/* * Copyright (C) 2005-2006 Atmel Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <common.h> #if defined(CONFIG_MACB) \ && (defined(CONFIG_CMD_NET) || defined(CONFIG_CMD_MII)) /* * The u-boot networking stack is a little weird. It seems like the * networking core allocates receive buffers up front without any * regard to the hardware that's supposed to actually receive those * packets. * * The MACB receives packets into 128-byte receive buffers, so the * buffers allocated by the core isn't very practical to use. We'll * allocate our own, but we need one such buffer in case a packet * wraps around the DMA ring so that we have to copy it. * * Therefore, define CFG_RX_ETH_BUFFER to 1 in the board-specific * configuration header. This way, the core allocates one RX buffer * and one TX buffer, each of which can hold a ethernet packet of * maximum size. * * For some reason, the networking core unconditionally specifies a * 32-byte packet "alignment" (which really should be called * "padding"). MACB shouldn't need that, but we'll refrain from any * core modifications here... */ #include <net.h> #include <malloc.h> #include <linux/mii.h> #include <asm/io.h> #include <asm/dma-mapping.h> #include <asm/arch/clk.h> #include "macb.h" #define barrier() asm volatile("" ::: "memory") #define CFG_MACB_RX_BUFFER_SIZE 4096 #define CFG_MACB_RX_RING_SIZE (CFG_MACB_RX_BUFFER_SIZE / 128) #define CFG_MACB_TX_RING_SIZE 16 #define CFG_MACB_TX_TIMEOUT 1000 #define CFG_MACB_AUTONEG_TIMEOUT 5000000 struct macb_dma_desc { u32 addr; u32 ctrl; }; #define RXADDR_USED 0x00000001 #define RXADDR_WRAP 0x00000002 #define RXBUF_FRMLEN_MASK 0x00000fff #define RXBUF_FRAME_START 0x00004000 #define RXBUF_FRAME_END 0x00008000 #define RXBUF_TYPEID_MATCH 0x00400000 #define RXBUF_ADDR4_MATCH 0x00800000 #define RXBUF_ADDR3_MATCH 0x01000000 #define RXBUF_ADDR2_MATCH 0x02000000 #define RXBUF_ADDR1_MATCH 0x04000000 #define RXBUF_BROADCAST 0x80000000 #define TXBUF_FRMLEN_MASK 0x000007ff #define TXBUF_FRAME_END 0x00008000 #define TXBUF_NOCRC 0x00010000 #define TXBUF_EXHAUSTED 0x08000000 #define TXBUF_UNDERRUN 0x10000000 #define TXBUF_MAXRETRY 0x20000000 #define TXBUF_WRAP 0x40000000 #define TXBUF_USED 0x80000000 struct macb_device { void *regs; unsigned int rx_tail; unsigned int tx_head; unsigned int tx_tail; void *rx_buffer; void *tx_buffer; struct macb_dma_desc *rx_ring; struct macb_dma_desc *tx_ring; unsigned long rx_buffer_dma; unsigned long rx_ring_dma; unsigned long tx_ring_dma; const struct device *dev; struct eth_device netdev; unsigned short phy_addr; }; #define to_macb(_nd) container_of(_nd, struct macb_device, netdev) static void macb_mdio_write(struct macb_device *macb, u8 reg, u16 value) { unsigned long netctl; unsigned long netstat; unsigned long frame; netctl = macb_readl(macb, NCR); netctl |= MACB_BIT(MPE); macb_writel(macb, NCR, netctl); frame = (MACB_BF(SOF, 1) | MACB_BF(RW, 1) | MACB_BF(PHYA, macb->phy_addr) | MACB_BF(REGA, reg) | MACB_BF(CODE, 2) | MACB_BF(DATA, value)); macb_writel(macb, MAN, frame); do { netstat = macb_readl(macb, NSR); } while (!(netstat & MACB_BIT(IDLE))); netctl = macb_readl(macb, NCR); netctl &= ~MACB_BIT(MPE); macb_writel(macb, NCR, netctl); } static u16 macb_mdio_read(struct macb_device *macb, u8 reg) { unsigned long netctl; unsigned long netstat; unsigned long frame; netctl = macb_readl(macb, NCR); netctl |= MACB_BIT(MPE); macb_writel(macb, NCR, netctl); frame = (MACB_BF(SOF, 1) | MACB_BF(RW, 2) | MACB_BF(PHYA, macb->phy_addr) | MACB_BF(REGA, reg) | MACB_BF(CODE, 2)); macb_writel(macb, MAN, frame); do { netstat = macb_readl(macb, NSR); } while (!(netstat & MACB_BIT(IDLE))); frame = macb_readl(macb, MAN); netctl = macb_readl(macb, NCR); netctl &= ~MACB_BIT(MPE); macb_writel(macb, NCR, netctl); return MACB_BFEXT(DATA, frame); } #if defined(CONFIG_CMD_NET) static int macb_send(struct eth_device *netdev, volatile void *packet, int length) { struct macb_device *macb = to_macb(netdev); unsigned long paddr, ctrl; unsigned int tx_head = macb->tx_head; int i; paddr = dma_map_single(packet, length, DMA_TO_DEVICE); ctrl = length & TXBUF_FRMLEN_MASK; ctrl |= TXBUF_FRAME_END; if (tx_head == (CFG_MACB_TX_RING_SIZE - 1)) { ctrl |= TXBUF_WRAP; macb->tx_head = 0; } else macb->tx_head++; macb->tx_ring[tx_head].ctrl = ctrl; macb->tx_ring[tx_head].addr = paddr; barrier(); macb_writel(macb, NCR, MACB_BIT(TE) | MACB_BIT(RE) | MACB_BIT(TSTART)); /* * I guess this is necessary because the networking core may * re-use the transmit buffer as soon as we return... */ for (i = 0; i <= CFG_MACB_TX_TIMEOUT; i++) { barrier(); ctrl = macb->tx_ring[tx_head].ctrl; if (ctrl & TXBUF_USED) break; udelay(1); } dma_unmap_single(packet, length, paddr); if (i <= CFG_MACB_TX_TIMEOUT) { if (ctrl & TXBUF_UNDERRUN) printf("%s: TX underrun\n", netdev->name); if (ctrl & TXBUF_EXHAUSTED) printf("%s: TX buffers exhausted in mid frame\n", netdev->name); } else { printf("%s: TX timeout\n", netdev->name); } /* No one cares anyway */ return 0; } static void reclaim_rx_buffers(struct macb_device *macb, unsigned int new_tail) { unsigned int i; i = macb->rx_tail; while (i > new_tail) { macb->rx_ring[i].addr &= ~RXADDR_USED; i++; if (i > CFG_MACB_RX_RING_SIZE) i = 0; } while (i < new_tail) { macb->rx_ring[i].addr &= ~RXADDR_USED; i++; } barrier(); macb->rx_tail = new_tail; } static int macb_recv(struct eth_device *netdev) { struct macb_device *macb = to_macb(netdev); unsigned int rx_tail = macb->rx_tail; void *buffer; int length; int wrapped = 0; u32 status; for (;;) { if (!(macb->rx_ring[rx_tail].addr & RXADDR_USED)) return -1; status = macb->rx_ring[rx_tail].ctrl; if (status & RXBUF_FRAME_START) { if (rx_tail != macb->rx_tail) reclaim_rx_buffers(macb, rx_tail); wrapped = 0; } if (status & RXBUF_FRAME_END) { buffer = macb->rx_buffer + 128 * macb->rx_tail; length = status & RXBUF_FRMLEN_MASK; if (wrapped) { unsigned int headlen, taillen; headlen = 128 * (CFG_MACB_RX_RING_SIZE - macb->rx_tail); taillen = length - headlen; memcpy((void *)NetRxPackets[0], buffer, headlen); memcpy((void *)NetRxPackets[0] + headlen, macb->rx_buffer, taillen); buffer = (void *)NetRxPackets[0]; } NetReceive(buffer, length); if (++rx_tail >= CFG_MACB_RX_RING_SIZE) rx_tail = 0; reclaim_rx_buffers(macb, rx_tail); } else { if (++rx_tail >= CFG_MACB_RX_RING_SIZE) { wrapped = 1; rx_tail = 0; } } barrier(); } return 0; } static void macb_phy_reset(struct macb_device *macb) { struct eth_device *netdev = &macb->netdev; int i; u16 status, adv; adv = ADVERTISE_CSMA | ADVERTISE_ALL; macb_mdio_write(macb, MII_ADVERTISE, adv); printf("%s: Starting autonegotiation...\n", netdev->name); macb_mdio_write(macb, MII_BMCR, (BMCR_ANENABLE | BMCR_ANRESTART)); for (i = 0; i < CFG_MACB_AUTONEG_TIMEOUT / 100; i++) { status = macb_mdio_read(macb, MII_BMSR); if (status & BMSR_ANEGCOMPLETE) break; udelay(100); } if (status & BMSR_ANEGCOMPLETE) printf("%s: Autonegotiation complete\n", netdev->name); else printf("%s: Autonegotiation timed out (status=0x%04x)\n", netdev->name, status); } static int macb_phy_init(struct macb_device *macb) { struct eth_device *netdev = &macb->netdev; u32 ncfgr; u16 phy_id, status, adv, lpa; int media, speed, duplex; int i; /* Check if the PHY is up to snuff... */ phy_id = macb_mdio_read(macb, MII_PHYSID1); if (phy_id == 0xffff) { printf("%s: No PHY present\n", netdev->name); return 0; } status = macb_mdio_read(macb, MII_BMSR); if (!(status & BMSR_LSTATUS)) { /* Try to re-negotiate if we don't have link already. */ macb_phy_reset(macb); for (i = 0; i < CFG_MACB_AUTONEG_TIMEOUT / 100; i++) { status = macb_mdio_read(macb, MII_BMSR); if (status & BMSR_LSTATUS) break; udelay(100); } } if (!(status & BMSR_LSTATUS)) { printf("%s: link down (status: 0x%04x)\n", netdev->name, status); return 0; } else { adv = macb_mdio_read(macb, MII_ADVERTISE); lpa = macb_mdio_read(macb, MII_LPA); media = mii_nway_result(lpa & adv); speed = (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 1 : 0); duplex = (media & ADVERTISE_FULL) ? 1 : 0; printf("%s: link up, %sMbps %s-duplex (lpa: 0x%04x)\n", netdev->name, speed ? "100" : "10", duplex ? "full" : "half", lpa); ncfgr = macb_readl(macb, NCFGR); ncfgr &= ~(MACB_BIT(SPD) | MACB_BIT(FD)); if (speed) ncfgr |= MACB_BIT(SPD); if (duplex) ncfgr |= MACB_BIT(FD); macb_writel(macb, NCFGR, ncfgr); return 1; } } static int macb_init(struct eth_device *netdev, bd_t *bd) { struct macb_device *macb = to_macb(netdev); unsigned long paddr; u32 hwaddr_bottom; u16 hwaddr_top; int i; /* * macb_halt should have been called at some point before now, * so we'll assume the controller is idle. */ /* initialize DMA descriptors */ paddr = macb->rx_buffer_dma; for (i = 0; i < CFG_MACB_RX_RING_SIZE; i++) { if (i == (CFG_MACB_RX_RING_SIZE - 1)) paddr |= RXADDR_WRAP; macb->rx_ring[i].addr = paddr; macb->rx_ring[i].ctrl = 0; paddr += 128; } for (i = 0; i < CFG_MACB_TX_RING_SIZE; i++) { macb->tx_ring[i].addr = 0; if (i == (CFG_MACB_TX_RING_SIZE - 1)) macb->tx_ring[i].ctrl = TXBUF_USED | TXBUF_WRAP; else macb->tx_ring[i].ctrl = TXBUF_USED; } macb->rx_tail = macb->tx_head = macb->tx_tail = 0; macb_writel(macb, RBQP, macb->rx_ring_dma); macb_writel(macb, TBQP, macb->tx_ring_dma); /* set hardware address */ hwaddr_bottom = cpu_to_le32(*((u32 *)netdev->enetaddr)); macb_writel(macb, SA1B, hwaddr_bottom); hwaddr_top = cpu_to_le16(*((u16 *)(netdev->enetaddr + 4))); macb_writel(macb, SA1T, hwaddr_top); /* choose RMII or MII mode. This depends on the board */ #ifdef CONFIG_RMII #if defined(CONFIG_AT91CAP9) || defined(CONFIG_AT91SAM9260) macb_writel(macb, USRIO, MACB_BIT(RMII) | MACB_BIT(CLKEN)); #else macb_writel(macb, USRIO, 0); #endif #else #if defined(CONFIG_AT91CAP9) || defined(CONFIG_AT91SAM9260) macb_writel(macb, USRIO, MACB_BIT(CLKEN)); #else macb_writel(macb, USRIO, MACB_BIT(MII)); #endif #endif /* CONFIG_RMII */ if (!macb_phy_init(macb)) return -1; /* Enable TX and RX */ macb_writel(macb, NCR, MACB_BIT(TE) | MACB_BIT(RE)); return 0; } static void macb_halt(struct eth_device *netdev) { struct macb_device *macb = to_macb(netdev); u32 ncr, tsr; /* Halt the controller and wait for any ongoing transmission to end. */ ncr = macb_readl(macb, NCR); ncr |= MACB_BIT(THALT); macb_writel(macb, NCR, ncr); do { tsr = macb_readl(macb, TSR); } while (tsr & MACB_BIT(TGO)); /* Disable TX and RX, and clear statistics */ macb_writel(macb, NCR, MACB_BIT(CLRSTAT)); } int macb_eth_initialize(int id, void *regs, unsigned int phy_addr) { struct macb_device *macb; struct eth_device *netdev; unsigned long macb_hz; u32 ncfgr; macb = malloc(sizeof(struct macb_device)); if (!macb) { printf("Error: Failed to allocate memory for MACB%d\n", id); return -1; } memset(macb, 0, sizeof(struct macb_device)); netdev = &macb->netdev; macb->rx_buffer = dma_alloc_coherent(CFG_MACB_RX_BUFFER_SIZE, &macb->rx_buffer_dma); macb->rx_ring = dma_alloc_coherent(CFG_MACB_RX_RING_SIZE * sizeof(struct macb_dma_desc), &macb->rx_ring_dma); macb->tx_ring = dma_alloc_coherent(CFG_MACB_TX_RING_SIZE * sizeof(struct macb_dma_desc), &macb->tx_ring_dma); macb->regs = regs; macb->phy_addr = phy_addr; sprintf(netdev->name, "macb%d", id); netdev->init = macb_init; netdev->halt = macb_halt; netdev->send = macb_send; netdev->recv = macb_recv; /* * Do some basic initialization so that we at least can talk * to the PHY */ macb_hz = get_macb_pclk_rate(id); if (macb_hz < 20000000) ncfgr = MACB_BF(CLK, MACB_CLK_DIV8); else if (macb_hz < 40000000) ncfgr = MACB_BF(CLK, MACB_CLK_DIV16); else if (macb_hz < 80000000) ncfgr = MACB_BF(CLK, MACB_CLK_DIV32); else ncfgr = MACB_BF(CLK, MACB_CLK_DIV64); macb_writel(macb, NCFGR, ncfgr); eth_register(netdev); return 0; } #endif #if defined(CONFIG_CMD_MII) int miiphy_read(unsigned char addr, unsigned char reg, unsigned short *value) { unsigned long netctl; unsigned long netstat; unsigned long frame; int iflag; iflag = disable_interrupts(); netctl = macb_readl(&macb, EMACB_NCR); netctl |= MACB_BIT(MPE); macb_writel(&macb, EMACB_NCR, netctl); if (iflag) enable_interrupts(); frame = (MACB_BF(SOF, 1) | MACB_BF(RW, 2) | MACB_BF(PHYA, addr) | MACB_BF(REGA, reg) | MACB_BF(CODE, 2)); macb_writel(&macb, EMACB_MAN, frame); do { netstat = macb_readl(&macb, EMACB_NSR); } while (!(netstat & MACB_BIT(IDLE))); frame = macb_readl(&macb, EMACB_MAN); *value = MACB_BFEXT(DATA, frame); iflag = disable_interrupts(); netctl = macb_readl(&macb, EMACB_NCR); netctl &= ~MACB_BIT(MPE); macb_writel(&macb, EMACB_NCR, netctl); if (iflag) enable_interrupts(); return 0; } int miiphy_write(unsigned char addr, unsigned char reg, unsigned short value) { unsigned long netctl; unsigned long netstat; unsigned long frame; int iflag; iflag = disable_interrupts(); netctl = macb_readl(&macb, EMACB_NCR); netctl |= MACB_BIT(MPE); macb_writel(&macb, EMACB_NCR, netctl); if (iflag) enable_interrupts(); frame = (MACB_BF(SOF, 1) | MACB_BF(RW, 1) | MACB_BF(PHYA, addr) | MACB_BF(REGA, reg) | MACB_BF(CODE, 2) | MACB_BF(DATA, value)); macb_writel(&macb, EMACB_MAN, frame); do { netstat = macb_readl(&macb, EMACB_NSR); } while (!(netstat & MACB_BIT(IDLE))); iflag = disable_interrupts(); netctl = macb_readl(&macb, EMACB_NCR); netctl &= ~MACB_BIT(MPE); macb_writel(&macb, EMACB_NCR, netctl); if (iflag) enable_interrupts(); return 0; } #endif #endif /* CONFIG_MACB */