n"); return -ENOENT; } active_slave = fdtdec_get_int(fdt, node, "active_slave", 0); priv->data.active_slave = active_slave; fdt_for_each_subnode(fdt, subnode, node) { int len; const char *name; name = fdt_get_name(fdt, subnode, &len); if (!strncmp(name, "mdio", 4)) { priv->data.mdio_base = fdtdec_get_addr(fdt, subnode, "reg"); } if (!strncmp(name, "slave", 5)) { u32 phy_id[2]; if (slave_index >= priv->data.slaves) { printf("error: num slaves and slave nodes did not match\n"); return -EINVAL; } phy_mode = fdt_getprop(fdt, subnode, "phy-mode", NULL); if (phy_mode) priv->data.slave_data[slave_index].phy_if = phy_get_interface_by_name(phy_mode); fdtdec_get_int_array(fdt, subnode, "phy_id", phy_id, 2); priv->data.slave_data[slave_index].phy_addr = phy_id[1]; slave_index++; } if (!strncmp(name, "cpsw-phy-sel", 12)) { priv->data.gmii_sel = fdtdec_get_addr(fdt, subnode, "reg"); } } priv->data.slave_data[0].slave_reg_ofs = CPSW_SLAVE0_OFFSET; priv->data.slave_data[0].sliver_reg_ofs = CPSW_SLIVER0_OFFSET; if (priv->data.slaves == 2) { priv->data.slave_data[1].slave_reg_ofs = CPSW_SLAVE1_OFFSET; priv->data.slave_data[1].sliver_reg_ofs = CPSW_SLIVER1_OFFSET; } subnode = fdtdec_lookup_phandle(fdt, node, "syscon"); priv->data.mac_id = fdt_translate_address((void *)fdt, subnode, &gmii); priv->data.mac_id += AM335X_GMII_SEL_OFFSET; priv->data.mac_id += active_slave * 8; /* try reading mac address from efuse */ mac_lo = readl(priv->data.mac_id); mac_hi = readl(priv->data.mac_id + 4); pdata->enetaddr[0] = mac_hi & 0xFF; pdata->enetaddr[1] = (mac_hi & 0xFF00) >> 8; pdata->enetaddr[2] = (mac_hi & 0xFF0000) >> 16; pdata->enetaddr[3] = (mac_hi & 0xFF000000) >> 24; pdata->enetaddr[4] = mac_lo & 0xFF; pdata->enetaddr[5] = (mac_lo & 0xFF00) >> 8; pdata->phy_interface = priv->data.slave_data[active_slave].phy_if; if (pdata->phy_interface == -1) { debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode); return -EINVAL; } switch (pdata->phy_interface) { case PHY_INTERFACE_MODE_MII: writel(MII_MODE_ENABLE, priv->data.gmii_sel); break; case PHY_INTERFACE_MODE_RMII: writel(RMII_MODE_ENABLE, priv->data.gmii_sel); break; case PHY_INTERFACE_MODE_RGMII: case PHY_INTERFACE_MODE_RGMII_ID: case PHY_INTERFACE_MODE_RGMII_RXID: case PHY_INTERFACE_MODE_RGMII_TXID: writel(RGMII_MODE_ENABLE, priv->data.gmii_sel); break; } return 0; } static const struct udevice_id cpsw_eth_ids[] = { { .compatible = "ti,cpsw" }, { .compatible = "ti,am335x-cpsw" }, { } }; U_BOOT_DRIVER(eth_cpsw) = { .name = "eth_cpsw", .id = UCLASS_ETH, .of_match = cpsw_eth_ids, .ofdata_to_platdata = cpsw_eth_ofdata_to_platdata, .probe = cpsw_eth_probe, .ops = &cpsw_eth_ops, .priv_auto_alloc_size = sizeof(struct cpsw_priv), .platdata_auto_alloc_size = sizeof(struct eth_pdata), .flags = DM_FLAG_ALLOC_PRIV_DMA, }; #endif /* CONFIG_DM_ETH */