/* * Micrel KS8851_MLL 16bit Network driver * Copyright (c) 2011 Roberto Cerati <roberto.cerati@bticino.it> * * SPDX-License-Identifier: GPL-2.0+ */ #include <asm/io.h> #include <common.h> #include <command.h> #include <malloc.h> #include <net.h> #include <miiphy.h> #include "ks8851_mll.h" #define DRIVERNAME "ks8851_mll" #define MAX_RECV_FRAMES 32 #define MAX_BUF_SIZE 2048 #define TX_BUF_SIZE 2000 #define RX_BUF_SIZE 2000 static const struct chip_id chip_ids[] = { {CIDER_ID, "KSZ8851"}, {0, NULL}, }; /* * union ks_tx_hdr - tx header data * @txb: The header as bytes * @txw: The header as 16bit, little-endian words * * A dual representation of the tx header data to allow * access to individual bytes, and to allow 16bit accesses * with 16bit alignment. */ union ks_tx_hdr { u8 txb[4]; __le16 txw[2]; }; /* * struct ks_net - KS8851 driver private data * @net_device : The network device we're bound to * @txh : temporaly buffer to save status/length. * @frame_head_info : frame header information for multi-pkt rx. * @statelock : Lock on this structure for tx list. * @msg_enable : The message flags controlling driver output (see ethtool). * @frame_cnt : number of frames received. * @bus_width : i/o bus width. * @irq : irq number assigned to this device. * @rc_rxqcr : Cached copy of KS_RXQCR. * @rc_txcr : Cached copy of KS_TXCR. * @rc_ier : Cached copy of KS_IER. * @sharedbus : Multipex(addr and data bus) mode indicator. * @cmd_reg_cache : command register cached. * @cmd_reg_cache_int : command register cached. Used in the irq handler. * @promiscuous : promiscuous mode indicator. * @all_mcast : mutlicast indicator. * @mcast_lst_size : size of multicast list. * @mcast_lst : multicast list. * @mcast_bits : multicast enabed. * @mac_addr : MAC address assigned to this device. * @fid : frame id. * @extra_byte : number of extra byte prepended rx pkt. * @enabled : indicator this device works. */ /* Receive multiplex framer header info */ struct type_frame_head { u16 sts; /* Frame status */ u16 len; /* Byte count */ } fr_h_i[MAX_RECV_FRAMES]; struct ks_net { struct net_device *netdev; union ks_tx_hdr txh; struct type_frame_head *frame_head_info; u32 msg_enable; u32 frame_cnt; int bus_width; int irq; u16 rc_rxqcr; u16 rc_txcr; u16 rc_ier; u16 sharedbus; u16 cmd_reg_cache; u16 cmd_reg_cache_int; u16 promiscuous; u16 all_mcast; u16 mcast_lst_size; u8 mcast_lst[MAX_MCAST_LST][MAC_ADDR_LEN]; u8 mcast_bits[HW_MCAST_SIZE]; u8 mac_addr[6]; u8 fid; u8 extra_byte; u8 enabled; } ks_str, *ks; #define BE3 0x8000 /* Byte Enable 3 */ #define BE2 0x4000 /* Byte Enable 2 */ #define BE1 0x2000 /* Byte Enable 1 */ #define BE0 0x1000 /* Byte Enable 0 */ static u8 ks_rdreg8(struct eth_device *dev, u16 offset) { u8 shift_bit = offset & 0x03; u8 shift_data = (offset & 1) << 3; writew(offset | (BE0 << shift_bit), dev->iobase + 2); return (u8)(readw(dev->iobase) >> shift_data); } static u16 ks_rdreg16(struct eth_device *dev, u16 offset) { writew(offset | ((BE1 | BE0) << (offset & 0x02)), dev->iobase + 2); return readw(dev->iobase); } static void ks_wrreg8(struct eth_device *dev, u16 offset, u8 val) { u8 shift_bit = (offset & 0x03); u16 value_write = (u16)(val << ((offset & 1) << 3)); writew(offset | (BE0 << shift_bit), dev->iobase + 2); writew(value_write, dev->iobase); } static void ks_wrreg16(struct eth_device *dev, u16 offset, u16 val) { writew(offset | ((BE1 | BE0) << (offset & 0x02)), dev->iobase + 2); writew(val, dev->iobase); } /* * ks_inblk - read a block of data from QMU. This is called after sudo DMA mode * enabled. * @ks: The chip state * @wptr: buffer address to save data * @len: length in byte to read */ static inline void ks_inblk(struct eth_device *dev, u16 *wptr, u32 len) { len >>= 1; while (len--) *wptr++ = readw(dev->iobase); } /* * ks_outblk - write data to QMU. This is called after sudo DMA mode enabled. * @ks: The chip information * @wptr: buffer address * @len: length in byte to write */ static inline void ks_outblk(struct eth_device *dev, u16 *wptr, u32 len) { len >>= 1; while (len--) writew(*wptr++, dev->iobase); } static void ks_enable_int(struct eth_device *dev) { ks_wrreg16(dev, KS_IER, ks->rc_ier); } static void ks_set_powermode(struct eth_device *dev, unsigned pwrmode) { unsigned pmecr; ks_rdreg16(dev, KS_GRR); pmecr = ks_rdreg16(dev, KS_PMECR); pmecr &= ~PMECR_PM_MASK; pmecr |= pwrmode; ks_wrreg16(dev, KS_PMECR, pmecr); } /* * ks_read_config - read chip configuration of bus width. * @ks: The chip information */ static void ks_read_config(struct eth_device *dev) { u16 reg_data = 0; /* Regardless of bus width, 8 bit read should always work. */ reg_data = ks_rdreg8(dev, KS_CCR) & 0x00FF; reg_data |= ks_rdreg8(dev, KS_CCR + 1) << 8; /* addr/data bus are multiplexed */ ks->sharedbus = (reg_data & CCR_SHARED) == CCR_SHARED; /* * There are garbage data when reading data from QMU, * depending on bus-width. */ if (reg_data & CCR_8BIT) { ks->bus_width = ENUM_BUS_8BIT; ks->extra_byte = 1; } else if (reg_data & CCR_16BIT) { ks->bus_width = ENUM_BUS_16BIT; ks->extra_byte = 2; } else { ks->bus_width = ENUM_BUS_32BIT; ks->extra_byte = 4; } } /* * ks_soft_reset - issue one of the soft reset to the device * @ks: The device state. * @op: The bit(s) to set in the GRR * * Issue the relevant soft-reset command to the device's GRR register * specified by @op. * * Note, the delays are in there as a caution to ensure that the reset * has time to take effect and then complete. Since the datasheet does * not currently specify the exact sequence, we have chosen something * that seems to work with our device. */ static void ks_soft_reset(struct eth_device *dev, unsigned op) { /* Disable interrupt first */ ks_wrreg16(dev, KS_IER, 0x0000); ks_wrreg16(dev, KS_GRR, op); mdelay(10); /* wait a short time to effect reset */ ks_wrreg16(dev, KS_GRR, 0); mdelay(1); /* wait for condition to clear */ } void ks_enable_qmu(struct eth_device *dev) { u16 w; w = ks_rdreg16(dev, KS_TXCR); /* Enables QMU Transmit (TXCR). */ ks_wrreg16(dev, KS_TXCR, w | TXCR_TXE); /* Enable RX Frame Count Threshold and Auto-Dequeue RXQ Frame */ w = ks_rdreg16(dev, KS_RXQCR); ks_wrreg16(dev, KS_RXQCR, w | RXQCR_RXFCTE); /* Enables QMU Receive (RXCR1). */ w = ks_rdreg16(dev, KS_RXCR1); ks_wrreg16(dev, KS_RXCR1, w | RXCR1_RXE); } static void ks_disable_qmu(struct eth_device *dev) { u16 w; w = ks_rdreg16(dev, KS_TXCR); /* Disables QMU Transmit (TXCR). */ w &= ~TXCR_TXE; ks_wrreg16(dev, KS_TXCR, w); /* Disables QMU Receive (RXCR1). */ w = ks_rdreg16(dev, KS_RXCR1); w &= ~RXCR1_RXE; ks_wrreg16(dev, KS_RXCR1, w); } static inline void ks_read_qmu(struct eth_device *dev, u16 *buf, u32 len) { u32 r = ks->extra_byte & 0x1; u32 w = ks->extra_byte - r; /* 1. set sudo DMA mode */ ks_wrreg16(dev, KS_RXFDPR, RXFDPR_RXFPAI); ks_wrreg8(dev, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff); /* * 2. read prepend data * * read 4 + extra bytes and discard them. * extra bytes for dummy, 2 for status, 2 for len */ if (r) ks_rdreg8(dev, 0); ks_inblk(dev, buf, w + 2 + 2); /* 3. read pkt data */ ks_inblk(dev, buf, ALIGN(len, 4)); /* 4. reset sudo DMA Mode */ ks_wrreg8(dev, KS_RXQCR, (ks->rc_rxqcr & ~RXQCR_SDA) & 0xff); } static void ks_rcv(struct eth_device *dev, uchar **pv_data) { struct type_frame_head *frame_hdr = ks->frame_head_info; int i; ks->frame_cnt = ks_rdreg16(dev, KS_RXFCTR) >> 8; /* read all header information */ for (i = 0; i < ks->frame_cnt; i++) { /* Checking Received packet status */ frame_hdr->sts = ks_rdreg16(dev, KS_RXFHSR); /* Get packet len from hardware */ frame_hdr->len = ks_rdreg16(dev, KS_RXFHBCR); frame_hdr++; } frame_hdr = ks->frame_head_info; while (ks->frame_cnt--) { if ((frame_hdr->sts & RXFSHR_RXFV) && (frame_hdr->len < RX_BUF_SIZE) && frame_hdr->len) { /* read data block including CRC 4 bytes */ ks_read_qmu(dev, (u16 *)(*pv_data), frame_hdr->len); /* net_rx_packets buffer size is ok (*pv_data) */ net_process_received_packet(*pv_data, frame_hdr->len); pv_data++; } else { ks_wrreg16(dev, KS_RXQCR, (ks->rc_rxqcr | RXQCR_RRXEF)); printf(DRIVERNAME ": bad packet\n"); } frame_hdr++; } } /* * ks_read_selftest - read the selftest memory info. * @ks: The device state * * Read and check the TX/RX memory selftest information. */ static int ks_read_selftest(struct eth_device *dev) { u16 both_done = MBIR_TXMBF | MBIR_RXMBF; u16 mbir; int ret = 0; mbir = ks_rdreg16(dev, KS_MBIR); if ((mbir & both_done) != both_done) { printf(DRIVERNAME ": Memory selftest not finished\n"); return 0; } if (mbir & MBIR_TXMBFA) { printf(DRIVERNAME ": TX memory selftest fails\n"); ret |= 1; } if (mbir & MBIR_RXMBFA) { printf(DRIVERNAME ": RX memory selftest fails\n"); ret |= 2; } debug(DRIVERNAME ": the selftest passes\n"); return ret; } static void ks_setup(struct eth_device *dev) { u16 w; /* Setup Transmit Frame Data Pointer Auto-Increment (TXFDPR) */ ks_wrreg16(dev, KS_TXFDPR, TXFDPR_TXFPAI); /* Setup Receive Frame Data Pointer Auto-Increment */ ks_wrreg16(dev, KS_RXFDPR, RXFDPR_RXFPAI); /* Setup Receive Frame Threshold - 1 frame (RXFCTFC) */ ks_wrreg16(dev, KS_RXFCTR, 1 & RXFCTR_THRESHOLD_MASK); /* Setup RxQ Command Control (RXQCR) */ ks->rc_rxqcr = RXQCR_CMD_CNTL; ks_wrreg16(dev, KS_RXQCR, ks->rc_rxqcr); /* * set the force mode to half duplex, default is full duplex * because if the auto-negotiation fails, most switch uses * half-duplex. */ w = ks_rdreg16(dev, KS_P1MBCR); w &= ~P1MBCR_FORCE_FDX; ks_wrreg16(dev, KS_P1MBCR, w); w = TXCR_TXFCE | TXCR_TXPE | TXCR_TXCRC | TXCR_TCGIP; ks_wrreg16(dev, KS_TXCR, w); w = RXCR1_RXFCE | RXCR1_RXBE | RXCR1_RXUE | RXCR1_RXME | RXCR1_RXIPFCC; /* Normal mode */ w |= RXCR1_RXPAFMA; ks_wrreg16(dev, KS_RXCR1, w); } static void ks_setup_int(struct eth_device *dev) { ks->rc_ier = 0x00; /* Clear the interrupts status of the hardware. */ ks_wrreg16(dev, KS_ISR, 0xffff); /* Enables the interrupts of the hardware. */ ks->rc_ier = (IRQ_LCI | IRQ_TXI | IRQ_RXI); } static int ks8851_mll_detect_chip(struct eth_device *dev) { unsigned short val, i; ks_read_config(dev); val = ks_rdreg16(dev, KS_CIDER); if (val == 0xffff) { /* Special case -- no chip present */ printf(DRIVERNAME ": is chip mounted ?\n"); return -1; } else if ((val & 0xfff0) != CIDER_ID) { printf(DRIVERNAME ": Invalid chip id 0x%04x\n", val); return -1; } debug("Read back KS8851 id 0x%x\n", val); /* only one entry in the table */ val &= 0xfff0; for (i = 0; chip_ids[i].id != 0; i++) { if (chip_ids[i].id == val) break; } if (!chip_ids[i].id) { printf(DRIVERNAME ": Unknown chip ID %04x\n", val); return -1; } dev->priv = (void *)&chip_ids[i]; return 0; } static void ks8851_mll_reset(struct eth_device *dev) { /* wake up powermode to normal mode */ ks_set_powermode(dev, PMECR_PM_NORMAL); mdelay(1); /* wait for normal mode to take effect */ /* Disable interrupt and reset */ ks_soft_reset(dev, GRR_GSR); /* turn off the IRQs and ack any outstanding */ ks_wrreg16(dev, KS_IER, 0x0000); ks_wrreg16(dev, KS_ISR, 0xffff); /* shutdown RX/TX QMU */ ks_disable_qmu(dev); } static void ks8851_mll_phy_configure(struct eth_device *dev) { u16 data; ks_setup(dev); ks_setup_int(dev); /* Probing the phy */ data = ks_rdreg16(dev, KS_OBCR); ks_wrreg16(dev, KS_OBCR, data | OBCR_ODS_16MA); debug(DRIVERNAME ": phy initialized\n"); } static void ks8851_mll_enable(struct eth_device *dev) { ks_wrreg16(dev, KS_ISR, 0xffff); ks_enable_int(dev); ks_enable_qmu(dev); } static int ks8851_mll_init(struct eth_device *dev, bd_t *bd) { struct chip_id *id = dev->priv; debug(DRIVERNAME ": detected %s controller\n", id->name); if (ks_read_selftest(dev)) { printf(DRIVERNAME ": Selftest failed\n"); return -1; } ks8851_mll_reset(dev); /* Configure the PHY, initialize the link state */ ks8851_mll_phy_configure(dev); /* static allocation of private informations */ ks->frame_head_info = fr_h_i; /* Turn on Tx + Rx */ ks8851_mll_enable(dev); return 0; } static void ks_write_qmu(struct eth_device *dev, u8 *pdata, u16 len) { /* start header at txb[0] to align txw entries */ ks->txh.txw[0] = 0; ks->txh.txw[1] = cpu_to_le16(len); /* 1. set sudo-DMA mode */ ks_wrreg16(dev, KS_TXFDPR, TXFDPR_TXFPAI); ks_wrreg8(dev, KS_RXQCR, (ks->rc_rxqcr | RXQCR_SDA) & 0xff); /* 2. write status/lenth info */ ks_outblk(dev, ks->txh.txw, 4); /* 3. write pkt data */ ks_outblk(dev, (u16 *)pdata, ALIGN(len, 4)); /* 4. reset sudo-DMA mode */ ks_wrreg8(dev, KS_RXQCR, (ks->rc_rxqcr & ~RXQCR_SDA) & 0xff); /* 5. Enqueue Tx(move the pkt from TX buffer into TXQ) */ ks_wrreg16(dev, KS_TXQCR, TXQCR_METFE); /* 6. wait until TXQCR_METFE is auto-cleared */ do { } while (ks_rdreg16(dev, KS_TXQCR) & TXQCR_METFE); } static int ks8851_mll_send(struct eth_device *dev, void *packet, int length) { u8 *data = (u8 *)packet; u16 tmplen = (u16)length; u16 retv; /* * Extra space are required: * 4 byte for alignment, 4 for status/length, 4 for CRC */ retv = ks_rdreg16(dev, KS_TXMIR) & 0x1fff; if (retv >= tmplen + 12) { ks_write_qmu(dev, data, tmplen); return 0; } else { printf(DRIVERNAME ": failed to send packet: No buffer\n"); return -1; } } static void ks8851_mll_halt(struct eth_device *dev) { ks8851_mll_reset(dev); } /* * Maximum receive ring size; that is, the number of packets * we can buffer before overflow happens. Basically, this just * needs to be enough to prevent a packet being discarded while * we are processing the previous one. */ static int ks8851_mll_recv(struct eth_device *dev) { u16 status; status = ks_rdreg16(dev, KS_ISR); ks_wrreg16(dev, KS_ISR, status); if ((status & IRQ_RXI)) ks_rcv(dev, (uchar **)net_rx_packets); if ((status & IRQ_LDI)) { u16 pmecr = ks_rdreg16(dev, KS_PMECR); pmecr &= ~PMECR_WKEVT_MASK; ks_wrreg16(dev, KS_PMECR, pmecr | PMECR_WKEVT_LINK); } return 0; } static int ks8851_mll_write_hwaddr(struct eth_device *dev) { u16 addrl, addrm, addrh; addrh = (dev->enetaddr[0] << 8) | dev->enetaddr[1]; addrm = (dev->enetaddr[2] << 8) | dev->enetaddr[3]; addrl = (dev->enetaddr[4] << 8) | dev->enetaddr[5]; ks_wrreg16(dev, KS_MARH, addrh); ks_wrreg16(dev, KS_MARM, addrm); ks_wrreg16(dev, KS_MARL, addrl); return 0; } int ks8851_mll_initialize(u8 dev_num, int base_addr) { struct eth_device *dev; dev = malloc(sizeof(*dev)); if (!dev) { printf("Error: Failed to allocate memory\n"); return -1; } memset(dev, 0, sizeof(*dev)); dev->iobase = base_addr; ks = &ks_str; /* Try to detect chip. Will fail if not present. */ if (ks8851_mll_detect_chip(dev)) { free(dev); return -1; } dev->init = ks8851_mll_init; dev->halt = ks8851_mll_halt; dev->send = ks8851_mll_send; dev->recv = ks8851_mll_recv; dev->write_hwaddr = ks8851_mll_write_hwaddr; sprintf(dev->name, "%s-%hu", DRIVERNAME, dev_num); eth_register(dev); return 0; }