#include <common.h> #include <console.h> #include "e1000.h" #include <linux/compiler.h> /*----------------------------------------------------------------------- * SPI transfer * * This writes "bitlen" bits out the SPI MOSI port and simultaneously clocks * "bitlen" bits in the SPI MISO port. That's just the way SPI works. * * The source of the outgoing bits is the "dout" parameter and the * destination of the input bits is the "din" parameter. Note that "dout" * and "din" can point to the same memory location, in which case the * input data overwrites the output data (since both are buffered by * temporary variables, this is OK). * * This may be interrupted with Ctrl-C if "intr" is true, otherwise it will * never return an error. */ static int e1000_spi_xfer(struct e1000_hw *hw, unsigned int bitlen, const void *dout_mem, void *din_mem, bool intr) { const uint8_t *dout = dout_mem; uint8_t *din = din_mem; uint8_t mask = 0; uint32_t eecd; unsigned long i; /* Pre-read the control register */ eecd = E1000_READ_REG(hw, EECD); /* Iterate over each bit */ for (i = 0, mask = 0x80; i < bitlen; i++, mask = (mask >> 1)?:0x80) { /* Check for interrupt */ if (intr && ctrlc()) return -1; /* Determine the output bit */ if (dout && dout[i >> 3] & mask) eecd |= E1000_EECD_DI; else eecd &= ~E1000_EECD_DI; /* Write the output bit and wait 50us */ E1000_WRITE_REG(hw, EECD, eecd); E1000_WRITE_FLUSH(hw); udelay(50); /* Poke the clock (waits 50us) */ e1000_raise_ee_clk(hw, &eecd); /* Now read the input bit */ eecd = E1000_READ_REG(hw, EECD); if (din) { if (eecd & E1000_EECD_DO) din[i >> 3] |= mask; else din[i >> 3] &= ~mask; } /* Poke the clock again (waits 50us) */ e1000_lower_ee_clk(hw, &eecd); } /* Now clear any remaining bits of the input */ if (din && (i & 7)) din[i >> 3] &= ~((mask << 1) - 1); return 0; } #ifdef CONFIG_E1000_SPI_GENERIC static inline struct e1000_hw *e1000_hw_from_spi(struct spi_slave *spi) { return container_of(spi, struct e1000_hw, spi); } /* Not sure why all of these are necessary */ void spi_init_r(void) { /* Nothing to do */ } void spi_init_f(void) { /* Nothing to do */ } void spi_init(void) { /* Nothing to do */ } struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs, unsigned int max_hz, unsigned int mode) { /* Find the right PCI device */ struct e1000_hw *hw = e1000_find_card(bus); if (!hw) { printf("ERROR: No such e1000 device: e1000#%u\n", bus); return NULL; } /* Make sure it has an SPI chip */ if (hw->eeprom.type != e1000_eeprom_spi) { E1000_ERR(hw->nic, "No attached SPI EEPROM found!\n"); return NULL; } /* Argument sanity checks */ if (cs != 0) { E1000_ERR(hw->nic, "No such SPI chip: %u\n", cs); return NULL; } if (mode != SPI_MODE_0) { E1000_ERR(hw->nic, "Only SPI MODE-0 is supported!\n"); return NULL; } /* TODO: Use max_hz somehow */ E1000_DBG(hw->nic, "EEPROM SPI access requested\n"); return &hw->spi; } void spi_free_slave(struct spi_slave *spi) { __maybe_unused struct e1000_hw *hw = e1000_hw_from_spi(spi); E1000_DBG(hw->nic, "EEPROM SPI access released\n"); } int spi_claim_bus(struct spi_slave *spi) { struct e1000_hw *hw = e1000_hw_from_spi(spi); if (e1000_acquire_eeprom(hw)) { E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n"); return -1; } return 0; } void spi_release_bus(struct spi_slave *spi) { struct e1000_hw *hw = e1000_hw_from_spi(spi); e1000_release_eeprom(hw); } /* Skinny wrapper around e1000_spi_xfer */ int spi_xfer(struct spi_slave *spi, unsigned int bitlen, const void *dout_mem, void *din_mem, unsigned long flags) { struct e1000_hw *hw = e1000_hw_from_spi(spi); int ret; if (flags & SPI_XFER_BEGIN) e1000_standby_eeprom(hw); ret = e1000_spi_xfer(hw, bitlen, dout_mem, din_mem, true); if (flags & SPI_XFER_END) e1000_standby_eeprom(hw); return ret; } #endif /* not CONFIG_E1000_SPI_GENERIC */ #ifdef CONFIG_CMD_E1000 /* The EEPROM opcodes */ #define SPI_EEPROM_ENABLE_WR 0x06 #define SPI_EEPROM_DISABLE_WR 0x04 #define SPI_EEPROM_WRITE_STATUS 0x01 #define SPI_EEPROM_READ_STATUS 0x05 #define SPI_EEPROM_WRITE_PAGE 0x02 #define SPI_EEPROM_READ_PAGE 0x03 /* The EEPROM status bits */ #define SPI_EEPROM_STATUS_BUSY 0x01 #define SPI_EEPROM_STATUS_WREN 0x02 static int e1000_spi_eeprom_enable_wr(struct e1000_hw *hw, bool intr) { u8 op[] = { SPI_EEPROM_ENABLE_WR }; e1000_standby_eeprom(hw); return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr); } /* * These have been tested to perform correctly, but they are not used by any * of the EEPROM commands at this time. */ #if 0 static int e1000_spi_eeprom_disable_wr(struct e1000_hw *hw, bool intr) { u8 op[] = { SPI_EEPROM_DISABLE_WR }; e1000_standby_eeprom(hw); return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr); } static int e1000_spi_eeprom_write_status(struct e1000_hw *hw, u8 status, bool intr) { u8 op[] = { SPI_EEPROM_WRITE_STATUS, status }; e1000_standby_eeprom(hw); return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr); } #endif static int e1000_spi_eeprom_read_status(struct e1000_hw *hw, bool intr) { u8 op[] = { SPI_EEPROM_READ_STATUS, 0 }; e1000_standby_eeprom(hw); if (e1000_spi_xfer(hw, 8*sizeof(op), op, op, intr)) return -1; return op[1]; } static int e1000_spi_eeprom_write_page(struct e1000_hw *hw, const void *data, u16 off, u16 len, bool intr) { u8 op[] = { SPI_EEPROM_WRITE_PAGE, (off >> (hw->eeprom.address_bits - 8)) & 0xff, off & 0xff }; e1000_standby_eeprom(hw); if (e1000_spi_xfer(hw, 8 + hw->eeprom.address_bits, op, NULL, intr)) return -1; if (e1000_spi_xfer(hw, len << 3, data, NULL, intr)) return -1; return 0; } static int e1000_spi_eeprom_read_page(struct e1000_hw *hw, void *data, u16 off, u16 len, bool intr) { u8 op[] = { SPI_EEPROM_READ_PAGE, (off >> (hw->eeprom.address_bits - 8)) & 0xff, off & 0xff }; e1000_standby_eeprom(hw); if (e1000_spi_xfer(hw, 8 + hw->eeprom.address_bits, op, NULL, intr)) return -1; if (e1000_spi_xfer(hw, len << 3, NULL, data, intr)) return -1; return 0; } static int e1000_spi_eeprom_poll_ready(struct e1000_hw *hw, bool intr) { int status; while ((status = e1000_spi_eeprom_read_status(hw, intr)) >= 0) { if (!(status & SPI_EEPROM_STATUS_BUSY)) return 0; } return -1; } static int e1000_spi_eeprom_dump(struct e1000_hw *hw, void *data, u16 off, unsigned int len, bool intr) { /* Interruptibly wait for the EEPROM to be ready */ if (e1000_spi_eeprom_poll_ready(hw, intr)) return -1; /* Dump each page in sequence */ while (len) { /* Calculate the data bytes on this page */ u16 pg_off = off & (hw->eeprom.page_size - 1); u16 pg_len = hw->eeprom.page_size - pg_off; if (pg_len > len) pg_len = len; /* Now dump the page */ if (e1000_spi_eeprom_read_page(hw, data, off, pg_len, intr)) return -1; /* Otherwise go on to the next page */ len -= pg_len; off += pg_len; data += pg_len; } /* We're done! */ return 0; } static int e1000_spi_eeprom_program(struct e1000_hw *hw, const void *data, u16 off, u16 len, bool intr) { /* Program each page in sequence */ while (len) { /* Calculate the data bytes on this page */ u16 pg_off = off & (hw->eeprom.page_size - 1); u16 pg_len = hw->eeprom.page_size - pg_off; if (pg_len > len) pg_len = len; /* Interruptibly wait for the EEPROM to be ready */ if (e1000_spi_eeprom_poll_ready(hw, intr)) return -1; /* Enable write access */ if (e1000_spi_eeprom_enable_wr(hw, intr)) return -1; /* Now program the page */ if (e1000_spi_eeprom_write_page(hw, data, off, pg_len, intr)) return -1; /* Otherwise go on to the next page */ len -= pg_len; off += pg_len; data += pg_len; } /* Wait for the last write to complete */ if (e1000_spi_eeprom_poll_ready(hw, intr)) return -1; /* We're done! */ return 0; } static int do_e1000_spi_show(cmd_tbl_t *cmdtp, struct e1000_hw *hw, int argc, char * const argv[]) { unsigned int length = 0; u16 i, offset = 0; u8 *buffer; int err; if (argc > 2) { cmd_usage(cmdtp); return 1; } /* Parse the offset and length */ if (argc >= 1) offset = simple_strtoul(argv[0], NULL, 0); if (argc == 2) length = simple_strtoul(argv[1], NULL, 0); else if (offset < (hw->eeprom.word_size << 1)) length = (hw->eeprom.word_size << 1) - offset; /* Extra sanity checks */ if (!length) { E1000_ERR(hw->nic, "Requested zero-sized dump!\n"); return 1; } if ((0x10000 < length) || (0x10000 - length < offset)) { E1000_ERR(hw->nic, "Can't dump past 0xFFFF!\n"); return 1; } /* Allocate a buffer to hold stuff */ buffer = malloc(length); if (!buffer) { E1000_ERR(hw->nic, "Out of Memory!\n"); return 1; } /* Acquire the EEPROM and perform the dump */ if (e1000_acquire_eeprom(hw)) { E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n"); free(buffer); return 1; } err = e1000_spi_eeprom_dump(hw, buffer, offset, length, true); e1000_release_eeprom(hw); if (err) { E1000_ERR(hw->nic, "Interrupted!\n"); free(buffer); return 1; } /* Now hexdump the result */ printf("%s: ===== Intel e1000 EEPROM (0x%04hX - 0x%04hX) =====", hw->nic->name, offset, offset + length - 1); for (i = 0; i < length; i++) { if ((i & 0xF) == 0) printf("\n%s: %04hX: ", hw->nic->name, offset + i); else if ((i & 0xF) == 0x8) printf(" "); printf(" %02hx", buffer[i]); } printf("\n"); /* Success! */ free(buffer); return 0; } static int do_e1000_spi_dump(cmd_tbl_t *cmdtp, struct e1000_hw *hw, int argc, char * const argv[]) { unsigned int length; u16 offset; void *dest; if (argc != 3) { cmd_usage(cmdtp); return 1; } /* Parse the arguments */ dest = (void *)simple_strtoul(argv[0], NULL, 16); offset = simple_strtoul(argv[1], NULL, 0); length = simple_strtoul(argv[2], NULL, 0); /* Extra sanity checks */ if (!length) { E1000_ERR(hw->nic, "Requested zero-sized dump!\n"); return 1; } if ((0x10000 < length) || (0x10000 - length < offset)) { E1000_ERR(hw->nic, "Can't dump past 0xFFFF!\n"); return 1; } /* Acquire the EEPROM */ if (e1000_acquire_eeprom(hw)) { E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n"); return 1; } /* Perform the programming operation */ if (e1000_spi_eeprom_dump(hw, dest, offset, length, true) < 0) { E1000_ERR(hw->nic, "Interrupted!\n"); e1000_release_eeprom(hw); return 1; } e1000_release_eeprom(hw); printf("%s: ===== EEPROM DUMP COMPLETE =====\n", hw->nic->name); return 0; } static int do_e1000_spi_program(cmd_tbl_t *cmdtp, struct e1000_hw *hw, int argc, char * const argv[]) { unsigned int length; const void *source; u16 offset; if (argc != 3) { cmd_usage(cmdtp); return 1; } /* Parse the arguments */ source = (const void *)simple_strtoul(argv[0], NULL, 16); offset = simple_strtoul(argv[1], NULL, 0); length = simple_strtoul(argv[2], NULL, 0); /* Acquire the EEPROM */ if (e1000_acquire_eeprom(hw)) { E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n"); return 1; } /* Perform the programming operation */ if (e1000_spi_eeprom_program(hw, source, offset, length, true) < 0) { E1000_ERR(hw->nic, "Interrupted!\n"); e1000_release_eeprom(hw); return 1; } e1000_release_eeprom(hw); printf("%s: ===== EEPROM PROGRAMMED =====\n", hw->nic->name); return 0; } static int do_e1000_spi_checksum(cmd_tbl_t *cmdtp, struct e1000_hw *hw, int argc, char * const argv[]) { uint16_t i, length, checksum = 0, checksum_reg; uint16_t *buffer; bool upd; if (argc == 0) upd = 0; else if ((argc == 1) && !strcmp(argv[0], "update")) upd = 1; else { cmd_usage(cmdtp); return 1; } /* Allocate a temporary buffer */ length = sizeof(uint16_t) * (EEPROM_CHECKSUM_REG + 1); buffer = malloc(length); if (!buffer) { E1000_ERR(hw->nic, "Unable to allocate EEPROM buffer!\n"); return 1; } /* Acquire the EEPROM */ if (e1000_acquire_eeprom(hw)) { E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n"); return 1; } /* Read the EEPROM */ if (e1000_spi_eeprom_dump(hw, buffer, 0, length, true) < 0) { E1000_ERR(hw->nic, "Interrupted!\n"); e1000_release_eeprom(hw); return 1; } /* Compute the checksum and read the expected value */ for (i = 0; i < EEPROM_CHECKSUM_REG; i++) checksum += le16_to_cpu(buffer[i]); checksum = ((uint16_t)EEPROM_SUM) - checksum; checksum_reg = le16_to_cpu(buffer[i]); /* Verify it! */ if (checksum_reg == checksum) { printf("%s: INFO: EEPROM checksum is correct! (0x%04hx)\n", hw->nic->name, checksum); e1000_release_eeprom(hw); return 0; } /* Hrm, verification failed, print an error */ E1000_ERR(hw->nic, "EEPROM checksum is incorrect!\n"); E1000_ERR(hw->nic, " ...register was 0x%04hx, calculated 0x%04hx\n", checksum_reg, checksum); /* If they didn't ask us to update it, just return an error */ if (!upd) { e1000_release_eeprom(hw); return 1; } /* Ok, correct it! */ printf("%s: Reprogramming the EEPROM checksum...\n", hw->nic->name); buffer[i] = cpu_to_le16(checksum); if (e1000_spi_eeprom_program(hw, &buffer[i], i * sizeof(uint16_t), sizeof(uint16_t), true)) { E1000_ERR(hw->nic, "Interrupted!\n"); e1000_release_eeprom(hw); return 1; } e1000_release_eeprom(hw); return 0; } int do_e1000_spi(cmd_tbl_t *cmdtp, struct e1000_hw *hw, int argc, char * const argv[]) { if (argc < 1) { cmd_usage(cmdtp); return 1; } /* Make sure it has an SPI chip */ if (hw->eeprom.type != e1000_eeprom_spi) { E1000_ERR(hw->nic, "No attached SPI EEPROM found!\n"); return 1; } /* Check the eeprom sub-sub-command arguments */ if (!strcmp(argv[0], "show")) return do_e1000_spi_show(cmdtp, hw, argc - 1, argv + 1); if (!strcmp(argv[0], "dump")) return do_e1000_spi_dump(cmdtp, hw, argc - 1, argv + 1); if (!strcmp(argv[0], "program")) return do_e1000_spi_program(cmdtp, hw, argc - 1, argv + 1); if (!strcmp(argv[0], "checksum")) return do_e1000_spi_checksum(cmdtp, hw, argc - 1, argv + 1); cmd_usage(cmdtp); return 1; } #endif /* not CONFIG_CMD_E1000 */