// SPDX-License-Identifier: GPL-2.0 /* * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. * * U-Boot version: * Copyright (C) 2014-2015 Stefan Roese * * Based on the Linux version which is: * Copyright (C) 2012 Marvell * * Rami Rosen * Thomas Petazzoni */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; #if !defined(CONFIG_PHYLIB) # error Marvell mvneta requires PHYLIB #endif #define CONFIG_NR_CPUS 1 #define ETH_HLEN 14 /* Total octets in header */ /* 2(HW hdr) 14(MAC hdr) 4(CRC) 32(extra for cache prefetch) */ #define WRAP (2 + ETH_HLEN + 4 + 32) #define MTU 1500 #define RX_BUFFER_SIZE (ALIGN(MTU + WRAP, ARCH_DMA_MINALIGN)) #define MVNETA_SMI_TIMEOUT 10000 /* Registers */ #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) #define MVNETA_RXQ_HW_BUF_ALLOC BIT(1) #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 #define MVNETA_PORT_RX_RESET 0x1cc0 #define MVNETA_PORT_RX_DMA_RESET BIT(0) #define MVNETA_PHY_ADDR 0x2000 #define MVNETA_PHY_ADDR_MASK 0x1f #define MVNETA_SMI 0x2004 #define MVNETA_PHY_REG_MASK 0x1f /* SMI register fields */ #define MVNETA_SMI_DATA_OFFS 0 /* Data */ #define MVNETA_SMI_DATA_MASK (0xffff << MVNETA_SMI_DATA_OFFS) #define MVNETA_SMI_DEV_ADDR_OFFS 16 /* PHY device address */ #define MVNETA_SMI_REG_ADDR_OFFS 21 /* PHY device reg addr*/ #define MVNETA_SMI_OPCODE_OFFS 26 /* Write/Read opcode */ #define MVNETA_SMI_OPCODE_READ (1 << MVNETA_SMI_OPCODE_OFFS) #define MVNETA_SMI_READ_VALID (1 << 27) /* Read Valid */ #define MVNETA_SMI_BUSY (1 << 28) /* Busy */ #define MVNETA_MBUS_RETRY 0x2010 #define MVNETA_UNIT_INTR_CAUSE 0x2080 #define MVNETA_UNIT_CONTROL 0x20B0 #define MVNETA_PHY_POLLING_ENABLE BIT(1) #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) #define MVNETA_WIN_SIZE_MASK (0xffff0000) #define MVNETA_BASE_ADDR_ENABLE 0x2290 #define MVNETA_BASE_ADDR_ENABLE_BIT 0x1 #define MVNETA_PORT_ACCESS_PROTECT 0x2294 #define MVNETA_PORT_ACCESS_PROTECT_WIN0_RW 0x3 #define MVNETA_PORT_CONFIG 0x2400 #define MVNETA_UNI_PROMISC_MODE BIT(0) #define MVNETA_DEF_RXQ(q) ((q) << 1) #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) #define MVNETA_TX_UNSET_ERR_SUM BIT(12) #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ MVNETA_DEF_RXQ_ARP(q) | \ MVNETA_DEF_RXQ_TCP(q) | \ MVNETA_DEF_RXQ_UDP(q) | \ MVNETA_DEF_RXQ_BPDU(q) | \ MVNETA_TX_UNSET_ERR_SUM | \ MVNETA_RX_CSUM_WITH_PSEUDO_HDR) #define MVNETA_PORT_CONFIG_EXTEND 0x2404 #define MVNETA_MAC_ADDR_LOW 0x2414 #define MVNETA_MAC_ADDR_HIGH 0x2418 #define MVNETA_SDMA_CONFIG 0x241c #define MVNETA_SDMA_BRST_SIZE_16 4 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) #define MVNETA_RX_NO_DATA_SWAP BIT(4) #define MVNETA_TX_NO_DATA_SWAP BIT(5) #define MVNETA_DESC_SWAP BIT(6) #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) #define MVNETA_PORT_STATUS 0x2444 #define MVNETA_TX_IN_PRGRS BIT(1) #define MVNETA_TX_FIFO_EMPTY BIT(8) #define MVNETA_RX_MIN_FRAME_SIZE 0x247c #define MVNETA_SERDES_CFG 0x24A0 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 #define MVNETA_QSGMII_SERDES_PROTO 0x0667 #define MVNETA_TYPE_PRIO 0x24bc #define MVNETA_FORCE_UNI BIT(21) #define MVNETA_TXQ_CMD_1 0x24e4 #define MVNETA_TXQ_CMD 0x2448 #define MVNETA_TXQ_DISABLE_SHIFT 8 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff #define MVNETA_ACC_MODE 0x2500 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) /* Exception Interrupt Port/Queue Cause register */ #define MVNETA_INTR_NEW_CAUSE 0x25a0 #define MVNETA_INTR_NEW_MASK 0x25a4 /* bits 0..7 = TXQ SENT, one bit per queue. * bits 8..15 = RXQ OCCUP, one bit per queue. * bits 16..23 = RXQ FREE, one bit per queue. * bit 29 = OLD_REG_SUM, see old reg ? * bit 30 = TX_ERR_SUM, one bit for 4 ports * bit 31 = MISC_SUM, one bit for 4 ports */ #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) #define MVNETA_INTR_OLD_CAUSE 0x25a8 #define MVNETA_INTR_OLD_MASK 0x25ac /* Data Path Port/Queue Cause Register */ #define MVNETA_INTR_MISC_CAUSE 0x25b0 #define MVNETA_INTR_MISC_MASK 0x25b4 #define MVNETA_INTR_ENABLE 0x25b8 #define MVNETA_RXQ_CMD 0x2680 #define MVNETA_RXQ_DISABLE_SHIFT 8 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) #define MVNETA_GMAC_CTRL_0 0x2c00 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc #define MVNETA_GMAC0_PORT_ENABLE BIT(0) #define MVNETA_GMAC_CTRL_2 0x2c08 #define MVNETA_GMAC2_PCS_ENABLE BIT(3) #define MVNETA_GMAC2_PORT_RGMII BIT(4) #define MVNETA_GMAC2_PORT_RESET BIT(6) #define MVNETA_GMAC_STATUS 0x2c10 #define MVNETA_GMAC_LINK_UP BIT(0) #define MVNETA_GMAC_SPEED_1000 BIT(1) #define MVNETA_GMAC_SPEED_100 BIT(2) #define MVNETA_GMAC_FULL_DUPLEX BIT(3) #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) #define MVNETA_GMAC_FORCE_LINK_UP (BIT(0) | BIT(1)) #define MVNETA_GMAC_IB_BYPASS_AN_EN BIT(3) #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) #define MVNETA_GMAC_AN_SPEED_EN BIT(7) #define MVNETA_GMAC_SET_FC_EN BIT(8) #define MVNETA_GMAC_ADVERT_FC_EN BIT(9) #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) #define MVNETA_GMAC_SAMPLE_TX_CFG_EN BIT(15) #define MVNETA_MIB_COUNTERS_BASE 0x3080 #define MVNETA_MIB_LATE_COLLISION 0x7c #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) #define MVNETA_TXQ_DEC_SENT_SHIFT 16 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) #define MVNETA_TXQ_SENT_DESC_SHIFT 16 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 #define MVNETA_PORT_TX_RESET 0x3cf0 #define MVNETA_PORT_TX_DMA_RESET BIT(0) #define MVNETA_TX_MTU 0x3e0c #define MVNETA_TX_TOKEN_SIZE 0x3e14 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff /* Descriptor ring Macros */ #define MVNETA_QUEUE_NEXT_DESC(q, index) \ (((index) < (q)->last_desc) ? ((index) + 1) : 0) /* Various constants */ /* Coalescing */ #define MVNETA_TXDONE_COAL_PKTS 16 #define MVNETA_RX_COAL_PKTS 32 #define MVNETA_RX_COAL_USEC 100 /* The two bytes Marvell header. Either contains a special value used * by Marvell switches when a specific hardware mode is enabled (not * supported by this driver) or is filled automatically by zeroes on * the RX side. Those two bytes being at the front of the Ethernet * header, they allow to have the IP header aligned on a 4 bytes * boundary automatically: the hardware skips those two bytes on its * own. */ #define MVNETA_MH_SIZE 2 #define MVNETA_VLAN_TAG_LEN 4 #define MVNETA_CPU_D_CACHE_LINE_SIZE 32 #define MVNETA_TX_CSUM_MAX_SIZE 9800 #define MVNETA_ACC_MODE_EXT 1 /* Timeout constants */ #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 #define MVNETA_TX_MTU_MAX 0x3ffff /* Max number of Rx descriptors */ #define MVNETA_MAX_RXD 16 /* Max number of Tx descriptors */ #define MVNETA_MAX_TXD 16 /* descriptor aligned size */ #define MVNETA_DESC_ALIGNED_SIZE 32 struct mvneta_port { void __iomem *base; struct mvneta_rx_queue *rxqs; struct mvneta_tx_queue *txqs; u8 mcast_count[256]; u16 tx_ring_size; u16 rx_ring_size; phy_interface_t phy_interface; unsigned int link; unsigned int duplex; unsigned int speed; int init; int phyaddr; struct phy_device *phydev; #if CONFIG_IS_ENABLED(DM_GPIO) struct gpio_desc phy_reset_gpio; #endif struct mii_dev *bus; }; /* The mvneta_tx_desc and mvneta_rx_desc structures describe the * layout of the transmit and reception DMA descriptors, and their * layout is therefore defined by the hardware design */ #define MVNETA_TX_L3_OFF_SHIFT 0 #define MVNETA_TX_IP_HLEN_SHIFT 8 #define MVNETA_TX_L4_UDP BIT(16) #define MVNETA_TX_L3_IP6 BIT(17) #define MVNETA_TXD_IP_CSUM BIT(18) #define MVNETA_TXD_Z_PAD BIT(19) #define MVNETA_TXD_L_DESC BIT(20) #define MVNETA_TXD_F_DESC BIT(21) #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ MVNETA_TXD_L_DESC | \ MVNETA_TXD_F_DESC) #define MVNETA_TX_L4_CSUM_FULL BIT(30) #define MVNETA_TX_L4_CSUM_NOT BIT(31) #define MVNETA_RXD_ERR_CRC 0x0 #define MVNETA_RXD_ERR_SUMMARY BIT(16) #define MVNETA_RXD_ERR_OVERRUN BIT(17) #define MVNETA_RXD_ERR_LEN BIT(18) #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) #define MVNETA_RXD_L3_IP4 BIT(25) #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27)) #define MVNETA_RXD_L4_CSUM_OK BIT(30) struct mvneta_tx_desc { u32 command; /* Options used by HW for packet transmitting.*/ u16 reserverd1; /* csum_l4 (for future use) */ u16 data_size; /* Data size of transmitted packet in bytes */ u32 buf_phys_addr; /* Physical addr of transmitted buffer */ u32 reserved2; /* hw_cmd - (for future use, PMT) */ u32 reserved3[4]; /* Reserved - (for future use) */ }; struct mvneta_rx_desc { u32 status; /* Info about received packet */ u16 reserved1; /* pnc_info - (for future use, PnC) */ u16 data_size; /* Size of received packet in bytes */ u32 buf_phys_addr; /* Physical address of the buffer */ u32 reserved2; /* pnc_flow_id (for future use, PnC) */ u32 buf_cookie; /* cookie for access to RX buffer in rx path */ u16 reserved3; /* prefetch_cmd, for future use */ u16 reserved4; /* csum_l4 - (for future use, PnC) */ u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ }; struct mvneta_tx_queue { /* Number of this TX queue, in the range 0-7 */ u8 id; /* Number of TX DMA descriptors in the descriptor ring */ int size; /* Index of last TX DMA descriptor that was inserted */ int txq_put_index; /* Index of the TX DMA descriptor to be cleaned up */ int txq_get_index; /* Virtual address of the TX DMA descriptors array */ struct mvneta_tx_desc *descs; /* DMA address of the TX DMA descriptors array */ dma_addr_t descs_phys; /* Index of the last TX DMA descriptor */ int last_desc; /* Index of the next TX DMA descriptor to process */ int next_desc_to_proc; }; struct mvneta_rx_queue { /* rx queue number, in the range 0-7 */ u8 id; /* num of rx descriptors in the rx descriptor ring */ int size; /* Virtual address of the RX DMA descriptors array */ struct mvneta_rx_desc *descs; /* DMA address of the RX DMA descriptors array */ dma_addr_t descs_phys; /* Index of the last RX DMA descriptor */ int last_desc; /* Index of the next RX DMA descriptor to process */ int next_desc_to_proc; }; /* U-Boot doesn't use the queues, so set the number to 1 */ static int rxq_number = 1; static int txq_number = 1; static int rxq_def; struct buffer_location { struct mvneta_tx_desc *tx_descs; struct mvneta_rx_desc *rx_descs; u32 rx_buffers; }; /* * All 4 interfaces use the same global buffer, since only one interface * can be enabled at once */ static struct buffer_location buffer_loc; /* * Page table entries are set to 1MB, or multiples of 1MB * (not < 1MB). driver uses less bd's so use 1MB bdspace. */ #define BD_SPACE (1 << 20) /* * Dummy implementation that can be overwritten by a board * specific function */ __weak int board_network_enable(struct mii_dev *bus) { return 0; } /* Utility/helper methods */ /* Write helper method */ static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) { writel(data, pp->base + offset); } /* Read helper method */ static u32 mvreg_read(struct mvneta_port *pp, u32 offset) { return readl(pp->base + offset); } /* Clear all MIB counters */ static void mvneta_mib_counters_clear(struct mvneta_port *pp) { int i; /* Perform dummy reads from MIB counters */ for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); } /* Rx descriptors helper methods */ /* Checks whether the RX descriptor having this status is both the first * and the last descriptor for the RX packet. Each RX packet is currently * received through a single RX descriptor, so not having each RX * descriptor with its first and last bits set is an error */ static int mvneta_rxq_desc_is_first_last(u32 status) { return (status & MVNETA_RXD_FIRST_LAST_DESC) == MVNETA_RXD_FIRST_LAST_DESC; } /* Add number of descriptors ready to receive new packets */ static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, int ndescs) { /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can * be added at once */ while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; } mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); } /* Get number of RX descriptors occupied by received packets */ static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, struct mvneta_rx_queue *rxq) { u32 val; val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; } /* Update num of rx desc called upon return from rx path or * from mvneta_rxq_drop_pkts(). */ static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, int rx_done, int rx_filled) { u32 val; if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { val = rx_done | (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); return; } /* Only 255 descriptors can be added at once */ while ((rx_done > 0) || (rx_filled > 0)) { if (rx_done <= 0xff) { val = rx_done; rx_done = 0; } else { val = 0xff; rx_done -= 0xff; } if (rx_filled <= 0xff) { val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; rx_filled = 0; } else { val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; rx_filled -= 0xff; } mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); } } /* Get pointer to next RX descriptor to be processed by SW */ static struct mvneta_rx_desc * mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) { int rx_desc = rxq->next_desc_to_proc; rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); return rxq->descs + rx_desc; } /* Tx descriptors helper methods */ /* Update HW with number of TX descriptors to be sent */ static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, struct mvneta_tx_queue *txq, int pend_desc) { u32 val; /* Only 255 descriptors can be added at once ; Assume caller * process TX descriptors in quanta less than 256 */ val = pend_desc; mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); } /* Get pointer to next TX descriptor to be processed (send) by HW */ static struct mvneta_tx_desc * mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) { int tx_desc = txq->next_desc_to_proc; txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); return txq->descs + tx_desc; } /* Set rxq buf size */ static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, int buf_size) { u32 val; val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); val &= ~MVNETA_RXQ_BUF_SIZE_MASK; val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); } static int mvneta_port_is_fixed_link(struct mvneta_port *pp) { /* phy_addr is set to invalid value for fixed link */ return pp->phyaddr > PHY_MAX_ADDR; } /* Start the Ethernet port RX and TX activity */ static void mvneta_port_up(struct mvneta_port *pp) { int queue; u32 q_map; /* Enable all initialized TXs. */ mvneta_mib_counters_clear(pp); q_map = 0; for (queue = 0; queue < txq_number; queue++) { struct mvneta_tx_queue *txq = &pp->txqs[queue]; if (txq->descs != NULL) q_map |= (1 << queue); } mvreg_write(pp, MVNETA_TXQ_CMD, q_map); /* Enable all initialized RXQs. */ q_map = 0; for (queue = 0; queue < rxq_number; queue++) { struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; if (rxq->descs != NULL) q_map |= (1 << queue); } mvreg_write(pp, MVNETA_RXQ_CMD, q_map); } /* Stop the Ethernet port activity */ static void mvneta_port_down(struct mvneta_port *pp) { u32 val; int count; /* Stop Rx port activity. Check port Rx activity. */ val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; /* Issue stop command for active channels only */ if (val != 0) mvreg_write(pp, MVNETA_RXQ_CMD, val << MVNETA_RXQ_DISABLE_SHIFT); /* Wait for all Rx activity to terminate. */ count = 0; do { if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { netdev_warn(pp->dev, "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n", val); break; } mdelay(1); val = mvreg_read(pp, MVNETA_RXQ_CMD); } while (val & 0xff); /* Stop Tx port activity. Check port Tx activity. Issue stop * command for active channels only */ val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; if (val != 0) mvreg_write(pp, MVNETA_TXQ_CMD, (val << MVNETA_TXQ_DISABLE_SHIFT)); /* Wait for all Tx activity to terminate. */ count = 0; do { if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { netdev_warn(pp->dev, "TIMEOUT for TX stopped status=0x%08x\n", val); break; } mdelay(1); /* Check TX Command reg that all Txqs are stopped */ val = mvreg_read(pp, MVNETA_TXQ_CMD); } while (val & 0xff); /* Double check to verify that TX FIFO is empty */ count = 0; do { if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { netdev_warn(pp->dev, "TX FIFO empty timeout status=0x08%x\n", val); break; } mdelay(1); val = mvreg_read(pp, MVNETA_PORT_STATUS); } while (!(val & MVNETA_TX_FIFO_EMPTY) && (val & MVNETA_TX_IN_PRGRS)); udelay(200); } /* Enable the port by setting the port enable bit of the MAC control register */ static void mvneta_port_enable(struct mvneta_port *pp) { u32 val; /* Enable port */ val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); val |= MVNETA_GMAC0_PORT_ENABLE; mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); } /* Disable the port and wait for about 200 usec before retuning */ static void mvneta_port_disable(struct mvneta_port *pp) { u32 val; /* Reset the Enable bit in the Serial Control Register */ val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); val &= ~MVNETA_GMAC0_PORT_ENABLE; mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); udelay(200); } /* Multicast tables methods */ /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) { int offset; u32 val; if (queue == -1) { val = 0; } else { val = 0x1 | (queue << 1); val |= (val << 24) | (val << 16) | (val << 8); } for (offset = 0; offset <= 0xc; offset += 4) mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); } /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) { int offset; u32 val; if (queue == -1) { val = 0; } else { val = 0x1 | (queue << 1); val |= (val << 24) | (val << 16) | (val << 8); } for (offset = 0; offset <= 0xfc; offset += 4) mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); } /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) { int offset; u32 val; if (queue == -1) { memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); val = 0; } else { memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); val = 0x1 | (queue << 1); val |= (val << 24) | (val << 16) | (val << 8); } for (offset = 0; offset <= 0xfc; offset += 4) mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); } /* This method sets defaults to the NETA port: * Clears interrupt Cause and Mask registers. * Clears all MAC tables. * Sets defaults to all registers. * Resets RX and TX descriptor rings. * Resets PHY. * This method can be called after mvneta_port_down() to return the port * settings to defaults. */ static void mvneta_defaults_set(struct mvneta_port *pp) { int cpu; int queue; u32 val; /* Clear all Cause registers */ mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); /* Mask all interrupts */ mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); mvreg_write(pp, MVNETA_INTR_ENABLE, 0); /* Enable MBUS Retry bit16 */ mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); /* Set CPU queue access map - all CPUs have access to all RX * queues and to all TX queues */ for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++) mvreg_write(pp, MVNETA_CPU_MAP(cpu), (MVNETA_CPU_RXQ_ACCESS_ALL_MASK | MVNETA_CPU_TXQ_ACCESS_ALL_MASK)); /* Reset RX and TX DMAs */ mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); /* Disable Legacy WRR, Disable EJP, Release from reset */ mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); for (queue = 0; queue < txq_number; queue++) { mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); } mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); /* Set Port Acceleration Mode */ val = MVNETA_ACC_MODE_EXT; mvreg_write(pp, MVNETA_ACC_MODE, val); /* Update val of portCfg register accordingly with all RxQueue types */ val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def); mvreg_write(pp, MVNETA_PORT_CONFIG, val); val = 0; mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); /* Build PORT_SDMA_CONFIG_REG */ val = 0; /* Default burst size */ val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; /* Assign port SDMA configuration */ mvreg_write(pp, MVNETA_SDMA_CONFIG, val); /* Enable PHY polling in hardware if not in fixed-link mode */ if (!mvneta_port_is_fixed_link(pp)) { val = mvreg_read(pp, MVNETA_UNIT_CONTROL); val |= MVNETA_PHY_POLLING_ENABLE; mvreg_write(pp, MVNETA_UNIT_CONTROL, val); } mvneta_set_ucast_table(pp, -1); mvneta_set_special_mcast_table(pp, -1); mvneta_set_other_mcast_table(pp, -1); } /* Set unicast address */ static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, int queue) { unsigned int unicast_reg; unsigned int tbl_offset; unsigned int reg_offset; /* Locate the Unicast table entry */ last_nibble = (0xf & last_nibble); /* offset from unicast tbl base */ tbl_offset = (last_nibble / 4) * 4; /* offset within the above reg */ reg_offset = last_nibble % 4; unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); if (queue == -1) { /* Clear accepts frame bit at specified unicast DA tbl entry */ unicast_reg &= ~(0xff << (8 * reg_offset)); } else { unicast_reg &= ~(0xff << (8 * reg_offset)); unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); } mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); } /* Set mac address */ static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, int queue) { unsigned int mac_h; unsigned int mac_l; if (queue != -1) { mac_l = (addr[4] << 8) | (addr[5]); mac_h = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | (addr[3] << 0); mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); } /* Accept frames of this address */ mvneta_set_ucast_addr(pp, addr[5], queue); } static int mvneta_write_hwaddr(struct udevice *dev) { mvneta_mac_addr_set(dev_get_priv(dev), ((struct eth_pdata *)dev_get_platdata(dev))->enetaddr, rxq_def); return 0; } /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, u32 phys_addr, u32 cookie) { rx_desc->buf_cookie = cookie; rx_desc->buf_phys_addr = phys_addr; } /* Decrement sent descriptors counter */ static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, struct mvneta_tx_queue *txq, int sent_desc) { u32 val; /* Only 255 TX descriptors can be updated at once */ while (sent_desc > 0xff) { val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); sent_desc = sent_desc - 0xff; } val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); } /* Get number of TX descriptors already sent by HW */ static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, struct mvneta_tx_queue *txq) { u32 val; int sent_desc; val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> MVNETA_TXQ_SENT_DESC_SHIFT; return sent_desc; } /* Display more error info */ static void mvneta_rx_error(struct mvneta_port *pp, struct mvneta_rx_desc *rx_desc) { u32 status = rx_desc->status; if (!mvneta_rxq_desc_is_first_last(status)) { netdev_err(pp->dev, "bad rx status %08x (buffer oversize), size=%d\n", status, rx_desc->data_size); return; } switch (status & MVNETA_RXD_ERR_CODE_MASK) { case MVNETA_RXD_ERR_CRC: netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", status, rx_desc->data_size); break; case MVNETA_RXD_ERR_OVERRUN: netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", status, rx_desc->data_size); break; case MVNETA_RXD_ERR_LEN: netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", status, rx_desc->data_size); break; case MVNETA_RXD_ERR_RESOURCE: netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", status, rx_desc->data_size); break; } } static struct mvneta_rx_queue *mvneta_rxq_handle_get(struct mvneta_port *pp, int rxq) { return &pp->rxqs[rxq]; } /* Drop packets received by the RXQ and free buffers */ static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, struct mvneta_rx_queue *rxq) { int rx_done; rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); if (rx_done) mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); } /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, int num) { int i; for (i = 0; i < num; i++) { u32 addr; /* U-Boot special: Fill in the rx buffer addresses */ addr = buffer_loc.rx_buffers + (i * RX_BUFFER_SIZE); mvneta_rx_desc_fill(rxq->descs + i, addr, addr); } /* Add this number of RX descriptors as non occupied (ready to * get packets) */ mvneta_rxq_non_occup_desc_add(pp, rxq, i); return 0; } /* Rx/Tx queue initialization/cleanup methods */ /* Create a specified RX queue */ static int mvneta_rxq_init(struct mvneta_port *pp, struct mvneta_rx_queue *rxq) { rxq->size = pp->rx_ring_size; /* Allocate memory for RX descriptors */ rxq->descs_phys = (dma_addr_t)rxq->descs; if (rxq->descs == NULL) return -ENOMEM; WARN_ON(rxq->descs != PTR_ALIGN(rxq->descs, ARCH_DMA_MINALIGN)); rxq->last_desc = rxq->size - 1; /* Set Rx descriptors queue starting address */ mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); /* Fill RXQ with buffers from RX pool */ mvneta_rxq_buf_size_set(pp, rxq, RX_BUFFER_SIZE); mvneta_rxq_fill(pp, rxq, rxq->size); return 0; } /* Cleanup Rx queue */ static void mvneta_rxq_deinit(struct mvneta_port *pp, struct mvneta_rx_queue *rxq) { mvneta_rxq_drop_pkts(pp, rxq); rxq->descs = NULL; rxq->last_desc = 0; rxq->next_desc_to_proc = 0; rxq->descs_phys = 0; } /* Create and initialize a tx queue */ static int mvneta_txq_init(struct mvneta_port *pp, struct mvneta_tx_queue *txq) { txq->size = pp->tx_ring_size; /* Allocate memory for TX descriptors */ txq->descs_phys = (dma_addr_t)txq->descs; if (txq->descs == NULL) return -ENOMEM; WARN_ON(txq->descs != PTR_ALIGN(txq->descs, ARCH_DMA_MINALIGN)); txq->last_desc = txq->size - 1; /* Set maximum bandwidth for enabled TXQs */ mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); /* Set Tx descriptors queue starting address */ mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); return 0; } /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ static void mvneta_txq_deinit(struct mvneta_port *pp, struct mvneta_tx_queue *txq) { txq->descs = NULL; txq->last_desc = 0; txq->next_desc_to_proc = 0; txq->descs_phys = 0; /* Set minimum bandwidth for disabled TXQs */ mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); /* Set Tx descriptors queue starting address and size */ mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); } /* Cleanup all Tx queues */ static void mvneta_cleanup_txqs(struct mvneta_port *pp) { int queue; for (queue = 0; queue < txq_number; queue++) mvneta_txq_deinit(pp, &pp->txqs[queue]); } /* Cleanup all Rx queues */ static void mvneta_cleanup_rxqs(struct mvneta_port *pp) { int queue; for (queue = 0; queue < rxq_number; queue++) mvneta_rxq_deinit(pp, &pp->rxqs[queue]); } /* Init all Rx queues */ static int mvneta_setup_rxqs(struct mvneta_port *pp) { int queue; for (queue = 0; queue < rxq_number; queue++) { int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); if (err) { netdev_err(pp->dev, "%s: can't create rxq=%d\n", __func__, queue); mvneta_cleanup_rxqs(pp); return err; } } return 0; } /* Init all tx queues */ static int mvneta_setup_txqs(struct mvneta_port *pp) { int queue; for (queue = 0; queue < txq_number; queue++) { int err = mvneta_txq_init(pp, &pp->txqs[queue]); if (err) { netdev_err(pp->dev, "%s: can't create txq=%d\n", __func__, queue); mvneta_cleanup_txqs(pp); return err; } } return 0; } static void mvneta_start_dev(struct mvneta_port *pp) { /* start the Rx/Tx activity */ mvneta_port_enable(pp); } static void mvneta_adjust_link(struct udevice *dev) { struct mvneta_port *pp = dev_get_priv(dev); struct phy_device *phydev = pp->phydev; int status_change = 0; if (mvneta_port_is_fixed_link(pp)) { debug("Using fixed link, skip link adjust\n"); return; } if (phydev->link) { if ((pp->speed != phydev->speed) || (pp->duplex != phydev->duplex)) { u32 val; val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED | MVNETA_GMAC_CONFIG_GMII_SPEED | MVNETA_GMAC_CONFIG_FULL_DUPLEX | MVNETA_GMAC_AN_SPEED_EN | MVNETA_GMAC_AN_DUPLEX_EN); if (phydev->duplex) val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; if (phydev->speed == SPEED_1000) val |= MVNETA_GMAC_CONFIG_GMII_SPEED; else val |= MVNETA_GMAC_CONFIG_MII_SPEED; mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); pp->duplex = phydev->duplex; pp->speed = phydev->speed; } } if (phydev->link != pp->link) { if (!phydev->link) { pp->duplex = -1; pp->speed = 0; } pp->link = phydev->link; status_change = 1; } if (status_change) { if (phydev->link) { u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); val |= (MVNETA_GMAC_FORCE_LINK_PASS | MVNETA_GMAC_FORCE_LINK_DOWN); mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); mvneta_port_up(pp); } else { mvneta_port_down(pp); } } } static int mvneta_open(struct udevice *dev) { struct mvneta_port *pp = dev_get_priv(dev); int ret; ret = mvneta_setup_rxqs(pp); if (ret) return ret; ret = mvneta_setup_txqs(pp); if (ret) return ret; mvneta_adjust_link(dev); mvneta_start_dev(pp); return 0; } /* Initialize hw */ static int mvneta_init2(struct mvneta_port *pp) { int queue; /* Disable port */ mvneta_port_disable(pp); /* Set port default values */ mvneta_defaults_set(pp); pp->txqs = kzalloc(txq_number * sizeof(struct mvneta_tx_queue), GFP_KERNEL); if (!pp->txqs) return -ENOMEM; /* U-Boot special: use preallocated area */ pp->txqs[0].descs = buffer_loc.tx_descs; /* Initialize TX descriptor rings */ for (queue = 0; queue < txq_number; queue++) { struct mvneta_tx_queue *txq = &pp->txqs[queue]; txq->id = queue; txq->size = pp->tx_ring_size; } pp->rxqs = kzalloc(rxq_number * sizeof(struct mvneta_rx_queue), GFP_KERNEL); if (!pp->rxqs) { kfree(pp->txqs); return -ENOMEM; } /* U-Boot special: use preallocated area */ pp->rxqs[0].descs = buffer_loc.rx_descs; /* Create Rx descriptor rings */ for (queue = 0; queue < rxq_number; queue++) { struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; rxq->id = queue; rxq->size = pp->rx_ring_size; } return 0; } /* platform glue : initialize decoding windows */ /* * Not like A380, in Armada3700, there are two layers of decode windows for GBE: * First layer is: GbE Address window that resides inside the GBE unit, * Second layer is: Fabric address window which is located in the NIC400 * (South Fabric). * To simplify the address decode configuration for Armada3700, we bypass the * first layer of GBE decode window by setting the first window to 4GB. */ static void mvneta_bypass_mbus_windows(struct mvneta_port *pp) { /* * Set window size to 4GB, to bypass GBE address decode, leave the * work to MBUS decode window */ mvreg_write(pp, MVNETA_WIN_SIZE(0), MVNETA_WIN_SIZE_MASK); /* Enable GBE address decode window 0 by set bit 0 to 0 */ clrbits_le32(pp->base + MVNETA_BASE_ADDR_ENABLE, MVNETA_BASE_ADDR_ENABLE_BIT); /* Set GBE address decode window 0 to full Access (read or write) */ setbits_le32(pp->base + MVNETA_PORT_ACCESS_PROTECT, MVNETA_PORT_ACCESS_PROTECT_WIN0_RW); } static void mvneta_conf_mbus_windows(struct mvneta_port *pp) { const struct mbus_dram_target_info *dram; u32 win_enable; u32 win_protect; int i; dram = mvebu_mbus_dram_info(); for (i = 0; i < 6; i++) { mvreg_write(pp, MVNETA_WIN_BASE(i), 0); mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); if (i < 4) mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); } win_enable = 0x3f; win_protect = 0; for (i = 0; i < dram->num_cs; i++) { const struct mbus_dram_window *cs = dram->cs + i; mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) | (cs->mbus_attr << 8) | dram->mbus_dram_target_id); mvreg_write(pp, MVNETA_WIN_SIZE(i), (cs->size - 1) & 0xffff0000); win_enable &= ~(1 << i); win_protect |= 3 << (2 * i); } mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); } /* Power up the port */ static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) { u32 ctrl; /* MAC Cause register should be cleared */ mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2); /* Even though it might look weird, when we're configured in * SGMII or QSGMII mode, the RGMII bit needs to be set. */ switch (phy_mode) { case PHY_INTERFACE_MODE_QSGMII: mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO); ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; break; case PHY_INTERFACE_MODE_SGMII: mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO); ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; break; case PHY_INTERFACE_MODE_RGMII: case PHY_INTERFACE_MODE_RGMII_ID: ctrl |= MVNETA_GMAC2_PORT_RGMII; break; default: return -EINVAL; } /* Cancel Port Reset */ ctrl &= ~MVNETA_GMAC2_PORT_RESET; mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl); while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & MVNETA_GMAC2_PORT_RESET) != 0) continue; return 0; } /* Device initialization routine */ static int mvneta_init(struct udevice *dev) { struct eth_pdata *pdata = dev_get_platdata(dev); struct mvneta_port *pp = dev_get_priv(dev); int err; pp->tx_ring_size = MVNETA_MAX_TXD; pp->rx_ring_size = MVNETA_MAX_RXD; err = mvneta_init2(pp); if (err < 0) { dev_err(&pdev->dev, "can't init eth hal\n"); return err; } mvneta_mac_addr_set(pp, pdata->enetaddr, rxq_def); err = mvneta_port_power_up(pp, pp->phy_interface); if (err < 0) { dev_err(&pdev->dev, "can't power up port\n"); return err; } /* Call open() now as it needs to be done before runing send() */ mvneta_open(dev); return 0; } /* U-Boot only functions follow here */ /* SMI / MDIO functions */ static int smi_wait_ready(struct mvneta_port *pp) { u32 timeout = MVNETA_SMI_TIMEOUT; u32 smi_reg; /* wait till the SMI is not busy */ do { /* read smi register */ smi_reg = mvreg_read(pp, MVNETA_SMI); if (timeout-- == 0) { printf("Error: SMI busy timeout\n"); return -EFAULT; } } while (smi_reg & MVNETA_SMI_BUSY); return 0; } /* * mvneta_mdio_read - miiphy_read callback function. * * Returns 16bit phy register value, or 0xffff on error */ static int mvneta_mdio_read(struct mii_dev *bus, int addr, int devad, int reg) { struct mvneta_port *pp = bus->priv; u32 smi_reg; u32 timeout; /* check parameters */ if (addr > MVNETA_PHY_ADDR_MASK) { printf("Error: Invalid PHY address %d\n", addr); return -EFAULT; } if (reg > MVNETA_PHY_REG_MASK) { printf("Err: Invalid register offset %d\n", reg); return -EFAULT; } /* wait till the SMI is not busy */ if (smi_wait_ready(pp) < 0) return -EFAULT; /* fill the phy address and regiser offset and read opcode */ smi_reg = (addr << MVNETA_SMI_DEV_ADDR_OFFS) | (reg << MVNETA_SMI_REG_ADDR_OFFS) | MVNETA_SMI_OPCODE_READ; /* write the smi register */ mvreg_write(pp, MVNETA_SMI, smi_reg); /* wait till read value is ready */ timeout = MVNETA_SMI_TIMEOUT; do { /* read smi register */ smi_reg = mvreg_read(pp, MVNETA_SMI); if (timeout-- == 0) { printf("Err: SMI read ready timeout\n"); return -EFAULT; } } while (!(smi_reg & MVNETA_SMI_READ_VALID)); /* Wait for the data to update in the SMI register */ for (timeout = 0; timeout < MVNETA_SMI_TIMEOUT; timeout++) ; return mvreg_read(pp, MVNETA_SMI) & MVNETA_SMI_DATA_MASK; } /* * mvneta_mdio_write - miiphy_write callback function. * * Returns 0 if write succeed, -EINVAL on bad parameters * -ETIME on timeout */ static int mvneta_mdio_write(struct mii_dev *bus, int addr, int devad, int reg, u16 value) { struct mvneta_port *pp = bus->priv; u32 smi_reg; /* check parameters */ if (addr > MVNETA_PHY_ADDR_MASK) { printf("Error: Invalid PHY address %d\n", addr); return -EFAULT; } if (reg > MVNETA_PHY_REG_MASK) { printf("Err: Invalid register offset %d\n", reg); return -EFAULT; } /* wait till the SMI is not busy */ if (smi_wait_ready(pp) < 0) return -EFAULT; /* fill the phy addr and reg offset and write opcode and data */ smi_reg = value << MVNETA_SMI_DATA_OFFS; smi_reg |= (addr << MVNETA_SMI_DEV_ADDR_OFFS) | (reg << MVNETA_SMI_REG_ADDR_OFFS); smi_reg &= ~MVNETA_SMI_OPCODE_READ; /* write the smi register */ mvreg_write(pp, MVNETA_SMI, smi_reg); return 0; } static int mvneta_start(struct udevice *dev) { struct mvneta_port *pp = dev_get_priv(dev); struct phy_device *phydev; mvneta_port_power_up(pp, pp->phy_interface); if (!pp->init || pp->link == 0) { if (mvneta_port_is_fixed_link(pp)) { u32 val; pp->init = 1; pp->link = 1; mvneta_init(dev); val = MVNETA_GMAC_FORCE_LINK_UP | MVNETA_GMAC_IB_BYPASS_AN_EN | MVNETA_GMAC_SET_FC_EN | MVNETA_GMAC_ADVERT_FC_EN | MVNETA_GMAC_SAMPLE_TX_CFG_EN; if (pp->duplex) val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; if (pp->speed == SPEED_1000) val |= MVNETA_GMAC_CONFIG_GMII_SPEED; else if (pp->speed == SPEED_100) val |= MVNETA_GMAC_CONFIG_MII_SPEED; mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); } else { /* Set phy address of the port */ mvreg_write(pp, MVNETA_PHY_ADDR, pp->phyaddr); phydev = phy_connect(pp->bus, pp->phyaddr, dev, pp->phy_interface); if (!phydev) { printf("phy_connect failed\n"); return -ENODEV; } pp->phydev = phydev; phy_config(phydev); phy_startup(phydev); if (!phydev->link) { printf("%s: No link.\n", phydev->dev->name); return -1; } /* Full init on first call */ mvneta_init(dev); pp->init = 1; return 0; } } /* Upon all following calls, this is enough */ mvneta_port_up(pp); mvneta_port_enable(pp); return 0; } static int mvneta_send(struct udevice *dev, void *packet, int length) { struct mvneta_port *pp = dev_get_priv(dev); struct mvneta_tx_queue *txq = &pp->txqs[0]; struct mvneta_tx_desc *tx_desc; int sent_desc; u32 timeout = 0; /* Get a descriptor for the first part of the packet */ tx_desc = mvneta_txq_next_desc_get(txq); tx_desc->buf_phys_addr = (u32)(uintptr_t)packet; tx_desc->data_size = length; flush_dcache_range((ulong)packet, (ulong)packet + ALIGN(length, PKTALIGN)); /* First and Last descriptor */ tx_desc->command = MVNETA_TX_L4_CSUM_NOT | MVNETA_TXD_FLZ_DESC; mvneta_txq_pend_desc_add(pp, txq, 1); /* Wait for packet to be sent (queue might help with speed here) */ sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); while (!sent_desc) { if (timeout++ > 10000) { printf("timeout: packet not sent\n"); return -1; } sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); } /* txDone has increased - hw sent packet */ mvneta_txq_sent_desc_dec(pp, txq, sent_desc); return 0; } static int mvneta_recv(struct udevice *dev, int flags, uchar **packetp) { struct mvneta_port *pp = dev_get_priv(dev); int rx_done; struct mvneta_rx_queue *rxq; int rx_bytes = 0; /* get rx queue */ rxq = mvneta_rxq_handle_get(pp, rxq_def); rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); if (rx_done) { struct mvneta_rx_desc *rx_desc; unsigned char *data; u32 rx_status; /* * No cache invalidation needed here, since the desc's are * located in a uncached memory region */ rx_desc = mvneta_rxq_next_desc_get(rxq); rx_status = rx_desc->status; if (!mvneta_rxq_desc_is_first_last(rx_status) || (rx_status & MVNETA_RXD_ERR_SUMMARY)) { mvneta_rx_error(pp, rx_desc); /* leave the descriptor untouched */ return -EIO; } /* 2 bytes for marvell header. 4 bytes for crc */ rx_bytes = rx_desc->data_size - 6; /* give packet to stack - skip on first 2 bytes */ data = (u8 *)(uintptr_t)rx_desc->buf_cookie + 2; /* * No cache invalidation needed here, since the rx_buffer's are * located in a uncached memory region */ *packetp = data; /* * Only mark one descriptor as free * since only one was processed */ mvneta_rxq_desc_num_update(pp, rxq, 1, 1); } return rx_bytes; } static int mvneta_probe(struct udevice *dev) { struct eth_pdata *pdata = dev_get_platdata(dev); struct mvneta_port *pp = dev_get_priv(dev); void *blob = (void *)gd->fdt_blob; int node = dev_of_offset(dev); struct mii_dev *bus; unsigned long addr; void *bd_space; int ret; int fl_node; /* * Allocate buffer area for descs and rx_buffers. This is only * done once for all interfaces. As only one interface can * be active. Make this area DMA safe by disabling the D-cache */ if (!buffer_loc.tx_descs) { u32 size; /* Align buffer area for descs and rx_buffers to 1MiB */ bd_space = memalign(1 << MMU_SECTION_SHIFT, BD_SPACE); flush_dcache_range((ulong)bd_space, (ulong)bd_space + BD_SPACE); mmu_set_region_dcache_behaviour((phys_addr_t)bd_space, BD_SPACE, DCACHE_OFF); buffer_loc.tx_descs = (struct mvneta_tx_desc *)bd_space; size = roundup(MVNETA_MAX_TXD * sizeof(struct mvneta_tx_desc), ARCH_DMA_MINALIGN); memset(buffer_loc.tx_descs, 0, size); buffer_loc.rx_descs = (struct mvneta_rx_desc *) ((phys_addr_t)bd_space + size); size += roundup(MVNETA_MAX_RXD * sizeof(struct mvneta_rx_desc), ARCH_DMA_MINALIGN); buffer_loc.rx_buffers = (phys_addr_t)(bd_space + size); } pp->base = (void __iomem *)pdata->iobase; /* Configure MBUS address windows */ if (device_is_compatible(dev, "marvell,armada-3700-neta")) mvneta_bypass_mbus_windows(pp); else mvneta_conf_mbus_windows(pp); /* PHY interface is already decoded in mvneta_ofdata_to_platdata() */ pp->phy_interface = pdata->phy_interface; /* fetch 'fixed-link' property from 'neta' node */ fl_node = fdt_subnode_offset(blob, node, "fixed-link"); if (fl_node != -FDT_ERR_NOTFOUND) { /* set phy_addr to invalid value for fixed link */ pp->phyaddr = PHY_MAX_ADDR + 1; pp->duplex = fdtdec_get_bool(blob, fl_node, "full-duplex"); pp->speed = fdtdec_get_int(blob, fl_node, "speed", 0); } else { /* Now read phyaddr from DT */ addr = fdtdec_get_int(blob, node, "phy", 0); addr = fdt_node_offset_by_phandle(blob, addr); pp->phyaddr = fdtdec_get_int(blob, addr, "reg", 0); } bus = mdio_alloc(); if (!bus) { printf("Failed to allocate MDIO bus\n"); return -ENOMEM; } bus->read = mvneta_mdio_read; bus->write = mvneta_mdio_write; snprintf(bus->name, sizeof(bus->name), dev->name); bus->priv = (void *)pp; pp->bus = bus; ret = mdio_register(bus); if (ret) return ret; #if CONFIG_IS_ENABLED(DM_GPIO) gpio_request_by_name(dev, "phy-reset-gpios", 0, &pp->phy_reset_gpio, GPIOD_IS_OUT); if (dm_gpio_is_valid(&pp->phy_reset_gpio)) { dm_gpio_set_value(&pp->phy_reset_gpio, 1); mdelay(10); dm_gpio_set_value(&pp->phy_reset_gpio, 0); } #endif return board_network_enable(bus); } static void mvneta_stop(struct udevice *dev) { struct mvneta_port *pp = dev_get_priv(dev); mvneta_port_down(pp); mvneta_port_disable(pp); } static const struct eth_ops mvneta_ops = { .start = mvneta_start, .send = mvneta_send, .recv = mvneta_recv, .stop = mvneta_stop, .write_hwaddr = mvneta_write_hwaddr, }; static int mvneta_ofdata_to_platdata(struct udevice *dev) { struct eth_pdata *pdata = dev_get_platdata(dev); const char *phy_mode; pdata->iobase = devfdt_get_addr(dev); /* Get phy-mode / phy_interface from DT */ pdata->phy_interface = -1; phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "phy-mode", NULL); if (phy_mode) pdata->phy_interface = phy_get_interface_by_name(phy_mode); if (pdata->phy_interface == -1) { debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode); return -EINVAL; } return 0; } static const struct udevice_id mvneta_ids[] = { { .compatible = "marvell,armada-370-neta" }, { .compatible = "marvell,armada-xp-neta" }, { .compatible = "marvell,armada-3700-neta" }, { } }; U_BOOT_DRIVER(mvneta) = { .name = "mvneta", .id = UCLASS_ETH, .of_match = mvneta_ids, .ofdata_to_platdata = mvneta_ofdata_to_platdata, .probe = mvneta_probe, .ops = &mvneta_ops, .priv_auto_alloc_size = sizeof(struct mvneta_port), .platdata_auto_alloc_size = sizeof(struct eth_pdata), };