// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2018 MediaTek Inc. * * Author: Weijie Gao <weijie.gao@mediatek.com> * Author: Mark Lee <mark-mc.lee@mediatek.com> */ #include <common.h> #include <cpu_func.h> #include <dm.h> #include <log.h> #include <malloc.h> #include <miiphy.h> #include <net.h> #include <regmap.h> #include <reset.h> #include <syscon.h> #include <wait_bit.h> #include <asm/cache.h> #include <asm/gpio.h> #include <asm/io.h> #include <dm/device_compat.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/ioport.h> #include <linux/mdio.h> #include <linux/mii.h> #include "mtk_eth.h" #define NUM_TX_DESC 24 #define NUM_RX_DESC 24 #define TX_TOTAL_BUF_SIZE (NUM_TX_DESC * PKTSIZE_ALIGN) #define RX_TOTAL_BUF_SIZE (NUM_RX_DESC * PKTSIZE_ALIGN) #define TOTAL_PKT_BUF_SIZE (TX_TOTAL_BUF_SIZE + RX_TOTAL_BUF_SIZE) #define MT753X_NUM_PHYS 5 #define MT753X_NUM_PORTS 7 #define MT753X_DFL_SMI_ADDR 31 #define MT753X_SMI_ADDR_MASK 0x1f #define MT753X_PHY_ADDR(base, addr) \ (((base) + (addr)) & 0x1f) #define GDMA_FWD_TO_CPU \ (0x20000000 | \ GDM_ICS_EN | \ GDM_TCS_EN | \ GDM_UCS_EN | \ STRP_CRC | \ (DP_PDMA << MYMAC_DP_S) | \ (DP_PDMA << BC_DP_S) | \ (DP_PDMA << MC_DP_S) | \ (DP_PDMA << UN_DP_S)) #define GDMA_FWD_DISCARD \ (0x20000000 | \ GDM_ICS_EN | \ GDM_TCS_EN | \ GDM_UCS_EN | \ STRP_CRC | \ (DP_DISCARD << MYMAC_DP_S) | \ (DP_DISCARD << BC_DP_S) | \ (DP_DISCARD << MC_DP_S) | \ (DP_DISCARD << UN_DP_S)) struct pdma_rxd_info1 { u32 PDP0; }; struct pdma_rxd_info2 { u32 PLEN1 : 14; u32 LS1 : 1; u32 UN_USED : 1; u32 PLEN0 : 14; u32 LS0 : 1; u32 DDONE : 1; }; struct pdma_rxd_info3 { u32 PDP1; }; struct pdma_rxd_info4 { u32 FOE_ENTRY : 14; u32 CRSN : 5; u32 SP : 3; u32 L4F : 1; u32 L4VLD : 1; u32 TACK : 1; u32 IP4F : 1; u32 IP4 : 1; u32 IP6 : 1; u32 UN_USED : 4; }; struct pdma_rxdesc { struct pdma_rxd_info1 rxd_info1; struct pdma_rxd_info2 rxd_info2; struct pdma_rxd_info3 rxd_info3; struct pdma_rxd_info4 rxd_info4; }; struct pdma_txd_info1 { u32 SDP0; }; struct pdma_txd_info2 { u32 SDL1 : 14; u32 LS1 : 1; u32 BURST : 1; u32 SDL0 : 14; u32 LS0 : 1; u32 DDONE : 1; }; struct pdma_txd_info3 { u32 SDP1; }; struct pdma_txd_info4 { u32 VLAN_TAG : 16; u32 INS : 1; u32 RESV : 2; u32 UDF : 6; u32 FPORT : 3; u32 TSO : 1; u32 TUI_CO : 3; }; struct pdma_txdesc { struct pdma_txd_info1 txd_info1; struct pdma_txd_info2 txd_info2; struct pdma_txd_info3 txd_info3; struct pdma_txd_info4 txd_info4; }; enum mtk_switch { SW_NONE, SW_MT7530, SW_MT7531 }; enum mtk_soc { SOC_MT7623, SOC_MT7629, SOC_MT7622 }; struct mtk_eth_priv { char pkt_pool[TOTAL_PKT_BUF_SIZE] __aligned(ARCH_DMA_MINALIGN); struct pdma_txdesc *tx_ring_noc; struct pdma_rxdesc *rx_ring_noc; int rx_dma_owner_idx0; int tx_cpu_owner_idx0; void __iomem *fe_base; void __iomem *gmac_base; void __iomem *ethsys_base; void __iomem *sgmii_base; struct mii_dev *mdio_bus; int (*mii_read)(struct mtk_eth_priv *priv, u8 phy, u8 reg); int (*mii_write)(struct mtk_eth_priv *priv, u8 phy, u8 reg, u16 val); int (*mmd_read)(struct mtk_eth_priv *priv, u8 addr, u8 devad, u16 reg); int (*mmd_write)(struct mtk_eth_priv *priv, u8 addr, u8 devad, u16 reg, u16 val); enum mtk_soc soc; int gmac_id; int force_mode; int speed; int duplex; struct phy_device *phydev; int phy_interface; int phy_addr; enum mtk_switch sw; int (*switch_init)(struct mtk_eth_priv *priv); u32 mt753x_smi_addr; u32 mt753x_phy_base; struct gpio_desc rst_gpio; int mcm; struct reset_ctl rst_fe; struct reset_ctl rst_mcm; }; static void mtk_pdma_write(struct mtk_eth_priv *priv, u32 reg, u32 val) { writel(val, priv->fe_base + PDMA_BASE + reg); } static void mtk_pdma_rmw(struct mtk_eth_priv *priv, u32 reg, u32 clr, u32 set) { clrsetbits_le32(priv->fe_base + PDMA_BASE + reg, clr, set); } static void mtk_gdma_write(struct mtk_eth_priv *priv, int no, u32 reg, u32 val) { u32 gdma_base; if (no == 1) gdma_base = GDMA2_BASE; else gdma_base = GDMA1_BASE; writel(val, priv->fe_base + gdma_base + reg); } static u32 mtk_gmac_read(struct mtk_eth_priv *priv, u32 reg) { return readl(priv->gmac_base + reg); } static void mtk_gmac_write(struct mtk_eth_priv *priv, u32 reg, u32 val) { writel(val, priv->gmac_base + reg); } static void mtk_gmac_rmw(struct mtk_eth_priv *priv, u32 reg, u32 clr, u32 set) { clrsetbits_le32(priv->gmac_base + reg, clr, set); } static void mtk_ethsys_rmw(struct mtk_eth_priv *priv, u32 reg, u32 clr, u32 set) { clrsetbits_le32(priv->ethsys_base + reg, clr, set); } /* Direct MDIO clause 22/45 access via SoC */ static int mtk_mii_rw(struct mtk_eth_priv *priv, u8 phy, u8 reg, u16 data, u32 cmd, u32 st) { int ret; u32 val; val = (st << MDIO_ST_S) | ((cmd << MDIO_CMD_S) & MDIO_CMD_M) | (((u32)phy << MDIO_PHY_ADDR_S) & MDIO_PHY_ADDR_M) | (((u32)reg << MDIO_REG_ADDR_S) & MDIO_REG_ADDR_M); if (cmd == MDIO_CMD_WRITE) val |= data & MDIO_RW_DATA_M; mtk_gmac_write(priv, GMAC_PIAC_REG, val | PHY_ACS_ST); ret = wait_for_bit_le32(priv->gmac_base + GMAC_PIAC_REG, PHY_ACS_ST, 0, 5000, 0); if (ret) { pr_warn("MDIO access timeout\n"); return ret; } if (cmd == MDIO_CMD_READ) { val = mtk_gmac_read(priv, GMAC_PIAC_REG); return val & MDIO_RW_DATA_M; } return 0; } /* Direct MDIO clause 22 read via SoC */ static int mtk_mii_read(struct mtk_eth_priv *priv, u8 phy, u8 reg) { return mtk_mii_rw(priv, phy, reg, 0, MDIO_CMD_READ, MDIO_ST_C22); } /* Direct MDIO clause 22 write via SoC */ static int mtk_mii_write(struct mtk_eth_priv *priv, u8 phy, u8 reg, u16 data) { return mtk_mii_rw(priv, phy, reg, data, MDIO_CMD_WRITE, MDIO_ST_C22); } /* Direct MDIO clause 45 read via SoC */ static int mtk_mmd_read(struct mtk_eth_priv *priv, u8 addr, u8 devad, u16 reg) { int ret; ret = mtk_mii_rw(priv, addr, devad, reg, MDIO_CMD_ADDR, MDIO_ST_C45); if (ret) return ret; return mtk_mii_rw(priv, addr, devad, 0, MDIO_CMD_READ_C45, MDIO_ST_C45); } /* Direct MDIO clause 45 write via SoC */ static int mtk_mmd_write(struct mtk_eth_priv *priv, u8 addr, u8 devad, u16 reg, u16 val) { int ret; ret = mtk_mii_rw(priv, addr, devad, reg, MDIO_CMD_ADDR, MDIO_ST_C45); if (ret) return ret; return mtk_mii_rw(priv, addr, devad, val, MDIO_CMD_WRITE, MDIO_ST_C45); } /* Indirect MDIO clause 45 read via MII registers */ static int mtk_mmd_ind_read(struct mtk_eth_priv *priv, u8 addr, u8 devad, u16 reg) { int ret; ret = priv->mii_write(priv, addr, MII_MMD_ACC_CTL_REG, (MMD_ADDR << MMD_CMD_S) | ((devad << MMD_DEVAD_S) & MMD_DEVAD_M)); if (ret) return ret; ret = priv->mii_write(priv, addr, MII_MMD_ADDR_DATA_REG, reg); if (ret) return ret; ret = priv->mii_write(priv, addr, MII_MMD_ACC_CTL_REG, (MMD_DATA << MMD_CMD_S) | ((devad << MMD_DEVAD_S) & MMD_DEVAD_M)); if (ret) return ret; return priv->mii_read(priv, addr, MII_MMD_ADDR_DATA_REG); } /* Indirect MDIO clause 45 write via MII registers */ static int mtk_mmd_ind_write(struct mtk_eth_priv *priv, u8 addr, u8 devad, u16 reg, u16 val) { int ret; ret = priv->mii_write(priv, addr, MII_MMD_ACC_CTL_REG, (MMD_ADDR << MMD_CMD_S) | ((devad << MMD_DEVAD_S) & MMD_DEVAD_M)); if (ret) return ret; ret = priv->mii_write(priv, addr, MII_MMD_ADDR_DATA_REG, reg); if (ret) return ret; ret = priv->mii_write(priv, addr, MII_MMD_ACC_CTL_REG, (MMD_DATA << MMD_CMD_S) | ((devad << MMD_DEVAD_S) & MMD_DEVAD_M)); if (ret) return ret; return priv->mii_write(priv, addr, MII_MMD_ADDR_DATA_REG, val); } /* * MT7530 Internal Register Address Bits * ------------------------------------------------------------------- * | 15 14 13 12 11 10 9 8 7 6 | 5 4 3 2 | 1 0 | * |----------------------------------------|---------------|--------| * | Page Address | Reg Address | Unused | * ------------------------------------------------------------------- */ static int mt753x_reg_read(struct mtk_eth_priv *priv, u32 reg, u32 *data) { int ret, low_word, high_word; /* Write page address */ ret = mtk_mii_write(priv, priv->mt753x_smi_addr, 0x1f, reg >> 6); if (ret) return ret; /* Read low word */ low_word = mtk_mii_read(priv, priv->mt753x_smi_addr, (reg >> 2) & 0xf); if (low_word < 0) return low_word; /* Read high word */ high_word = mtk_mii_read(priv, priv->mt753x_smi_addr, 0x10); if (high_word < 0) return high_word; if (data) *data = ((u32)high_word << 16) | (low_word & 0xffff); return 0; } static int mt753x_reg_write(struct mtk_eth_priv *priv, u32 reg, u32 data) { int ret; /* Write page address */ ret = mtk_mii_write(priv, priv->mt753x_smi_addr, 0x1f, reg >> 6); if (ret) return ret; /* Write low word */ ret = mtk_mii_write(priv, priv->mt753x_smi_addr, (reg >> 2) & 0xf, data & 0xffff); if (ret) return ret; /* Write high word */ return mtk_mii_write(priv, priv->mt753x_smi_addr, 0x10, data >> 16); } static void mt753x_reg_rmw(struct mtk_eth_priv *priv, u32 reg, u32 clr, u32 set) { u32 val; mt753x_reg_read(priv, reg, &val); val &= ~clr; val |= set; mt753x_reg_write(priv, reg, val); } /* Indirect MDIO clause 22/45 access */ static int mt7531_mii_rw(struct mtk_eth_priv *priv, int phy, int reg, u16 data, u32 cmd, u32 st) { ulong timeout; u32 val, timeout_ms; int ret = 0; val = (st << MDIO_ST_S) | ((cmd << MDIO_CMD_S) & MDIO_CMD_M) | ((phy << MDIO_PHY_ADDR_S) & MDIO_PHY_ADDR_M) | ((reg << MDIO_REG_ADDR_S) & MDIO_REG_ADDR_M); if (cmd == MDIO_CMD_WRITE || cmd == MDIO_CMD_ADDR) val |= data & MDIO_RW_DATA_M; mt753x_reg_write(priv, MT7531_PHY_IAC, val | PHY_ACS_ST); timeout_ms = 100; timeout = get_timer(0); while (1) { mt753x_reg_read(priv, MT7531_PHY_IAC, &val); if ((val & PHY_ACS_ST) == 0) break; if (get_timer(timeout) > timeout_ms) return -ETIMEDOUT; } if (cmd == MDIO_CMD_READ || cmd == MDIO_CMD_READ_C45) { mt753x_reg_read(priv, MT7531_PHY_IAC, &val); ret = val & MDIO_RW_DATA_M; } return ret; } static int mt7531_mii_ind_read(struct mtk_eth_priv *priv, u8 phy, u8 reg) { u8 phy_addr; if (phy >= MT753X_NUM_PHYS) return -EINVAL; phy_addr = MT753X_PHY_ADDR(priv->mt753x_phy_base, phy); return mt7531_mii_rw(priv, phy_addr, reg, 0, MDIO_CMD_READ, MDIO_ST_C22); } static int mt7531_mii_ind_write(struct mtk_eth_priv *priv, u8 phy, u8 reg, u16 val) { u8 phy_addr; if (phy >= MT753X_NUM_PHYS) return -EINVAL; phy_addr = MT753X_PHY_ADDR(priv->mt753x_phy_base, phy); return mt7531_mii_rw(priv, phy_addr, reg, val, MDIO_CMD_WRITE, MDIO_ST_C22); } int mt7531_mmd_ind_read(struct mtk_eth_priv *priv, u8 addr, u8 devad, u16 reg) { u8 phy_addr; int ret; if (addr >= MT753X_NUM_PHYS) return -EINVAL; phy_addr = MT753X_PHY_ADDR(priv->mt753x_phy_base, addr); ret = mt7531_mii_rw(priv, phy_addr, devad, reg, MDIO_CMD_ADDR, MDIO_ST_C45); if (ret) return ret; return mt7531_mii_rw(priv, phy_addr, devad, 0, MDIO_CMD_READ_C45, MDIO_ST_C45); } static int mt7531_mmd_ind_write(struct mtk_eth_priv *priv, u8 addr, u8 devad, u16 reg, u16 val) { u8 phy_addr; int ret; if (addr >= MT753X_NUM_PHYS) return 0; phy_addr = MT753X_PHY_ADDR(priv->mt753x_phy_base, addr); ret = mt7531_mii_rw(priv, phy_addr, devad, reg, MDIO_CMD_ADDR, MDIO_ST_C45); if (ret) return ret; return mt7531_mii_rw(priv, phy_addr, devad, val, MDIO_CMD_WRITE, MDIO_ST_C45); } static int mtk_mdio_read(struct mii_dev *bus, int addr, int devad, int reg) { struct mtk_eth_priv *priv = bus->priv; if (devad < 0) return priv->mii_read(priv, addr, reg); else return priv->mmd_read(priv, addr, devad, reg); } static int mtk_mdio_write(struct mii_dev *bus, int addr, int devad, int reg, u16 val) { struct mtk_eth_priv *priv = bus->priv; if (devad < 0) return priv->mii_write(priv, addr, reg, val); else return priv->mmd_write(priv, addr, devad, reg, val); } static int mtk_mdio_register(struct udevice *dev) { struct mtk_eth_priv *priv = dev_get_priv(dev); struct mii_dev *mdio_bus = mdio_alloc(); int ret; if (!mdio_bus) return -ENOMEM; /* Assign MDIO access APIs according to the switch/phy */ switch (priv->sw) { case SW_MT7530: priv->mii_read = mtk_mii_read; priv->mii_write = mtk_mii_write; priv->mmd_read = mtk_mmd_ind_read; priv->mmd_write = mtk_mmd_ind_write; break; case SW_MT7531: priv->mii_read = mt7531_mii_ind_read; priv->mii_write = mt7531_mii_ind_write; priv->mmd_read = mt7531_mmd_ind_read; priv->mmd_write = mt7531_mmd_ind_write; break; default: priv->mii_read = mtk_mii_read; priv->mii_write = mtk_mii_write; priv->mmd_read = mtk_mmd_read; priv->mmd_write = mtk_mmd_write; } mdio_bus->read = mtk_mdio_read; mdio_bus->write = mtk_mdio_write; snprintf(mdio_bus->name, sizeof(mdio_bus->name), dev->name); mdio_bus->priv = (void *)priv; ret = mdio_register(mdio_bus); if (ret) return ret; priv->mdio_bus = mdio_bus; return 0; } static int mt753x_core_reg_read(struct mtk_eth_priv *priv, u32 reg) { u8 phy_addr = MT753X_PHY_ADDR(priv->mt753x_phy_base, 0); return priv->mmd_read(priv, phy_addr, 0x1f, reg); } static void mt753x_core_reg_write(struct mtk_eth_priv *priv, u32 reg, u32 val) { u8 phy_addr = MT753X_PHY_ADDR(priv->mt753x_phy_base, 0); priv->mmd_write(priv, phy_addr, 0x1f, reg, val); } static int mt7530_pad_clk_setup(struct mtk_eth_priv *priv, int mode) { u32 ncpo1, ssc_delta; switch (mode) { case PHY_INTERFACE_MODE_RGMII: ncpo1 = 0x0c80; ssc_delta = 0x87; break; default: printf("error: xMII mode %d not supported\n", mode); return -EINVAL; } /* Disable MT7530 core clock */ mt753x_core_reg_write(priv, CORE_TRGMII_GSW_CLK_CG, 0); /* Disable MT7530 PLL */ mt753x_core_reg_write(priv, CORE_GSWPLL_GRP1, (2 << RG_GSWPLL_POSDIV_200M_S) | (32 << RG_GSWPLL_FBKDIV_200M_S)); /* For MT7530 core clock = 500Mhz */ mt753x_core_reg_write(priv, CORE_GSWPLL_GRP2, (1 << RG_GSWPLL_POSDIV_500M_S) | (25 << RG_GSWPLL_FBKDIV_500M_S)); /* Enable MT7530 PLL */ mt753x_core_reg_write(priv, CORE_GSWPLL_GRP1, (2 << RG_GSWPLL_POSDIV_200M_S) | (32 << RG_GSWPLL_FBKDIV_200M_S) | RG_GSWPLL_EN_PRE); udelay(20); mt753x_core_reg_write(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN); /* Setup the MT7530 TRGMII Tx Clock */ mt753x_core_reg_write(priv, CORE_PLL_GROUP5, ncpo1); mt753x_core_reg_write(priv, CORE_PLL_GROUP6, 0); mt753x_core_reg_write(priv, CORE_PLL_GROUP10, ssc_delta); mt753x_core_reg_write(priv, CORE_PLL_GROUP11, ssc_delta); mt753x_core_reg_write(priv, CORE_PLL_GROUP4, RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN | RG_SYSPLL_BIAS_LPF_EN); mt753x_core_reg_write(priv, CORE_PLL_GROUP2, RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN | (1 << RG_SYSPLL_POSDIV_S)); mt753x_core_reg_write(priv, CORE_PLL_GROUP7, RG_LCDDS_PCW_NCPO_CHG | (3 << RG_LCCDS_C_S) | RG_LCDDS_PWDB | RG_LCDDS_ISO_EN); /* Enable MT7530 core clock */ mt753x_core_reg_write(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN | REG_TRGMIICK_EN); return 0; } static int mt7530_setup(struct mtk_eth_priv *priv) { u16 phy_addr, phy_val; u32 val; int i; /* Select 250MHz clk for RGMII mode */ mtk_ethsys_rmw(priv, ETHSYS_CLKCFG0_REG, ETHSYS_TRGMII_CLK_SEL362_5, 0); /* Modify HWTRAP first to allow direct access to internal PHYs */ mt753x_reg_read(priv, HWTRAP_REG, &val); val |= CHG_TRAP; val &= ~C_MDIO_BPS; mt753x_reg_write(priv, MHWTRAP_REG, val); /* Calculate the phy base address */ val = ((val & SMI_ADDR_M) >> SMI_ADDR_S) << 3; priv->mt753x_phy_base = (val | 0x7) + 1; /* Turn off PHYs */ for (i = 0; i < MT753X_NUM_PHYS; i++) { phy_addr = MT753X_PHY_ADDR(priv->mt753x_phy_base, i); phy_val = priv->mii_read(priv, phy_addr, MII_BMCR); phy_val |= BMCR_PDOWN; priv->mii_write(priv, phy_addr, MII_BMCR, phy_val); } /* Force MAC link down before reset */ mt753x_reg_write(priv, PMCR_REG(5), FORCE_MODE); mt753x_reg_write(priv, PMCR_REG(6), FORCE_MODE); /* MT7530 reset */ mt753x_reg_write(priv, SYS_CTRL_REG, SW_SYS_RST | SW_REG_RST); udelay(100); val = (IPG_96BIT_WITH_SHORT_IPG << IPG_CFG_S) | MAC_MODE | FORCE_MODE | MAC_TX_EN | MAC_RX_EN | BKOFF_EN | BACKPR_EN | (SPEED_1000M << FORCE_SPD_S) | FORCE_DPX | FORCE_LINK; /* MT7530 Port6: Forced 1000M/FD, FC disabled */ mt753x_reg_write(priv, PMCR_REG(6), val); /* MT7530 Port5: Forced link down */ mt753x_reg_write(priv, PMCR_REG(5), FORCE_MODE); /* MT7530 Port6: Set to RGMII */ mt753x_reg_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_M, P6_INTF_MODE_RGMII); /* Hardware Trap: Enable Port6, Disable Port5 */ mt753x_reg_read(priv, HWTRAP_REG, &val); val |= CHG_TRAP | LOOPDET_DIS | P5_INTF_DIS | (P5_INTF_SEL_GMAC5 << P5_INTF_SEL_S) | (P5_INTF_MODE_RGMII << P5_INTF_MODE_S); val &= ~(C_MDIO_BPS | P6_INTF_DIS); mt753x_reg_write(priv, MHWTRAP_REG, val); /* Setup switch core pll */ mt7530_pad_clk_setup(priv, priv->phy_interface); /* Lower Tx Driving for TRGMII path */ for (i = 0 ; i < NUM_TRGMII_CTRL ; i++) mt753x_reg_write(priv, MT7530_TRGMII_TD_ODT(i), (8 << TD_DM_DRVP_S) | (8 << TD_DM_DRVN_S)); for (i = 0 ; i < NUM_TRGMII_CTRL; i++) mt753x_reg_rmw(priv, MT7530_TRGMII_RD(i), RD_TAP_M, 16); /* Turn on PHYs */ for (i = 0; i < MT753X_NUM_PHYS; i++) { phy_addr = MT753X_PHY_ADDR(priv->mt753x_phy_base, i); phy_val = priv->mii_read(priv, phy_addr, MII_BMCR); phy_val &= ~BMCR_PDOWN; priv->mii_write(priv, phy_addr, MII_BMCR, phy_val); } return 0; } static void mt7531_core_pll_setup(struct mtk_eth_priv *priv, int mcm) { /* Step 1 : Disable MT7531 COREPLL */ mt753x_reg_rmw(priv, MT7531_PLLGP_EN, EN_COREPLL, 0); /* Step 2: switch to XTAL output */ mt753x_reg_rmw(priv, MT7531_PLLGP_EN, SW_CLKSW, SW_CLKSW); mt753x_reg_rmw(priv, MT7531_PLLGP_CR0, RG_COREPLL_EN, 0); /* Step 3: disable PLLGP and enable program PLLGP */ mt753x_reg_rmw(priv, MT7531_PLLGP_EN, SW_PLLGP, SW_PLLGP); /* Step 4: program COREPLL output frequency to 500MHz */ mt753x_reg_rmw(priv, MT7531_PLLGP_CR0, RG_COREPLL_POSDIV_M, 2 << RG_COREPLL_POSDIV_S); udelay(25); /* Currently, support XTAL 25Mhz only */ mt753x_reg_rmw(priv, MT7531_PLLGP_CR0, RG_COREPLL_SDM_PCW_M, 0x140000 << RG_COREPLL_SDM_PCW_S); /* Set feedback divide ratio update signal to high */ mt753x_reg_rmw(priv, MT7531_PLLGP_CR0, RG_COREPLL_SDM_PCW_CHG, RG_COREPLL_SDM_PCW_CHG); /* Wait for at least 16 XTAL clocks */ udelay(10); /* Step 5: set feedback divide ratio update signal to low */ mt753x_reg_rmw(priv, MT7531_PLLGP_CR0, RG_COREPLL_SDM_PCW_CHG, 0); /* add enable 325M clock for SGMII */ mt753x_reg_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000); /* add enable 250SSC clock for RGMII */ mt753x_reg_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000); /*Step 6: Enable MT7531 PLL */ mt753x_reg_rmw(priv, MT7531_PLLGP_CR0, RG_COREPLL_EN, RG_COREPLL_EN); mt753x_reg_rmw(priv, MT7531_PLLGP_EN, EN_COREPLL, EN_COREPLL); udelay(25); } static int mt7531_port_sgmii_init(struct mtk_eth_priv *priv, u32 port) { if (port != 5 && port != 6) { printf("mt7531: port %d is not a SGMII port\n", port); return -EINVAL; } /* Set SGMII GEN2 speed(2.5G) */ mt753x_reg_rmw(priv, MT7531_PHYA_CTRL_SIGNAL3(port), SGMSYS_SPEED_2500, SGMSYS_SPEED_2500); /* Disable SGMII AN */ mt753x_reg_rmw(priv, MT7531_PCS_CONTROL_1(port), SGMII_AN_ENABLE, 0); /* SGMII force mode setting */ mt753x_reg_write(priv, MT7531_SGMII_MODE(port), SGMII_FORCE_MODE); /* Release PHYA power down state */ mt753x_reg_rmw(priv, MT7531_QPHY_PWR_STATE_CTRL(port), SGMII_PHYA_PWD, 0); return 0; } static int mt7531_port_rgmii_init(struct mtk_eth_priv *priv, u32 port) { u32 val; if (port != 5) { printf("error: RGMII mode is not available for port %d\n", port); return -EINVAL; } mt753x_reg_read(priv, MT7531_CLKGEN_CTRL, &val); val |= GP_CLK_EN; val &= ~GP_MODE_M; val |= GP_MODE_RGMII << GP_MODE_S; val |= TXCLK_NO_REVERSE; val |= RXCLK_NO_DELAY; val &= ~CLK_SKEW_IN_M; val |= CLK_SKEW_IN_NO_CHANGE << CLK_SKEW_IN_S; val &= ~CLK_SKEW_OUT_M; val |= CLK_SKEW_OUT_NO_CHANGE << CLK_SKEW_OUT_S; mt753x_reg_write(priv, MT7531_CLKGEN_CTRL, val); return 0; } static void mt7531_phy_setting(struct mtk_eth_priv *priv) { int i; u32 val; for (i = 0; i < MT753X_NUM_PHYS; i++) { /* Enable HW auto downshift */ priv->mii_write(priv, i, 0x1f, 0x1); val = priv->mii_read(priv, i, PHY_EXT_REG_14); val |= PHY_EN_DOWN_SHFIT; priv->mii_write(priv, i, PHY_EXT_REG_14, val); /* PHY link down power saving enable */ val = priv->mii_read(priv, i, PHY_EXT_REG_17); val |= PHY_LINKDOWN_POWER_SAVING_EN; priv->mii_write(priv, i, PHY_EXT_REG_17, val); val = priv->mmd_read(priv, i, 0x1e, PHY_DEV1E_REG_0C6); val &= ~PHY_POWER_SAVING_M; val |= PHY_POWER_SAVING_TX << PHY_POWER_SAVING_S; priv->mmd_write(priv, i, 0x1e, PHY_DEV1E_REG_0C6, val); } } static int mt7531_setup(struct mtk_eth_priv *priv) { u16 phy_addr, phy_val; u32 val; u32 pmcr; u32 port5_sgmii; int i; priv->mt753x_phy_base = (priv->mt753x_smi_addr + 1) & MT753X_SMI_ADDR_MASK; /* Turn off PHYs */ for (i = 0; i < MT753X_NUM_PHYS; i++) { phy_addr = MT753X_PHY_ADDR(priv->mt753x_phy_base, i); phy_val = priv->mii_read(priv, phy_addr, MII_BMCR); phy_val |= BMCR_PDOWN; priv->mii_write(priv, phy_addr, MII_BMCR, phy_val); } /* Force MAC link down before reset */ mt753x_reg_write(priv, PMCR_REG(5), FORCE_MODE_LNK); mt753x_reg_write(priv, PMCR_REG(6), FORCE_MODE_LNK); /* Switch soft reset */ mt753x_reg_write(priv, SYS_CTRL_REG, SW_SYS_RST | SW_REG_RST); udelay(100); /* Enable MDC input Schmitt Trigger */ mt753x_reg_rmw(priv, MT7531_SMT0_IOLB, SMT_IOLB_5_SMI_MDC_EN, SMT_IOLB_5_SMI_MDC_EN); mt7531_core_pll_setup(priv, priv->mcm); mt753x_reg_read(priv, MT7531_TOP_SIG_SR, &val); port5_sgmii = !!(val & PAD_DUAL_SGMII_EN); /* port5 support either RGMII or SGMII, port6 only support SGMII. */ switch (priv->phy_interface) { case PHY_INTERFACE_MODE_RGMII: if (!port5_sgmii) mt7531_port_rgmii_init(priv, 5); break; case PHY_INTERFACE_MODE_SGMII: mt7531_port_sgmii_init(priv, 6); if (port5_sgmii) mt7531_port_sgmii_init(priv, 5); break; default: break; } pmcr = MT7531_FORCE_MODE | (IPG_96BIT_WITH_SHORT_IPG << IPG_CFG_S) | MAC_MODE | MAC_TX_EN | MAC_RX_EN | BKOFF_EN | BACKPR_EN | FORCE_RX_FC | FORCE_TX_FC | (SPEED_1000M << FORCE_SPD_S) | FORCE_DPX | FORCE_LINK; mt753x_reg_write(priv, PMCR_REG(5), pmcr); mt753x_reg_write(priv, PMCR_REG(6), pmcr); /* Turn on PHYs */ for (i = 0; i < MT753X_NUM_PHYS; i++) { phy_addr = MT753X_PHY_ADDR(priv->mt753x_phy_base, i); phy_val = priv->mii_read(priv, phy_addr, MII_BMCR); phy_val &= ~BMCR_PDOWN; priv->mii_write(priv, phy_addr, MII_BMCR, phy_val); } mt7531_phy_setting(priv); /* Enable Internal PHYs */ val = mt753x_core_reg_read(priv, CORE_PLL_GROUP4); val |= MT7531_BYPASS_MODE; val &= ~MT7531_POWER_ON_OFF; mt753x_core_reg_write(priv, CORE_PLL_GROUP4, val); return 0; } int mt753x_switch_init(struct mtk_eth_priv *priv) { int ret; int i; /* Global reset switch */ if (priv->mcm) { reset_assert(&priv->rst_mcm); udelay(1000); reset_deassert(&priv->rst_mcm); mdelay(1000); } else if (dm_gpio_is_valid(&priv->rst_gpio)) { dm_gpio_set_value(&priv->rst_gpio, 0); udelay(1000); dm_gpio_set_value(&priv->rst_gpio, 1); mdelay(1000); } ret = priv->switch_init(priv); if (ret) return ret; /* Set port isolation */ for (i = 0; i < MT753X_NUM_PORTS; i++) { /* Set port matrix mode */ if (i != 6) mt753x_reg_write(priv, PCR_REG(i), (0x40 << PORT_MATRIX_S)); else mt753x_reg_write(priv, PCR_REG(i), (0x3f << PORT_MATRIX_S)); /* Set port mode to user port */ mt753x_reg_write(priv, PVC_REG(i), (0x8100 << STAG_VPID_S) | (VLAN_ATTR_USER << VLAN_ATTR_S)); } return 0; } static void mtk_phy_link_adjust(struct mtk_eth_priv *priv) { u16 lcl_adv = 0, rmt_adv = 0; u8 flowctrl; u32 mcr; mcr = (IPG_96BIT_WITH_SHORT_IPG << IPG_CFG_S) | (MAC_RX_PKT_LEN_1536 << MAC_RX_PKT_LEN_S) | MAC_MODE | FORCE_MODE | MAC_TX_EN | MAC_RX_EN | BKOFF_EN | BACKPR_EN; switch (priv->phydev->speed) { case SPEED_10: mcr |= (SPEED_10M << FORCE_SPD_S); break; case SPEED_100: mcr |= (SPEED_100M << FORCE_SPD_S); break; case SPEED_1000: mcr |= (SPEED_1000M << FORCE_SPD_S); break; }; if (priv->phydev->link) mcr |= FORCE_LINK; if (priv->phydev->duplex) { mcr |= FORCE_DPX; if (priv->phydev->pause) rmt_adv = LPA_PAUSE_CAP; if (priv->phydev->asym_pause) rmt_adv |= LPA_PAUSE_ASYM; if (priv->phydev->advertising & ADVERTISED_Pause) lcl_adv |= ADVERTISE_PAUSE_CAP; if (priv->phydev->advertising & ADVERTISED_Asym_Pause) lcl_adv |= ADVERTISE_PAUSE_ASYM; flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv); if (flowctrl & FLOW_CTRL_TX) mcr |= FORCE_TX_FC; if (flowctrl & FLOW_CTRL_RX) mcr |= FORCE_RX_FC; debug("rx pause %s, tx pause %s\n", flowctrl & FLOW_CTRL_RX ? "enabled" : "disabled", flowctrl & FLOW_CTRL_TX ? "enabled" : "disabled"); } mtk_gmac_write(priv, GMAC_PORT_MCR(priv->gmac_id), mcr); } static int mtk_phy_start(struct mtk_eth_priv *priv) { struct phy_device *phydev = priv->phydev; int ret; ret = phy_startup(phydev); if (ret) { debug("Could not initialize PHY %s\n", phydev->dev->name); return ret; } if (!phydev->link) { debug("%s: link down.\n", phydev->dev->name); return 0; } mtk_phy_link_adjust(priv); debug("Speed: %d, %s duplex%s\n", phydev->speed, (phydev->duplex) ? "full" : "half", (phydev->port == PORT_FIBRE) ? ", fiber mode" : ""); return 0; } static int mtk_phy_probe(struct udevice *dev) { struct mtk_eth_priv *priv = dev_get_priv(dev); struct phy_device *phydev; phydev = phy_connect(priv->mdio_bus, priv->phy_addr, dev, priv->phy_interface); if (!phydev) return -ENODEV; phydev->supported &= PHY_GBIT_FEATURES; phydev->advertising = phydev->supported; priv->phydev = phydev; phy_config(phydev); return 0; } static void mtk_sgmii_init(struct mtk_eth_priv *priv) { /* Set SGMII GEN2 speed(2.5G) */ clrsetbits_le32(priv->sgmii_base + ((priv->soc == SOC_MT7622) ? SGMSYS_GEN2_SPEED : SGMSYS_GEN2_SPEED_V2), SGMSYS_SPEED_2500, SGMSYS_SPEED_2500); /* Disable SGMII AN */ clrsetbits_le32(priv->sgmii_base + SGMSYS_PCS_CONTROL_1, SGMII_AN_ENABLE, 0); /* SGMII force mode setting */ writel(SGMII_FORCE_MODE, priv->sgmii_base + SGMSYS_SGMII_MODE); /* Release PHYA power down state */ clrsetbits_le32(priv->sgmii_base + SGMSYS_QPHY_PWR_STATE_CTRL, SGMII_PHYA_PWD, 0); } static void mtk_mac_init(struct mtk_eth_priv *priv) { int i, ge_mode = 0; u32 mcr; switch (priv->phy_interface) { case PHY_INTERFACE_MODE_RGMII_RXID: case PHY_INTERFACE_MODE_RGMII: ge_mode = GE_MODE_RGMII; break; case PHY_INTERFACE_MODE_SGMII: ge_mode = GE_MODE_RGMII; mtk_ethsys_rmw(priv, ETHSYS_SYSCFG0_REG, SYSCFG0_SGMII_SEL_M, SYSCFG0_SGMII_SEL(priv->gmac_id)); mtk_sgmii_init(priv); break; case PHY_INTERFACE_MODE_MII: case PHY_INTERFACE_MODE_GMII: ge_mode = GE_MODE_MII; break; case PHY_INTERFACE_MODE_RMII: ge_mode = GE_MODE_RMII; break; default: break; } /* set the gmac to the right mode */ mtk_ethsys_rmw(priv, ETHSYS_SYSCFG0_REG, SYSCFG0_GE_MODE_M << SYSCFG0_GE_MODE_S(priv->gmac_id), ge_mode << SYSCFG0_GE_MODE_S(priv->gmac_id)); if (priv->force_mode) { mcr = (IPG_96BIT_WITH_SHORT_IPG << IPG_CFG_S) | (MAC_RX_PKT_LEN_1536 << MAC_RX_PKT_LEN_S) | MAC_MODE | FORCE_MODE | MAC_TX_EN | MAC_RX_EN | BKOFF_EN | BACKPR_EN | FORCE_LINK; switch (priv->speed) { case SPEED_10: mcr |= SPEED_10M << FORCE_SPD_S; break; case SPEED_100: mcr |= SPEED_100M << FORCE_SPD_S; break; case SPEED_1000: mcr |= SPEED_1000M << FORCE_SPD_S; break; } if (priv->duplex) mcr |= FORCE_DPX; mtk_gmac_write(priv, GMAC_PORT_MCR(priv->gmac_id), mcr); } if (priv->soc == SOC_MT7623) { /* Lower Tx Driving for TRGMII path */ for (i = 0 ; i < NUM_TRGMII_CTRL; i++) mtk_gmac_write(priv, GMAC_TRGMII_TD_ODT(i), (8 << TD_DM_DRVP_S) | (8 << TD_DM_DRVN_S)); mtk_gmac_rmw(priv, GMAC_TRGMII_RCK_CTRL, 0, RX_RST | RXC_DQSISEL); mtk_gmac_rmw(priv, GMAC_TRGMII_RCK_CTRL, RX_RST, 0); } } static void mtk_eth_fifo_init(struct mtk_eth_priv *priv) { char *pkt_base = priv->pkt_pool; int i; mtk_pdma_rmw(priv, PDMA_GLO_CFG_REG, 0xffff0000, 0); udelay(500); memset(priv->tx_ring_noc, 0, NUM_TX_DESC * sizeof(struct pdma_txdesc)); memset(priv->rx_ring_noc, 0, NUM_RX_DESC * sizeof(struct pdma_rxdesc)); memset(priv->pkt_pool, 0, TOTAL_PKT_BUF_SIZE); flush_dcache_range((ulong)pkt_base, (ulong)(pkt_base + TOTAL_PKT_BUF_SIZE)); priv->rx_dma_owner_idx0 = 0; priv->tx_cpu_owner_idx0 = 0; for (i = 0; i < NUM_TX_DESC; i++) { priv->tx_ring_noc[i].txd_info2.LS0 = 1; priv->tx_ring_noc[i].txd_info2.DDONE = 1; priv->tx_ring_noc[i].txd_info4.FPORT = priv->gmac_id + 1; priv->tx_ring_noc[i].txd_info1.SDP0 = virt_to_phys(pkt_base); pkt_base += PKTSIZE_ALIGN; } for (i = 0; i < NUM_RX_DESC; i++) { priv->rx_ring_noc[i].rxd_info2.PLEN0 = PKTSIZE_ALIGN; priv->rx_ring_noc[i].rxd_info1.PDP0 = virt_to_phys(pkt_base); pkt_base += PKTSIZE_ALIGN; } mtk_pdma_write(priv, TX_BASE_PTR_REG(0), virt_to_phys(priv->tx_ring_noc)); mtk_pdma_write(priv, TX_MAX_CNT_REG(0), NUM_TX_DESC); mtk_pdma_write(priv, TX_CTX_IDX_REG(0), priv->tx_cpu_owner_idx0); mtk_pdma_write(priv, RX_BASE_PTR_REG(0), virt_to_phys(priv->rx_ring_noc)); mtk_pdma_write(priv, RX_MAX_CNT_REG(0), NUM_RX_DESC); mtk_pdma_write(priv, RX_CRX_IDX_REG(0), NUM_RX_DESC - 1); mtk_pdma_write(priv, PDMA_RST_IDX_REG, RST_DTX_IDX0 | RST_DRX_IDX0); } static int mtk_eth_start(struct udevice *dev) { struct mtk_eth_priv *priv = dev_get_priv(dev); int ret; /* Reset FE */ reset_assert(&priv->rst_fe); udelay(1000); reset_deassert(&priv->rst_fe); mdelay(10); /* Packets forward to PDMA */ mtk_gdma_write(priv, priv->gmac_id, GDMA_IG_CTRL_REG, GDMA_FWD_TO_CPU); if (priv->gmac_id == 0) mtk_gdma_write(priv, 1, GDMA_IG_CTRL_REG, GDMA_FWD_DISCARD); else mtk_gdma_write(priv, 0, GDMA_IG_CTRL_REG, GDMA_FWD_DISCARD); udelay(500); mtk_eth_fifo_init(priv); /* Start PHY */ if (priv->sw == SW_NONE) { ret = mtk_phy_start(priv); if (ret) return ret; } mtk_pdma_rmw(priv, PDMA_GLO_CFG_REG, 0, TX_WB_DDONE | RX_DMA_EN | TX_DMA_EN); udelay(500); return 0; } static void mtk_eth_stop(struct udevice *dev) { struct mtk_eth_priv *priv = dev_get_priv(dev); mtk_pdma_rmw(priv, PDMA_GLO_CFG_REG, TX_WB_DDONE | RX_DMA_EN | TX_DMA_EN, 0); udelay(500); wait_for_bit_le32(priv->fe_base + PDMA_BASE + PDMA_GLO_CFG_REG, RX_DMA_BUSY | TX_DMA_BUSY, 0, 5000, 0); } static int mtk_eth_write_hwaddr(struct udevice *dev) { struct eth_pdata *pdata = dev_get_platdata(dev); struct mtk_eth_priv *priv = dev_get_priv(dev); unsigned char *mac = pdata->enetaddr; u32 macaddr_lsb, macaddr_msb; macaddr_msb = ((u32)mac[0] << 8) | (u32)mac[1]; macaddr_lsb = ((u32)mac[2] << 24) | ((u32)mac[3] << 16) | ((u32)mac[4] << 8) | (u32)mac[5]; mtk_gdma_write(priv, priv->gmac_id, GDMA_MAC_MSB_REG, macaddr_msb); mtk_gdma_write(priv, priv->gmac_id, GDMA_MAC_LSB_REG, macaddr_lsb); return 0; } static int mtk_eth_send(struct udevice *dev, void *packet, int length) { struct mtk_eth_priv *priv = dev_get_priv(dev); u32 idx = priv->tx_cpu_owner_idx0; void *pkt_base; if (!priv->tx_ring_noc[idx].txd_info2.DDONE) { debug("mtk-eth: TX DMA descriptor ring is full\n"); return -EPERM; } pkt_base = (void *)phys_to_virt(priv->tx_ring_noc[idx].txd_info1.SDP0); memcpy(pkt_base, packet, length); flush_dcache_range((ulong)pkt_base, (ulong)pkt_base + roundup(length, ARCH_DMA_MINALIGN)); priv->tx_ring_noc[idx].txd_info2.SDL0 = length; priv->tx_ring_noc[idx].txd_info2.DDONE = 0; priv->tx_cpu_owner_idx0 = (priv->tx_cpu_owner_idx0 + 1) % NUM_TX_DESC; mtk_pdma_write(priv, TX_CTX_IDX_REG(0), priv->tx_cpu_owner_idx0); return 0; } static int mtk_eth_recv(struct udevice *dev, int flags, uchar **packetp) { struct mtk_eth_priv *priv = dev_get_priv(dev); u32 idx = priv->rx_dma_owner_idx0; uchar *pkt_base; u32 length; if (!priv->rx_ring_noc[idx].rxd_info2.DDONE) { debug("mtk-eth: RX DMA descriptor ring is empty\n"); return -EAGAIN; } length = priv->rx_ring_noc[idx].rxd_info2.PLEN0; pkt_base = (void *)phys_to_virt(priv->rx_ring_noc[idx].rxd_info1.PDP0); invalidate_dcache_range((ulong)pkt_base, (ulong)pkt_base + roundup(length, ARCH_DMA_MINALIGN)); if (packetp) *packetp = pkt_base; return length; } static int mtk_eth_free_pkt(struct udevice *dev, uchar *packet, int length) { struct mtk_eth_priv *priv = dev_get_priv(dev); u32 idx = priv->rx_dma_owner_idx0; priv->rx_ring_noc[idx].rxd_info2.DDONE = 0; priv->rx_ring_noc[idx].rxd_info2.LS0 = 0; priv->rx_ring_noc[idx].rxd_info2.PLEN0 = PKTSIZE_ALIGN; mtk_pdma_write(priv, RX_CRX_IDX_REG(0), idx); priv->rx_dma_owner_idx0 = (priv->rx_dma_owner_idx0 + 1) % NUM_RX_DESC; return 0; } static int mtk_eth_probe(struct udevice *dev) { struct eth_pdata *pdata = dev_get_platdata(dev); struct mtk_eth_priv *priv = dev_get_priv(dev); ulong iobase = pdata->iobase; int ret; /* Frame Engine Register Base */ priv->fe_base = (void *)iobase; /* GMAC Register Base */ priv->gmac_base = (void *)(iobase + GMAC_BASE); /* MDIO register */ ret = mtk_mdio_register(dev); if (ret) return ret; /* Prepare for tx/rx rings */ priv->tx_ring_noc = (struct pdma_txdesc *) noncached_alloc(sizeof(struct pdma_txdesc) * NUM_TX_DESC, ARCH_DMA_MINALIGN); priv->rx_ring_noc = (struct pdma_rxdesc *) noncached_alloc(sizeof(struct pdma_rxdesc) * NUM_RX_DESC, ARCH_DMA_MINALIGN); /* Set MAC mode */ mtk_mac_init(priv); /* Probe phy if switch is not specified */ if (priv->sw == SW_NONE) return mtk_phy_probe(dev); /* Initialize switch */ return mt753x_switch_init(priv); } static int mtk_eth_remove(struct udevice *dev) { struct mtk_eth_priv *priv = dev_get_priv(dev); /* MDIO unregister */ mdio_unregister(priv->mdio_bus); mdio_free(priv->mdio_bus); /* Stop possibly started DMA */ mtk_eth_stop(dev); return 0; } static int mtk_eth_ofdata_to_platdata(struct udevice *dev) { struct eth_pdata *pdata = dev_get_platdata(dev); struct mtk_eth_priv *priv = dev_get_priv(dev); struct ofnode_phandle_args args; struct regmap *regmap; const char *str; ofnode subnode; int ret; priv->soc = dev_get_driver_data(dev); pdata->iobase = dev_read_addr(dev); /* get corresponding ethsys phandle */ ret = dev_read_phandle_with_args(dev, "mediatek,ethsys", NULL, 0, 0, &args); if (ret) return ret; regmap = syscon_node_to_regmap(args.node); if (IS_ERR(regmap)) return PTR_ERR(regmap); priv->ethsys_base = regmap_get_range(regmap, 0); if (!priv->ethsys_base) { dev_err(dev, "Unable to find ethsys\n"); return -ENODEV; } /* Reset controllers */ ret = reset_get_by_name(dev, "fe", &priv->rst_fe); if (ret) { printf("error: Unable to get reset ctrl for frame engine\n"); return ret; } priv->gmac_id = dev_read_u32_default(dev, "mediatek,gmac-id", 0); /* Interface mode is required */ str = dev_read_string(dev, "phy-mode"); if (str) { pdata->phy_interface = phy_get_interface_by_name(str); priv->phy_interface = pdata->phy_interface; } else { printf("error: phy-mode is not set\n"); return -EINVAL; } /* Force mode or autoneg */ subnode = ofnode_find_subnode(dev_ofnode(dev), "fixed-link"); if (ofnode_valid(subnode)) { priv->force_mode = 1; priv->speed = ofnode_read_u32_default(subnode, "speed", 0); priv->duplex = ofnode_read_bool(subnode, "full-duplex"); if (priv->speed != SPEED_10 && priv->speed != SPEED_100 && priv->speed != SPEED_1000) { printf("error: no valid speed set in fixed-link\n"); return -EINVAL; } } if (priv->phy_interface == PHY_INTERFACE_MODE_SGMII) { /* get corresponding sgmii phandle */ ret = dev_read_phandle_with_args(dev, "mediatek,sgmiisys", NULL, 0, 0, &args); if (ret) return ret; regmap = syscon_node_to_regmap(args.node); if (IS_ERR(regmap)) return PTR_ERR(regmap); priv->sgmii_base = regmap_get_range(regmap, 0); if (!priv->sgmii_base) { dev_err(dev, "Unable to find sgmii\n"); return -ENODEV; } } /* check for switch first, otherwise phy will be used */ priv->sw = SW_NONE; priv->switch_init = NULL; str = dev_read_string(dev, "mediatek,switch"); if (str) { if (!strcmp(str, "mt7530")) { priv->sw = SW_MT7530; priv->switch_init = mt7530_setup; priv->mt753x_smi_addr = MT753X_DFL_SMI_ADDR; } else if (!strcmp(str, "mt7531")) { priv->sw = SW_MT7531; priv->switch_init = mt7531_setup; priv->mt753x_smi_addr = MT753X_DFL_SMI_ADDR; } else { printf("error: unsupported switch\n"); return -EINVAL; } priv->mcm = dev_read_bool(dev, "mediatek,mcm"); if (priv->mcm) { ret = reset_get_by_name(dev, "mcm", &priv->rst_mcm); if (ret) { printf("error: no reset ctrl for mcm\n"); return ret; } } else { gpio_request_by_name(dev, "reset-gpios", 0, &priv->rst_gpio, GPIOD_IS_OUT); } } else { ret = dev_read_phandle_with_args(dev, "phy-handle", NULL, 0, 0, &args); if (ret) { printf("error: phy-handle is not specified\n"); return ret; } priv->phy_addr = ofnode_read_s32_default(args.node, "reg", -1); if (priv->phy_addr < 0) { printf("error: phy address is not specified\n"); return ret; } } return 0; } static const struct udevice_id mtk_eth_ids[] = { { .compatible = "mediatek,mt7629-eth", .data = SOC_MT7629 }, { .compatible = "mediatek,mt7623-eth", .data = SOC_MT7623 }, { .compatible = "mediatek,mt7622-eth", .data = SOC_MT7622 }, {} }; static const struct eth_ops mtk_eth_ops = { .start = mtk_eth_start, .stop = mtk_eth_stop, .send = mtk_eth_send, .recv = mtk_eth_recv, .free_pkt = mtk_eth_free_pkt, .write_hwaddr = mtk_eth_write_hwaddr, }; U_BOOT_DRIVER(mtk_eth) = { .name = "mtk-eth", .id = UCLASS_ETH, .of_match = mtk_eth_ids, .ofdata_to_platdata = mtk_eth_ofdata_to_platdata, .platdata_auto_alloc_size = sizeof(struct eth_pdata), .probe = mtk_eth_probe, .remove = mtk_eth_remove, .ops = &mtk_eth_ops, .priv_auto_alloc_size = sizeof(struct mtk_eth_priv), .flags = DM_FLAG_ALLOC_PRIV_DMA, };