/* * Driver for Marvell PPv2 network controller for Armada 375 SoC. * * Copyright (C) 2014 Marvell * * Marcin Wojtas <mw@semihalf.com> * * U-Boot version: * Copyright (C) 2016-2017 Stefan Roese <sr@denx.de> * * This file is licensed under the terms of the GNU General Public * License version 2. This program is licensed "as is" without any * warranty of any kind, whether express or implied. */ #include <common.h> #include <dm.h> #include <dm/device-internal.h> #include <dm/lists.h> #include <net.h> #include <netdev.h> #include <config.h> #include <malloc.h> #include <asm/io.h> #include <linux/errno.h> #include <phy.h> #include <miiphy.h> #include <watchdog.h> #include <asm/arch/cpu.h> #include <asm/arch/soc.h> #include <linux/compat.h> #include <linux/mbus.h> #include <asm-generic/gpio.h> #include <fdt_support.h> DECLARE_GLOBAL_DATA_PTR; #define __verify_pcpu_ptr(ptr) \ do { \ const void __percpu *__vpp_verify = (typeof((ptr) + 0))NULL; \ (void)__vpp_verify; \ } while (0) #define VERIFY_PERCPU_PTR(__p) \ ({ \ __verify_pcpu_ptr(__p); \ (typeof(*(__p)) __kernel __force *)(__p); \ }) #define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR(ptr); }) #define smp_processor_id() 0 #define num_present_cpus() 1 #define for_each_present_cpu(cpu) \ for ((cpu) = 0; (cpu) < 1; (cpu)++) #define NET_SKB_PAD max(32, MVPP2_CPU_D_CACHE_LINE_SIZE) #define CONFIG_NR_CPUS 1 /* 2(HW hdr) 14(MAC hdr) 4(CRC) 32(extra for cache prefetch) */ #define WRAP (2 + ETH_HLEN + 4 + 32) #define MTU 1500 #define RX_BUFFER_SIZE (ALIGN(MTU + WRAP, ARCH_DMA_MINALIGN)) #define MVPP2_SMI_TIMEOUT 10000 /* RX Fifo Registers */ #define MVPP2_RX_DATA_FIFO_SIZE_REG(port) (0x00 + 4 * (port)) #define MVPP2_RX_ATTR_FIFO_SIZE_REG(port) (0x20 + 4 * (port)) #define MVPP2_RX_MIN_PKT_SIZE_REG 0x60 #define MVPP2_RX_FIFO_INIT_REG 0x64 /* RX DMA Top Registers */ #define MVPP2_RX_CTRL_REG(port) (0x140 + 4 * (port)) #define MVPP2_RX_LOW_LATENCY_PKT_SIZE(s) (((s) & 0xfff) << 16) #define MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK BIT(31) #define MVPP2_POOL_BUF_SIZE_REG(pool) (0x180 + 4 * (pool)) #define MVPP2_POOL_BUF_SIZE_OFFSET 5 #define MVPP2_RXQ_CONFIG_REG(rxq) (0x800 + 4 * (rxq)) #define MVPP2_SNOOP_PKT_SIZE_MASK 0x1ff #define MVPP2_SNOOP_BUF_HDR_MASK BIT(9) #define MVPP2_RXQ_POOL_SHORT_OFFS 20 #define MVPP21_RXQ_POOL_SHORT_MASK 0x700000 #define MVPP22_RXQ_POOL_SHORT_MASK 0xf00000 #define MVPP2_RXQ_POOL_LONG_OFFS 24 #define MVPP21_RXQ_POOL_LONG_MASK 0x7000000 #define MVPP22_RXQ_POOL_LONG_MASK 0xf000000 #define MVPP2_RXQ_PACKET_OFFSET_OFFS 28 #define MVPP2_RXQ_PACKET_OFFSET_MASK 0x70000000 #define MVPP2_RXQ_DISABLE_MASK BIT(31) /* Parser Registers */ #define MVPP2_PRS_INIT_LOOKUP_REG 0x1000 #define MVPP2_PRS_PORT_LU_MAX 0xf #define MVPP2_PRS_PORT_LU_MASK(port) (0xff << ((port) * 4)) #define MVPP2_PRS_PORT_LU_VAL(port, val) ((val) << ((port) * 4)) #define MVPP2_PRS_INIT_OFFS_REG(port) (0x1004 + ((port) & 4)) #define MVPP2_PRS_INIT_OFF_MASK(port) (0x3f << (((port) % 4) * 8)) #define MVPP2_PRS_INIT_OFF_VAL(port, val) ((val) << (((port) % 4) * 8)) #define MVPP2_PRS_MAX_LOOP_REG(port) (0x100c + ((port) & 4)) #define MVPP2_PRS_MAX_LOOP_MASK(port) (0xff << (((port) % 4) * 8)) #define MVPP2_PRS_MAX_LOOP_VAL(port, val) ((val) << (((port) % 4) * 8)) #define MVPP2_PRS_TCAM_IDX_REG 0x1100 #define MVPP2_PRS_TCAM_DATA_REG(idx) (0x1104 + (idx) * 4) #define MVPP2_PRS_TCAM_INV_MASK BIT(31) #define MVPP2_PRS_SRAM_IDX_REG 0x1200 #define MVPP2_PRS_SRAM_DATA_REG(idx) (0x1204 + (idx) * 4) #define MVPP2_PRS_TCAM_CTRL_REG 0x1230 #define MVPP2_PRS_TCAM_EN_MASK BIT(0) /* Classifier Registers */ #define MVPP2_CLS_MODE_REG 0x1800 #define MVPP2_CLS_MODE_ACTIVE_MASK BIT(0) #define MVPP2_CLS_PORT_WAY_REG 0x1810 #define MVPP2_CLS_PORT_WAY_MASK(port) (1 << (port)) #define MVPP2_CLS_LKP_INDEX_REG 0x1814 #define MVPP2_CLS_LKP_INDEX_WAY_OFFS 6 #define MVPP2_CLS_LKP_TBL_REG 0x1818 #define MVPP2_CLS_LKP_TBL_RXQ_MASK 0xff #define MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK BIT(25) #define MVPP2_CLS_FLOW_INDEX_REG 0x1820 #define MVPP2_CLS_FLOW_TBL0_REG 0x1824 #define MVPP2_CLS_FLOW_TBL1_REG 0x1828 #define MVPP2_CLS_FLOW_TBL2_REG 0x182c #define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port) (0x1980 + ((port) * 4)) #define MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS 3 #define MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK 0x7 #define MVPP2_CLS_SWFWD_P2HQ_REG(port) (0x19b0 + ((port) * 4)) #define MVPP2_CLS_SWFWD_PCTRL_REG 0x19d0 #define MVPP2_CLS_SWFWD_PCTRL_MASK(port) (1 << (port)) /* Descriptor Manager Top Registers */ #define MVPP2_RXQ_NUM_REG 0x2040 #define MVPP2_RXQ_DESC_ADDR_REG 0x2044 #define MVPP22_DESC_ADDR_OFFS 8 #define MVPP2_RXQ_DESC_SIZE_REG 0x2048 #define MVPP2_RXQ_DESC_SIZE_MASK 0x3ff0 #define MVPP2_RXQ_STATUS_UPDATE_REG(rxq) (0x3000 + 4 * (rxq)) #define MVPP2_RXQ_NUM_PROCESSED_OFFSET 0 #define MVPP2_RXQ_NUM_NEW_OFFSET 16 #define MVPP2_RXQ_STATUS_REG(rxq) (0x3400 + 4 * (rxq)) #define MVPP2_RXQ_OCCUPIED_MASK 0x3fff #define MVPP2_RXQ_NON_OCCUPIED_OFFSET 16 #define MVPP2_RXQ_NON_OCCUPIED_MASK 0x3fff0000 #define MVPP2_RXQ_THRESH_REG 0x204c #define MVPP2_OCCUPIED_THRESH_OFFSET 0 #define MVPP2_OCCUPIED_THRESH_MASK 0x3fff #define MVPP2_RXQ_INDEX_REG 0x2050 #define MVPP2_TXQ_NUM_REG 0x2080 #define MVPP2_TXQ_DESC_ADDR_REG 0x2084 #define MVPP2_TXQ_DESC_SIZE_REG 0x2088 #define MVPP2_TXQ_DESC_SIZE_MASK 0x3ff0 #define MVPP2_AGGR_TXQ_UPDATE_REG 0x2090 #define MVPP2_TXQ_THRESH_REG 0x2094 #define MVPP2_TRANSMITTED_THRESH_OFFSET 16 #define MVPP2_TRANSMITTED_THRESH_MASK 0x3fff0000 #define MVPP2_TXQ_INDEX_REG 0x2098 #define MVPP2_TXQ_PREF_BUF_REG 0x209c #define MVPP2_PREF_BUF_PTR(desc) ((desc) & 0xfff) #define MVPP2_PREF_BUF_SIZE_4 (BIT(12) | BIT(13)) #define MVPP2_PREF_BUF_SIZE_16 (BIT(12) | BIT(14)) #define MVPP2_PREF_BUF_THRESH(val) ((val) << 17) #define MVPP2_TXQ_DRAIN_EN_MASK BIT(31) #define MVPP2_TXQ_PENDING_REG 0x20a0 #define MVPP2_TXQ_PENDING_MASK 0x3fff #define MVPP2_TXQ_INT_STATUS_REG 0x20a4 #define MVPP2_TXQ_SENT_REG(txq) (0x3c00 + 4 * (txq)) #define MVPP2_TRANSMITTED_COUNT_OFFSET 16 #define MVPP2_TRANSMITTED_COUNT_MASK 0x3fff0000 #define MVPP2_TXQ_RSVD_REQ_REG 0x20b0 #define MVPP2_TXQ_RSVD_REQ_Q_OFFSET 16 #define MVPP2_TXQ_RSVD_RSLT_REG 0x20b4 #define MVPP2_TXQ_RSVD_RSLT_MASK 0x3fff #define MVPP2_TXQ_RSVD_CLR_REG 0x20b8 #define MVPP2_TXQ_RSVD_CLR_OFFSET 16 #define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu) (0x2100 + 4 * (cpu)) #define MVPP22_AGGR_TXQ_DESC_ADDR_OFFS 8 #define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu) (0x2140 + 4 * (cpu)) #define MVPP2_AGGR_TXQ_DESC_SIZE_MASK 0x3ff0 #define MVPP2_AGGR_TXQ_STATUS_REG(cpu) (0x2180 + 4 * (cpu)) #define MVPP2_AGGR_TXQ_PENDING_MASK 0x3fff #define MVPP2_AGGR_TXQ_INDEX_REG(cpu) (0x21c0 + 4 * (cpu)) /* MBUS bridge registers */ #define MVPP2_WIN_BASE(w) (0x4000 + ((w) << 2)) #define MVPP2_WIN_SIZE(w) (0x4020 + ((w) << 2)) #define MVPP2_WIN_REMAP(w) (0x4040 + ((w) << 2)) #define MVPP2_BASE_ADDR_ENABLE 0x4060 /* AXI Bridge Registers */ #define MVPP22_AXI_BM_WR_ATTR_REG 0x4100 #define MVPP22_AXI_BM_RD_ATTR_REG 0x4104 #define MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG 0x4110 #define MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG 0x4114 #define MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG 0x4118 #define MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG 0x411c #define MVPP22_AXI_RX_DATA_WR_ATTR_REG 0x4120 #define MVPP22_AXI_TX_DATA_RD_ATTR_REG 0x4130 #define MVPP22_AXI_RD_NORMAL_CODE_REG 0x4150 #define MVPP22_AXI_RD_SNOOP_CODE_REG 0x4154 #define MVPP22_AXI_WR_NORMAL_CODE_REG 0x4160 #define MVPP22_AXI_WR_SNOOP_CODE_REG 0x4164 /* Values for AXI Bridge registers */ #define MVPP22_AXI_ATTR_CACHE_OFFS 0 #define MVPP22_AXI_ATTR_DOMAIN_OFFS 12 #define MVPP22_AXI_CODE_CACHE_OFFS 0 #define MVPP22_AXI_CODE_DOMAIN_OFFS 4 #define MVPP22_AXI_CODE_CACHE_NON_CACHE 0x3 #define MVPP22_AXI_CODE_CACHE_WR_CACHE 0x7 #define MVPP22_AXI_CODE_CACHE_RD_CACHE 0xb #define MVPP22_AXI_CODE_DOMAIN_OUTER_DOM 2 #define MVPP22_AXI_CODE_DOMAIN_SYSTEM 3 /* Interrupt Cause and Mask registers */ #define MVPP2_ISR_RX_THRESHOLD_REG(rxq) (0x5200 + 4 * (rxq)) #define MVPP21_ISR_RXQ_GROUP_REG(rxq) (0x5400 + 4 * (rxq)) #define MVPP22_ISR_RXQ_GROUP_INDEX_REG 0x5400 #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK 0x380 #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET 7 #define MVPP22_ISR_RXQ_GROUP_INDEX_SUBGROUP_MASK 0xf #define MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_MASK 0x380 #define MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG 0x5404 #define MVPP22_ISR_RXQ_SUB_GROUP_STARTQ_MASK 0x1f #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_MASK 0xf00 #define MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET 8 #define MVPP2_ISR_ENABLE_REG(port) (0x5420 + 4 * (port)) #define MVPP2_ISR_ENABLE_INTERRUPT(mask) ((mask) & 0xffff) #define MVPP2_ISR_DISABLE_INTERRUPT(mask) (((mask) << 16) & 0xffff0000) #define MVPP2_ISR_RX_TX_CAUSE_REG(port) (0x5480 + 4 * (port)) #define MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff #define MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK 0xff0000 #define MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK BIT(24) #define MVPP2_CAUSE_FCS_ERR_MASK BIT(25) #define MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK BIT(26) #define MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK BIT(29) #define MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK BIT(30) #define MVPP2_CAUSE_MISC_SUM_MASK BIT(31) #define MVPP2_ISR_RX_TX_MASK_REG(port) (0x54a0 + 4 * (port)) #define MVPP2_ISR_PON_RX_TX_MASK_REG 0x54bc #define MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff #define MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK 0x3fc00000 #define MVPP2_PON_CAUSE_MISC_SUM_MASK BIT(31) #define MVPP2_ISR_MISC_CAUSE_REG 0x55b0 /* Buffer Manager registers */ #define MVPP2_BM_POOL_BASE_REG(pool) (0x6000 + ((pool) * 4)) #define MVPP2_BM_POOL_BASE_ADDR_MASK 0xfffff80 #define MVPP2_BM_POOL_SIZE_REG(pool) (0x6040 + ((pool) * 4)) #define MVPP2_BM_POOL_SIZE_MASK 0xfff0 #define MVPP2_BM_POOL_READ_PTR_REG(pool) (0x6080 + ((pool) * 4)) #define MVPP2_BM_POOL_GET_READ_PTR_MASK 0xfff0 #define MVPP2_BM_POOL_PTRS_NUM_REG(pool) (0x60c0 + ((pool) * 4)) #define MVPP2_BM_POOL_PTRS_NUM_MASK 0xfff0 #define MVPP2_BM_BPPI_READ_PTR_REG(pool) (0x6100 + ((pool) * 4)) #define MVPP2_BM_BPPI_PTRS_NUM_REG(pool) (0x6140 + ((pool) * 4)) #define MVPP2_BM_BPPI_PTR_NUM_MASK 0x7ff #define MVPP2_BM_BPPI_PREFETCH_FULL_MASK BIT(16) #define MVPP2_BM_POOL_CTRL_REG(pool) (0x6200 + ((pool) * 4)) #define MVPP2_BM_START_MASK BIT(0) #define MVPP2_BM_STOP_MASK BIT(1) #define MVPP2_BM_STATE_MASK BIT(4) #define MVPP2_BM_LOW_THRESH_OFFS 8 #define MVPP2_BM_LOW_THRESH_MASK 0x7f00 #define MVPP2_BM_LOW_THRESH_VALUE(val) ((val) << \ MVPP2_BM_LOW_THRESH_OFFS) #define MVPP2_BM_HIGH_THRESH_OFFS 16 #define MVPP2_BM_HIGH_THRESH_MASK 0x7f0000 #define MVPP2_BM_HIGH_THRESH_VALUE(val) ((val) << \ MVPP2_BM_HIGH_THRESH_OFFS) #define MVPP2_BM_INTR_CAUSE_REG(pool) (0x6240 + ((pool) * 4)) #define MVPP2_BM_RELEASED_DELAY_MASK BIT(0) #define MVPP2_BM_ALLOC_FAILED_MASK BIT(1) #define MVPP2_BM_BPPE_EMPTY_MASK BIT(2) #define MVPP2_BM_BPPE_FULL_MASK BIT(3) #define MVPP2_BM_AVAILABLE_BP_LOW_MASK BIT(4) #define MVPP2_BM_INTR_MASK_REG(pool) (0x6280 + ((pool) * 4)) #define MVPP2_BM_PHY_ALLOC_REG(pool) (0x6400 + ((pool) * 4)) #define MVPP2_BM_PHY_ALLOC_GRNTD_MASK BIT(0) #define MVPP2_BM_VIRT_ALLOC_REG 0x6440 #define MVPP2_BM_ADDR_HIGH_ALLOC 0x6444 #define MVPP2_BM_ADDR_HIGH_PHYS_MASK 0xff #define MVPP2_BM_ADDR_HIGH_VIRT_MASK 0xff00 #define MVPP2_BM_ADDR_HIGH_VIRT_SHIFT 8 #define MVPP2_BM_PHY_RLS_REG(pool) (0x6480 + ((pool) * 4)) #define MVPP2_BM_PHY_RLS_MC_BUFF_MASK BIT(0) #define MVPP2_BM_PHY_RLS_PRIO_EN_MASK BIT(1) #define MVPP2_BM_PHY_RLS_GRNTD_MASK BIT(2) #define MVPP2_BM_VIRT_RLS_REG 0x64c0 #define MVPP21_BM_MC_RLS_REG 0x64c4 #define MVPP2_BM_MC_ID_MASK 0xfff #define MVPP2_BM_FORCE_RELEASE_MASK BIT(12) #define MVPP22_BM_ADDR_HIGH_RLS_REG 0x64c4 #define MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK 0xff #define MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK 0xff00 #define MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT 8 #define MVPP22_BM_MC_RLS_REG 0x64d4 #define MVPP22_BM_POOL_BASE_HIGH_REG 0x6310 #define MVPP22_BM_POOL_BASE_HIGH_MASK 0xff /* TX Scheduler registers */ #define MVPP2_TXP_SCHED_PORT_INDEX_REG 0x8000 #define MVPP2_TXP_SCHED_Q_CMD_REG 0x8004 #define MVPP2_TXP_SCHED_ENQ_MASK 0xff #define MVPP2_TXP_SCHED_DISQ_OFFSET 8 #define MVPP2_TXP_SCHED_CMD_1_REG 0x8010 #define MVPP2_TXP_SCHED_PERIOD_REG 0x8018 #define MVPP2_TXP_SCHED_MTU_REG 0x801c #define MVPP2_TXP_MTU_MAX 0x7FFFF #define MVPP2_TXP_SCHED_REFILL_REG 0x8020 #define MVPP2_TXP_REFILL_TOKENS_ALL_MASK 0x7ffff #define MVPP2_TXP_REFILL_PERIOD_ALL_MASK 0x3ff00000 #define MVPP2_TXP_REFILL_PERIOD_MASK(v) ((v) << 20) #define MVPP2_TXP_SCHED_TOKEN_SIZE_REG 0x8024 #define MVPP2_TXP_TOKEN_SIZE_MAX 0xffffffff #define MVPP2_TXQ_SCHED_REFILL_REG(q) (0x8040 + ((q) << 2)) #define MVPP2_TXQ_REFILL_TOKENS_ALL_MASK 0x7ffff #define MVPP2_TXQ_REFILL_PERIOD_ALL_MASK 0x3ff00000 #define MVPP2_TXQ_REFILL_PERIOD_MASK(v) ((v) << 20) #define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q) (0x8060 + ((q) << 2)) #define MVPP2_TXQ_TOKEN_SIZE_MAX 0x7fffffff #define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q) (0x8080 + ((q) << 2)) #define MVPP2_TXQ_TOKEN_CNTR_MAX 0xffffffff /* TX general registers */ #define MVPP2_TX_SNOOP_REG 0x8800 #define MVPP2_TX_PORT_FLUSH_REG 0x8810 #define MVPP2_TX_PORT_FLUSH_MASK(port) (1 << (port)) /* LMS registers */ #define MVPP2_SRC_ADDR_MIDDLE 0x24 #define MVPP2_SRC_ADDR_HIGH 0x28 #define MVPP2_PHY_AN_CFG0_REG 0x34 #define MVPP2_PHY_AN_STOP_SMI0_MASK BIT(7) #define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG 0x305c #define MVPP2_EXT_GLOBAL_CTRL_DEFAULT 0x27 /* Per-port registers */ #define MVPP2_GMAC_CTRL_0_REG 0x0 #define MVPP2_GMAC_PORT_EN_MASK BIT(0) #define MVPP2_GMAC_PORT_TYPE_MASK BIT(1) #define MVPP2_GMAC_MAX_RX_SIZE_OFFS 2 #define MVPP2_GMAC_MAX_RX_SIZE_MASK 0x7ffc #define MVPP2_GMAC_MIB_CNTR_EN_MASK BIT(15) #define MVPP2_GMAC_CTRL_1_REG 0x4 #define MVPP2_GMAC_PERIODIC_XON_EN_MASK BIT(1) #define MVPP2_GMAC_GMII_LB_EN_MASK BIT(5) #define MVPP2_GMAC_PCS_LB_EN_BIT 6 #define MVPP2_GMAC_PCS_LB_EN_MASK BIT(6) #define MVPP2_GMAC_SA_LOW_OFFS 7 #define MVPP2_GMAC_CTRL_2_REG 0x8 #define MVPP2_GMAC_INBAND_AN_MASK BIT(0) #define MVPP2_GMAC_SGMII_MODE_MASK BIT(0) #define MVPP2_GMAC_PCS_ENABLE_MASK BIT(3) #define MVPP2_GMAC_PORT_RGMII_MASK BIT(4) #define MVPP2_GMAC_PORT_DIS_PADING_MASK BIT(5) #define MVPP2_GMAC_PORT_RESET_MASK BIT(6) #define MVPP2_GMAC_CLK_125_BYPS_EN_MASK BIT(9) #define MVPP2_GMAC_AUTONEG_CONFIG 0xc #define MVPP2_GMAC_FORCE_LINK_DOWN BIT(0) #define MVPP2_GMAC_FORCE_LINK_PASS BIT(1) #define MVPP2_GMAC_EN_PCS_AN BIT(2) #define MVPP2_GMAC_AN_BYPASS_EN BIT(3) #define MVPP2_GMAC_CONFIG_MII_SPEED BIT(5) #define MVPP2_GMAC_CONFIG_GMII_SPEED BIT(6) #define MVPP2_GMAC_AN_SPEED_EN BIT(7) #define MVPP2_GMAC_FC_ADV_EN BIT(9) #define MVPP2_GMAC_EN_FC_AN BIT(11) #define MVPP2_GMAC_CONFIG_FULL_DUPLEX BIT(12) #define MVPP2_GMAC_AN_DUPLEX_EN BIT(13) #define MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG BIT(15) #define MVPP2_GMAC_PORT_FIFO_CFG_1_REG 0x1c #define MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS 6 #define MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK 0x1fc0 #define MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v) (((v) << 6) & \ MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK) #define MVPP2_GMAC_CTRL_4_REG 0x90 #define MVPP2_GMAC_CTRL4_EXT_PIN_GMII_SEL_MASK BIT(0) #define MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK BIT(5) #define MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK BIT(6) #define MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK BIT(7) /* * Per-port XGMAC registers. PPv2.2 only, only for GOP port 0, * relative to port->base. */ /* Port Mac Control0 */ #define MVPP22_XLG_CTRL0_REG 0x100 #define MVPP22_XLG_PORT_EN BIT(0) #define MVPP22_XLG_MAC_RESETN BIT(1) #define MVPP22_XLG_RX_FC_EN BIT(7) #define MVPP22_XLG_MIBCNT_DIS BIT(13) /* Port Mac Control1 */ #define MVPP22_XLG_CTRL1_REG 0x104 #define MVPP22_XLG_MAX_RX_SIZE_OFFS 0 #define MVPP22_XLG_MAX_RX_SIZE_MASK 0x1fff /* Port Interrupt Mask */ #define MVPP22_XLG_INTERRUPT_MASK_REG 0x118 #define MVPP22_XLG_INTERRUPT_LINK_CHANGE BIT(1) /* Port Mac Control3 */ #define MVPP22_XLG_CTRL3_REG 0x11c #define MVPP22_XLG_CTRL3_MACMODESELECT_MASK (7 << 13) #define MVPP22_XLG_CTRL3_MACMODESELECT_GMAC (0 << 13) #define MVPP22_XLG_CTRL3_MACMODESELECT_10GMAC (1 << 13) /* Port Mac Control4 */ #define MVPP22_XLG_CTRL4_REG 0x184 #define MVPP22_XLG_FORWARD_802_3X_FC_EN BIT(5) #define MVPP22_XLG_FORWARD_PFC_EN BIT(6) #define MVPP22_XLG_MODE_DMA_1G BIT(12) #define MVPP22_XLG_EN_IDLE_CHECK_FOR_LINK BIT(14) /* XPCS registers */ /* Global Configuration 0 */ #define MVPP22_XPCS_GLOBAL_CFG_0_REG 0x0 #define MVPP22_XPCS_PCSRESET BIT(0) #define MVPP22_XPCS_PCSMODE_OFFS 3 #define MVPP22_XPCS_PCSMODE_MASK (0x3 << \ MVPP22_XPCS_PCSMODE_OFFS) #define MVPP22_XPCS_LANEACTIVE_OFFS 5 #define MVPP22_XPCS_LANEACTIVE_MASK (0x3 << \ MVPP22_XPCS_LANEACTIVE_OFFS) /* MPCS registers */ #define PCS40G_COMMON_CONTROL 0x14 #define FORWARD_ERROR_CORRECTION_MASK BIT(10) #define PCS_CLOCK_RESET 0x14c #define TX_SD_CLK_RESET_MASK BIT(0) #define RX_SD_CLK_RESET_MASK BIT(1) #define MAC_CLK_RESET_MASK BIT(2) #define CLK_DIVISION_RATIO_OFFS 4 #define CLK_DIVISION_RATIO_MASK (0x7 << CLK_DIVISION_RATIO_OFFS) #define CLK_DIV_PHASE_SET_MASK BIT(11) /* System Soft Reset 1 */ #define GOP_SOFT_RESET_1_REG 0x108 #define NETC_GOP_SOFT_RESET_OFFS 6 #define NETC_GOP_SOFT_RESET_MASK (0x1 << \ NETC_GOP_SOFT_RESET_OFFS) /* Ports Control 0 */ #define NETCOMP_PORTS_CONTROL_0_REG 0x110 #define NETC_BUS_WIDTH_SELECT_OFFS 1 #define NETC_BUS_WIDTH_SELECT_MASK (0x1 << \ NETC_BUS_WIDTH_SELECT_OFFS) #define NETC_GIG_RX_DATA_SAMPLE_OFFS 29 #define NETC_GIG_RX_DATA_SAMPLE_MASK (0x1 << \ NETC_GIG_RX_DATA_SAMPLE_OFFS) #define NETC_CLK_DIV_PHASE_OFFS 31 #define NETC_CLK_DIV_PHASE_MASK (0x1 << NETC_CLK_DIV_PHASE_OFFS) /* Ports Control 1 */ #define NETCOMP_PORTS_CONTROL_1_REG 0x114 #define NETC_PORTS_ACTIVE_OFFSET(p) (0 + p) #define NETC_PORTS_ACTIVE_MASK(p) (0x1 << \ NETC_PORTS_ACTIVE_OFFSET(p)) #define NETC_PORT_GIG_RF_RESET_OFFS(p) (28 + p) #define NETC_PORT_GIG_RF_RESET_MASK(p) (0x1 << \ NETC_PORT_GIG_RF_RESET_OFFS(p)) #define NETCOMP_CONTROL_0_REG 0x120 #define NETC_GBE_PORT0_SGMII_MODE_OFFS 0 #define NETC_GBE_PORT0_SGMII_MODE_MASK (0x1 << \ NETC_GBE_PORT0_SGMII_MODE_OFFS) #define NETC_GBE_PORT1_SGMII_MODE_OFFS 1 #define NETC_GBE_PORT1_SGMII_MODE_MASK (0x1 << \ NETC_GBE_PORT1_SGMII_MODE_OFFS) #define NETC_GBE_PORT1_MII_MODE_OFFS 2 #define NETC_GBE_PORT1_MII_MODE_MASK (0x1 << \ NETC_GBE_PORT1_MII_MODE_OFFS) #define MVPP22_SMI_MISC_CFG_REG (MVPP22_SMI + 0x04) #define MVPP22_SMI_POLLING_EN BIT(10) #define MVPP22_SMI_PHY_ADDR_REG(port) (MVPP22_SMI + 0x04 + \ (0x4 * (port))) #define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff /* Descriptor ring Macros */ #define MVPP2_QUEUE_NEXT_DESC(q, index) \ (((index) < (q)->last_desc) ? ((index) + 1) : 0) /* SMI: 0xc0054 -> offset 0x54 to lms_base */ #define MVPP21_SMI 0x0054 /* PP2.2: SMI: 0x12a200 -> offset 0x1200 to iface_base */ #define MVPP22_SMI 0x1200 #define MVPP2_PHY_REG_MASK 0x1f /* SMI register fields */ #define MVPP2_SMI_DATA_OFFS 0 /* Data */ #define MVPP2_SMI_DATA_MASK (0xffff << MVPP2_SMI_DATA_OFFS) #define MVPP2_SMI_DEV_ADDR_OFFS 16 /* PHY device address */ #define MVPP2_SMI_REG_ADDR_OFFS 21 /* PHY device reg addr*/ #define MVPP2_SMI_OPCODE_OFFS 26 /* Write/Read opcode */ #define MVPP2_SMI_OPCODE_READ (1 << MVPP2_SMI_OPCODE_OFFS) #define MVPP2_SMI_READ_VALID (1 << 27) /* Read Valid */ #define MVPP2_SMI_BUSY (1 << 28) /* Busy */ #define MVPP2_PHY_ADDR_MASK 0x1f #define MVPP2_PHY_REG_MASK 0x1f /* Additional PPv2.2 offsets */ #define MVPP22_MPCS 0x007000 #define MVPP22_XPCS 0x007400 #define MVPP22_PORT_BASE 0x007e00 #define MVPP22_PORT_OFFSET 0x001000 #define MVPP22_RFU1 0x318000 /* Maximum number of ports */ #define MVPP22_GOP_MAC_NUM 4 /* Sets the field located at the specified in data */ #define MVPP2_RGMII_TX_FIFO_MIN_TH 0x41 #define MVPP2_SGMII_TX_FIFO_MIN_TH 0x5 #define MVPP2_SGMII2_5_TX_FIFO_MIN_TH 0xb /* Net Complex */ enum mv_netc_topology { MV_NETC_GE_MAC2_SGMII = BIT(0), MV_NETC_GE_MAC3_SGMII = BIT(1), MV_NETC_GE_MAC3_RGMII = BIT(2), }; enum mv_netc_phase { MV_NETC_FIRST_PHASE, MV_NETC_SECOND_PHASE, }; enum mv_netc_sgmii_xmi_mode { MV_NETC_GBE_SGMII, MV_NETC_GBE_XMII, }; enum mv_netc_mii_mode { MV_NETC_GBE_RGMII, MV_NETC_GBE_MII, }; enum mv_netc_lanes { MV_NETC_LANE_23, MV_NETC_LANE_45, }; /* Various constants */ /* Coalescing */ #define MVPP2_TXDONE_COAL_PKTS_THRESH 15 #define MVPP2_TXDONE_HRTIMER_PERIOD_NS 1000000UL #define MVPP2_RX_COAL_PKTS 32 #define MVPP2_RX_COAL_USEC 100 /* The two bytes Marvell header. Either contains a special value used * by Marvell switches when a specific hardware mode is enabled (not * supported by this driver) or is filled automatically by zeroes on * the RX side. Those two bytes being at the front of the Ethernet * header, they allow to have the IP header aligned on a 4 bytes * boundary automatically: the hardware skips those two bytes on its * own. */ #define MVPP2_MH_SIZE 2 #define MVPP2_ETH_TYPE_LEN 2 #define MVPP2_PPPOE_HDR_SIZE 8 #define MVPP2_VLAN_TAG_LEN 4 /* Lbtd 802.3 type */ #define MVPP2_IP_LBDT_TYPE 0xfffa #define MVPP2_CPU_D_CACHE_LINE_SIZE 32 #define MVPP2_TX_CSUM_MAX_SIZE 9800 /* Timeout constants */ #define MVPP2_TX_DISABLE_TIMEOUT_MSEC 1000 #define MVPP2_TX_PENDING_TIMEOUT_MSEC 1000 #define MVPP2_TX_MTU_MAX 0x7ffff /* Maximum number of T-CONTs of PON port */ #define MVPP2_MAX_TCONT 16 /* Maximum number of supported ports */ #define MVPP2_MAX_PORTS 4 /* Maximum number of TXQs used by single port */ #define MVPP2_MAX_TXQ 8 /* Default number of TXQs in use */ #define MVPP2_DEFAULT_TXQ 1 /* Dfault number of RXQs in use */ #define MVPP2_DEFAULT_RXQ 1 #define CONFIG_MV_ETH_RXQ 8 /* increment by 8 */ /* Max number of Rx descriptors */ #define MVPP2_MAX_RXD 16 /* Max number of Tx descriptors */ #define MVPP2_MAX_TXD 16 /* Amount of Tx descriptors that can be reserved at once by CPU */ #define MVPP2_CPU_DESC_CHUNK 16 /* Max number of Tx descriptors in each aggregated queue */ #define MVPP2_AGGR_TXQ_SIZE 16 /* Descriptor aligned size */ #define MVPP2_DESC_ALIGNED_SIZE 32 /* Descriptor alignment mask */ #define MVPP2_TX_DESC_ALIGN (MVPP2_DESC_ALIGNED_SIZE - 1) /* RX FIFO constants */ #define MVPP21_RX_FIFO_PORT_DATA_SIZE 0x2000 #define MVPP21_RX_FIFO_PORT_ATTR_SIZE 0x80 #define MVPP22_RX_FIFO_10GB_PORT_DATA_SIZE 0x8000 #define MVPP22_RX_FIFO_2_5GB_PORT_DATA_SIZE 0x2000 #define MVPP22_RX_FIFO_1GB_PORT_DATA_SIZE 0x1000 #define MVPP22_RX_FIFO_10GB_PORT_ATTR_SIZE 0x200 #define MVPP22_RX_FIFO_2_5GB_PORT_ATTR_SIZE 0x80 #define MVPP22_RX_FIFO_1GB_PORT_ATTR_SIZE 0x40 #define MVPP2_RX_FIFO_PORT_MIN_PKT 0x80 /* TX general registers */ #define MVPP22_TX_FIFO_SIZE_REG(eth_tx_port) (0x8860 + ((eth_tx_port) << 2)) #define MVPP22_TX_FIFO_SIZE_MASK 0xf /* TX FIFO constants */ #define MVPP2_TX_FIFO_DATA_SIZE_10KB 0xa #define MVPP2_TX_FIFO_DATA_SIZE_3KB 0x3 /* RX buffer constants */ #define MVPP2_SKB_SHINFO_SIZE \ 0 #define MVPP2_RX_PKT_SIZE(mtu) \ ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \ ETH_HLEN + ETH_FCS_LEN, MVPP2_CPU_D_CACHE_LINE_SIZE) #define MVPP2_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD) #define MVPP2_RX_TOTAL_SIZE(buf_size) ((buf_size) + MVPP2_SKB_SHINFO_SIZE) #define MVPP2_RX_MAX_PKT_SIZE(total_size) \ ((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE) #define MVPP2_BIT_TO_BYTE(bit) ((bit) / 8) /* IPv6 max L3 address size */ #define MVPP2_MAX_L3_ADDR_SIZE 16 /* Port flags */ #define MVPP2_F_LOOPBACK BIT(0) /* Marvell tag types */ enum mvpp2_tag_type { MVPP2_TAG_TYPE_NONE = 0, MVPP2_TAG_TYPE_MH = 1, MVPP2_TAG_TYPE_DSA = 2, MVPP2_TAG_TYPE_EDSA = 3, MVPP2_TAG_TYPE_VLAN = 4, MVPP2_TAG_TYPE_LAST = 5 }; /* Parser constants */ #define MVPP2_PRS_TCAM_SRAM_SIZE 256 #define MVPP2_PRS_TCAM_WORDS 6 #define MVPP2_PRS_SRAM_WORDS 4 #define MVPP2_PRS_FLOW_ID_SIZE 64 #define MVPP2_PRS_FLOW_ID_MASK 0x3f #define MVPP2_PRS_TCAM_ENTRY_INVALID 1 #define MVPP2_PRS_TCAM_DSA_TAGGED_BIT BIT(5) #define MVPP2_PRS_IPV4_HEAD 0x40 #define MVPP2_PRS_IPV4_HEAD_MASK 0xf0 #define MVPP2_PRS_IPV4_MC 0xe0 #define MVPP2_PRS_IPV4_MC_MASK 0xf0 #define MVPP2_PRS_IPV4_BC_MASK 0xff #define MVPP2_PRS_IPV4_IHL 0x5 #define MVPP2_PRS_IPV4_IHL_MASK 0xf #define MVPP2_PRS_IPV6_MC 0xff #define MVPP2_PRS_IPV6_MC_MASK 0xff #define MVPP2_PRS_IPV6_HOP_MASK 0xff #define MVPP2_PRS_TCAM_PROTO_MASK 0xff #define MVPP2_PRS_TCAM_PROTO_MASK_L 0x3f #define MVPP2_PRS_DBL_VLANS_MAX 100 /* Tcam structure: * - lookup ID - 4 bits * - port ID - 1 byte * - additional information - 1 byte * - header data - 8 bytes * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0). */ #define MVPP2_PRS_AI_BITS 8 #define MVPP2_PRS_PORT_MASK 0xff #define MVPP2_PRS_LU_MASK 0xf #define MVPP2_PRS_TCAM_DATA_BYTE(offs) \ (((offs) - ((offs) % 2)) * 2 + ((offs) % 2)) #define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs) \ (((offs) * 2) - ((offs) % 2) + 2) #define MVPP2_PRS_TCAM_AI_BYTE 16 #define MVPP2_PRS_TCAM_PORT_BYTE 17 #define MVPP2_PRS_TCAM_LU_BYTE 20 #define MVPP2_PRS_TCAM_EN_OFFS(offs) ((offs) + 2) #define MVPP2_PRS_TCAM_INV_WORD 5 /* Tcam entries ID */ #define MVPP2_PE_DROP_ALL 0 #define MVPP2_PE_FIRST_FREE_TID 1 #define MVPP2_PE_LAST_FREE_TID (MVPP2_PRS_TCAM_SRAM_SIZE - 31) #define MVPP2_PE_IP6_EXT_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 30) #define MVPP2_PE_MAC_MC_IP6 (MVPP2_PRS_TCAM_SRAM_SIZE - 29) #define MVPP2_PE_IP6_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 28) #define MVPP2_PE_IP4_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 27) #define MVPP2_PE_LAST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 26) #define MVPP2_PE_FIRST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 19) #define MVPP2_PE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 18) #define MVPP2_PE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 17) #define MVPP2_PE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 16) #define MVPP2_PE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 15) #define MVPP2_PE_ETYPE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 14) #define MVPP2_PE_ETYPE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 13) #define MVPP2_PE_ETYPE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 12) #define MVPP2_PE_ETYPE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 11) #define MVPP2_PE_MH_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 10) #define MVPP2_PE_DSA_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 9) #define MVPP2_PE_IP6_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 8) #define MVPP2_PE_IP4_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 7) #define MVPP2_PE_ETH_TYPE_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 6) #define MVPP2_PE_VLAN_DBL (MVPP2_PRS_TCAM_SRAM_SIZE - 5) #define MVPP2_PE_VLAN_NONE (MVPP2_PRS_TCAM_SRAM_SIZE - 4) #define MVPP2_PE_MAC_MC_ALL (MVPP2_PRS_TCAM_SRAM_SIZE - 3) #define MVPP2_PE_MAC_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 2) #define MVPP2_PE_MAC_NON_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 1) /* Sram structure * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0). */ #define MVPP2_PRS_SRAM_RI_OFFS 0 #define MVPP2_PRS_SRAM_RI_WORD 0 #define MVPP2_PRS_SRAM_RI_CTRL_OFFS 32 #define MVPP2_PRS_SRAM_RI_CTRL_WORD 1 #define MVPP2_PRS_SRAM_RI_CTRL_BITS 32 #define MVPP2_PRS_SRAM_SHIFT_OFFS 64 #define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT 72 #define MVPP2_PRS_SRAM_UDF_OFFS 73 #define MVPP2_PRS_SRAM_UDF_BITS 8 #define MVPP2_PRS_SRAM_UDF_MASK 0xff #define MVPP2_PRS_SRAM_UDF_SIGN_BIT 81 #define MVPP2_PRS_SRAM_UDF_TYPE_OFFS 82 #define MVPP2_PRS_SRAM_UDF_TYPE_MASK 0x7 #define MVPP2_PRS_SRAM_UDF_TYPE_L3 1 #define MVPP2_PRS_SRAM_UDF_TYPE_L4 4 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS 85 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK 0x3 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD 1 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD 2 #define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD 3 #define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS 87 #define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS 2 #define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK 0x3 #define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD 0 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD 2 #define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD 3 #define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS 89 #define MVPP2_PRS_SRAM_AI_OFFS 90 #define MVPP2_PRS_SRAM_AI_CTRL_OFFS 98 #define MVPP2_PRS_SRAM_AI_CTRL_BITS 8 #define MVPP2_PRS_SRAM_AI_MASK 0xff #define MVPP2_PRS_SRAM_NEXT_LU_OFFS 106 #define MVPP2_PRS_SRAM_NEXT_LU_MASK 0xf #define MVPP2_PRS_SRAM_LU_DONE_BIT 110 #define MVPP2_PRS_SRAM_LU_GEN_BIT 111 /* Sram result info bits assignment */ #define MVPP2_PRS_RI_MAC_ME_MASK 0x1 #define MVPP2_PRS_RI_DSA_MASK 0x2 #define MVPP2_PRS_RI_VLAN_MASK (BIT(2) | BIT(3)) #define MVPP2_PRS_RI_VLAN_NONE 0x0 #define MVPP2_PRS_RI_VLAN_SINGLE BIT(2) #define MVPP2_PRS_RI_VLAN_DOUBLE BIT(3) #define MVPP2_PRS_RI_VLAN_TRIPLE (BIT(2) | BIT(3)) #define MVPP2_PRS_RI_CPU_CODE_MASK 0x70 #define MVPP2_PRS_RI_CPU_CODE_RX_SPEC BIT(4) #define MVPP2_PRS_RI_L2_CAST_MASK (BIT(9) | BIT(10)) #define MVPP2_PRS_RI_L2_UCAST 0x0 #define MVPP2_PRS_RI_L2_MCAST BIT(9) #define MVPP2_PRS_RI_L2_BCAST BIT(10) #define MVPP2_PRS_RI_PPPOE_MASK 0x800 #define MVPP2_PRS_RI_L3_PROTO_MASK (BIT(12) | BIT(13) | BIT(14)) #define MVPP2_PRS_RI_L3_UN 0x0 #define MVPP2_PRS_RI_L3_IP4 BIT(12) #define MVPP2_PRS_RI_L3_IP4_OPT BIT(13) #define MVPP2_PRS_RI_L3_IP4_OTHER (BIT(12) | BIT(13)) #define MVPP2_PRS_RI_L3_IP6 BIT(14) #define MVPP2_PRS_RI_L3_IP6_EXT (BIT(12) | BIT(14)) #define MVPP2_PRS_RI_L3_ARP (BIT(13) | BIT(14)) #define MVPP2_PRS_RI_L3_ADDR_MASK (BIT(15) | BIT(16)) #define MVPP2_PRS_RI_L3_UCAST 0x0 #define MVPP2_PRS_RI_L3_MCAST BIT(15) #define MVPP2_PRS_RI_L3_BCAST (BIT(15) | BIT(16)) #define MVPP2_PRS_RI_IP_FRAG_MASK 0x20000 #define MVPP2_PRS_RI_UDF3_MASK 0x300000 #define MVPP2_PRS_RI_UDF3_RX_SPECIAL BIT(21) #define MVPP2_PRS_RI_L4_PROTO_MASK 0x1c00000 #define MVPP2_PRS_RI_L4_TCP BIT(22) #define MVPP2_PRS_RI_L4_UDP BIT(23) #define MVPP2_PRS_RI_L4_OTHER (BIT(22) | BIT(23)) #define MVPP2_PRS_RI_UDF7_MASK 0x60000000 #define MVPP2_PRS_RI_UDF7_IP6_LITE BIT(29) #define MVPP2_PRS_RI_DROP_MASK 0x80000000 /* Sram additional info bits assignment */ #define MVPP2_PRS_IPV4_DIP_AI_BIT BIT(0) #define MVPP2_PRS_IPV6_NO_EXT_AI_BIT BIT(0) #define MVPP2_PRS_IPV6_EXT_AI_BIT BIT(1) #define MVPP2_PRS_IPV6_EXT_AH_AI_BIT BIT(2) #define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT BIT(3) #define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT BIT(4) #define MVPP2_PRS_SINGLE_VLAN_AI 0 #define MVPP2_PRS_DBL_VLAN_AI_BIT BIT(7) /* DSA/EDSA type */ #define MVPP2_PRS_TAGGED true #define MVPP2_PRS_UNTAGGED false #define MVPP2_PRS_EDSA true #define MVPP2_PRS_DSA false /* MAC entries, shadow udf */ enum mvpp2_prs_udf { MVPP2_PRS_UDF_MAC_DEF, MVPP2_PRS_UDF_MAC_RANGE, MVPP2_PRS_UDF_L2_DEF, MVPP2_PRS_UDF_L2_DEF_COPY, MVPP2_PRS_UDF_L2_USER, }; /* Lookup ID */ enum mvpp2_prs_lookup { MVPP2_PRS_LU_MH, MVPP2_PRS_LU_MAC, MVPP2_PRS_LU_DSA, MVPP2_PRS_LU_VLAN, MVPP2_PRS_LU_L2, MVPP2_PRS_LU_PPPOE, MVPP2_PRS_LU_IP4, MVPP2_PRS_LU_IP6, MVPP2_PRS_LU_FLOWS, MVPP2_PRS_LU_LAST, }; /* L3 cast enum */ enum mvpp2_prs_l3_cast { MVPP2_PRS_L3_UNI_CAST, MVPP2_PRS_L3_MULTI_CAST, MVPP2_PRS_L3_BROAD_CAST }; /* Classifier constants */ #define MVPP2_CLS_FLOWS_TBL_SIZE 512 #define MVPP2_CLS_FLOWS_TBL_DATA_WORDS 3 #define MVPP2_CLS_LKP_TBL_SIZE 64 /* BM constants */ #define MVPP2_BM_POOLS_NUM 1 #define MVPP2_BM_LONG_BUF_NUM 16 #define MVPP2_BM_SHORT_BUF_NUM 16 #define MVPP2_BM_POOL_SIZE_MAX (16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4) #define MVPP2_BM_POOL_PTR_ALIGN 128 #define MVPP2_BM_SWF_LONG_POOL(port) 0 /* BM cookie (32 bits) definition */ #define MVPP2_BM_COOKIE_POOL_OFFS 8 #define MVPP2_BM_COOKIE_CPU_OFFS 24 /* BM short pool packet size * These value assure that for SWF the total number * of bytes allocated for each buffer will be 512 */ #define MVPP2_BM_SHORT_PKT_SIZE MVPP2_RX_MAX_PKT_SIZE(512) enum mvpp2_bm_type { MVPP2_BM_FREE, MVPP2_BM_SWF_LONG, MVPP2_BM_SWF_SHORT }; /* Definitions */ /* Shared Packet Processor resources */ struct mvpp2 { /* Shared registers' base addresses */ void __iomem *base; void __iomem *lms_base; void __iomem *iface_base; void __iomem *mpcs_base; void __iomem *xpcs_base; void __iomem *rfu1_base; u32 netc_config; /* List of pointers to port structures */ struct mvpp2_port **port_list; /* Aggregated TXQs */ struct mvpp2_tx_queue *aggr_txqs; /* BM pools */ struct mvpp2_bm_pool *bm_pools; /* PRS shadow table */ struct mvpp2_prs_shadow *prs_shadow; /* PRS auxiliary table for double vlan entries control */ bool *prs_double_vlans; /* Tclk value */ u32 tclk; /* HW version */ enum { MVPP21, MVPP22 } hw_version; /* Maximum number of RXQs per port */ unsigned int max_port_rxqs; int probe_done; u8 num_ports; }; struct mvpp2_pcpu_stats { u64 rx_packets; u64 rx_bytes; u64 tx_packets; u64 tx_bytes; }; struct mvpp2_port { u8 id; /* Index of the port from the "group of ports" complex point * of view */ int gop_id; int irq; struct mvpp2 *priv; /* Per-port registers' base address */ void __iomem *base; void __iomem *mdio_base; struct mvpp2_rx_queue **rxqs; struct mvpp2_tx_queue **txqs; int pkt_size; u32 pending_cause_rx; /* Per-CPU port control */ struct mvpp2_port_pcpu __percpu *pcpu; /* Flags */ unsigned long flags; u16 tx_ring_size; u16 rx_ring_size; struct mvpp2_pcpu_stats __percpu *stats; struct phy_device *phy_dev; phy_interface_t phy_interface; int phy_node; int phyaddr; struct mii_dev *bus; #ifdef CONFIG_DM_GPIO struct gpio_desc phy_reset_gpio; struct gpio_desc phy_tx_disable_gpio; #endif int init; unsigned int link; unsigned int duplex; unsigned int speed; unsigned int phy_speed; /* SGMII 1Gbps vs 2.5Gbps */ struct mvpp2_bm_pool *pool_long; struct mvpp2_bm_pool *pool_short; /* Index of first port's physical RXQ */ u8 first_rxq; u8 dev_addr[ETH_ALEN]; }; /* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the * layout of the transmit and reception DMA descriptors, and their * layout is therefore defined by the hardware design */ #define MVPP2_TXD_L3_OFF_SHIFT 0 #define MVPP2_TXD_IP_HLEN_SHIFT 8 #define MVPP2_TXD_L4_CSUM_FRAG BIT(13) #define MVPP2_TXD_L4_CSUM_NOT BIT(14) #define MVPP2_TXD_IP_CSUM_DISABLE BIT(15) #define MVPP2_TXD_PADDING_DISABLE BIT(23) #define MVPP2_TXD_L4_UDP BIT(24) #define MVPP2_TXD_L3_IP6 BIT(26) #define MVPP2_TXD_L_DESC BIT(28) #define MVPP2_TXD_F_DESC BIT(29) #define MVPP2_RXD_ERR_SUMMARY BIT(15) #define MVPP2_RXD_ERR_CODE_MASK (BIT(13) | BIT(14)) #define MVPP2_RXD_ERR_CRC 0x0 #define MVPP2_RXD_ERR_OVERRUN BIT(13) #define MVPP2_RXD_ERR_RESOURCE (BIT(13) | BIT(14)) #define MVPP2_RXD_BM_POOL_ID_OFFS 16 #define MVPP2_RXD_BM_POOL_ID_MASK (BIT(16) | BIT(17) | BIT(18)) #define MVPP2_RXD_HWF_SYNC BIT(21) #define MVPP2_RXD_L4_CSUM_OK BIT(22) #define MVPP2_RXD_IP4_HEADER_ERR BIT(24) #define MVPP2_RXD_L4_TCP BIT(25) #define MVPP2_RXD_L4_UDP BIT(26) #define MVPP2_RXD_L3_IP4 BIT(28) #define MVPP2_RXD_L3_IP6 BIT(30) #define MVPP2_RXD_BUF_HDR BIT(31) /* HW TX descriptor for PPv2.1 */ struct mvpp21_tx_desc { u32 command; /* Options used by HW for packet transmitting.*/ u8 packet_offset; /* the offset from the buffer beginning */ u8 phys_txq; /* destination queue ID */ u16 data_size; /* data size of transmitted packet in bytes */ u32 buf_dma_addr; /* physical addr of transmitted buffer */ u32 buf_cookie; /* cookie for access to TX buffer in tx path */ u32 reserved1[3]; /* hw_cmd (for future use, BM, PON, PNC) */ u32 reserved2; /* reserved (for future use) */ }; /* HW RX descriptor for PPv2.1 */ struct mvpp21_rx_desc { u32 status; /* info about received packet */ u16 reserved1; /* parser_info (for future use, PnC) */ u16 data_size; /* size of received packet in bytes */ u32 buf_dma_addr; /* physical address of the buffer */ u32 buf_cookie; /* cookie for access to RX buffer in rx path */ u16 reserved2; /* gem_port_id (for future use, PON) */ u16 reserved3; /* csum_l4 (for future use, PnC) */ u8 reserved4; /* bm_qset (for future use, BM) */ u8 reserved5; u16 reserved6; /* classify_info (for future use, PnC) */ u32 reserved7; /* flow_id (for future use, PnC) */ u32 reserved8; }; /* HW TX descriptor for PPv2.2 */ struct mvpp22_tx_desc { u32 command; u8 packet_offset; u8 phys_txq; u16 data_size; u64 reserved1; u64 buf_dma_addr_ptp; u64 buf_cookie_misc; }; /* HW RX descriptor for PPv2.2 */ struct mvpp22_rx_desc { u32 status; u16 reserved1; u16 data_size; u32 reserved2; u32 reserved3; u64 buf_dma_addr_key_hash; u64 buf_cookie_misc; }; /* Opaque type used by the driver to manipulate the HW TX and RX * descriptors */ struct mvpp2_tx_desc { union { struct mvpp21_tx_desc pp21; struct mvpp22_tx_desc pp22; }; }; struct mvpp2_rx_desc { union { struct mvpp21_rx_desc pp21; struct mvpp22_rx_desc pp22; }; }; /* Per-CPU Tx queue control */ struct mvpp2_txq_pcpu { int cpu; /* Number of Tx DMA descriptors in the descriptor ring */ int size; /* Number of currently used Tx DMA descriptor in the * descriptor ring */ int count; /* Number of Tx DMA descriptors reserved for each CPU */ int reserved_num; /* Index of last TX DMA descriptor that was inserted */ int txq_put_index; /* Index of the TX DMA descriptor to be cleaned up */ int txq_get_index; }; struct mvpp2_tx_queue { /* Physical number of this Tx queue */ u8 id; /* Logical number of this Tx queue */ u8 log_id; /* Number of Tx DMA descriptors in the descriptor ring */ int size; /* Number of currently used Tx DMA descriptor in the descriptor ring */ int count; /* Per-CPU control of physical Tx queues */ struct mvpp2_txq_pcpu __percpu *pcpu; u32 done_pkts_coal; /* Virtual address of thex Tx DMA descriptors array */ struct mvpp2_tx_desc *descs; /* DMA address of the Tx DMA descriptors array */ dma_addr_t descs_dma; /* Index of the last Tx DMA descriptor */ int last_desc; /* Index of the next Tx DMA descriptor to process */ int next_desc_to_proc; }; struct mvpp2_rx_queue { /* RX queue number, in the range 0-31 for physical RXQs */ u8 id; /* Num of rx descriptors in the rx descriptor ring */ int size; u32 pkts_coal; u32 time_coal; /* Virtual address of the RX DMA descriptors array */ struct mvpp2_rx_desc *descs; /* DMA address of the RX DMA descriptors array */ dma_addr_t descs_dma; /* Index of the last RX DMA descriptor */ int last_desc; /* Index of the next RX DMA descriptor to process */ int next_desc_to_proc; /* ID of port to which physical RXQ is mapped */ int port; /* Port's logic RXQ number to which physical RXQ is mapped */ int logic_rxq; }; union mvpp2_prs_tcam_entry { u32 word[MVPP2_PRS_TCAM_WORDS]; u8 byte[MVPP2_PRS_TCAM_WORDS * 4]; }; union mvpp2_prs_sram_entry { u32 word[MVPP2_PRS_SRAM_WORDS]; u8 byte[MVPP2_PRS_SRAM_WORDS * 4]; }; struct mvpp2_prs_entry { u32 index; union mvpp2_prs_tcam_entry tcam; union mvpp2_prs_sram_entry sram; }; struct mvpp2_prs_shadow { bool valid; bool finish; /* Lookup ID */ int lu; /* User defined offset */ int udf; /* Result info */ u32 ri; u32 ri_mask; }; struct mvpp2_cls_flow_entry { u32 index; u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS]; }; struct mvpp2_cls_lookup_entry { u32 lkpid; u32 way; u32 data; }; struct mvpp2_bm_pool { /* Pool number in the range 0-7 */ int id; enum mvpp2_bm_type type; /* Buffer Pointers Pool External (BPPE) size */ int size; /* Number of buffers for this pool */ int buf_num; /* Pool buffer size */ int buf_size; /* Packet size */ int pkt_size; /* BPPE virtual base address */ unsigned long *virt_addr; /* BPPE DMA base address */ dma_addr_t dma_addr; /* Ports using BM pool */ u32 port_map; }; /* Static declaractions */ /* Number of RXQs used by single port */ static int rxq_number = MVPP2_DEFAULT_RXQ; /* Number of TXQs used by single port */ static int txq_number = MVPP2_DEFAULT_TXQ; static int base_id; #define MVPP2_DRIVER_NAME "mvpp2" #define MVPP2_DRIVER_VERSION "1.0" /* * U-Boot internal data, mostly uncached buffers for descriptors and data */ struct buffer_location { struct mvpp2_tx_desc *aggr_tx_descs; struct mvpp2_tx_desc *tx_descs; struct mvpp2_rx_desc *rx_descs; unsigned long *bm_pool[MVPP2_BM_POOLS_NUM]; unsigned long *rx_buffer[MVPP2_BM_LONG_BUF_NUM]; int first_rxq; }; /* * All 4 interfaces use the same global buffer, since only one interface * can be enabled at once */ static struct buffer_location buffer_loc; /* * Page table entries are set to 1MB, or multiples of 1MB * (not < 1MB). driver uses less bd's so use 1MB bdspace. */ #define BD_SPACE (1 << 20) /* Utility/helper methods */ static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data) { writel(data, priv->base + offset); } static u32 mvpp2_read(struct mvpp2 *priv, u32 offset) { return readl(priv->base + offset); } static void mvpp2_txdesc_dma_addr_set(struct mvpp2_port *port, struct mvpp2_tx_desc *tx_desc, dma_addr_t dma_addr) { if (port->priv->hw_version == MVPP21) { tx_desc->pp21.buf_dma_addr = dma_addr; } else { u64 val = (u64)dma_addr; tx_desc->pp22.buf_dma_addr_ptp &= ~GENMASK_ULL(40, 0); tx_desc->pp22.buf_dma_addr_ptp |= val; } } static void mvpp2_txdesc_size_set(struct mvpp2_port *port, struct mvpp2_tx_desc *tx_desc, size_t size) { if (port->priv->hw_version == MVPP21) tx_desc->pp21.data_size = size; else tx_desc->pp22.data_size = size; } static void mvpp2_txdesc_txq_set(struct mvpp2_port *port, struct mvpp2_tx_desc *tx_desc, unsigned int txq) { if (port->priv->hw_version == MVPP21) tx_desc->pp21.phys_txq = txq; else tx_desc->pp22.phys_txq = txq; } static void mvpp2_txdesc_cmd_set(struct mvpp2_port *port, struct mvpp2_tx_desc *tx_desc, unsigned int command) { if (port->priv->hw_version == MVPP21) tx_desc->pp21.command = command; else tx_desc->pp22.command = command; } static void mvpp2_txdesc_offset_set(struct mvpp2_port *port, struct mvpp2_tx_desc *tx_desc, unsigned int offset) { if (port->priv->hw_version == MVPP21) tx_desc->pp21.packet_offset = offset; else tx_desc->pp22.packet_offset = offset; } static dma_addr_t mvpp2_rxdesc_dma_addr_get(struct mvpp2_port *port, struct mvpp2_rx_desc *rx_desc) { if (port->priv->hw_version == MVPP21) return rx_desc->pp21.buf_dma_addr; else return rx_desc->pp22.buf_dma_addr_key_hash & GENMASK_ULL(40, 0); } static unsigned long mvpp2_rxdesc_cookie_get(struct mvpp2_port *port, struct mvpp2_rx_desc *rx_desc) { if (port->priv->hw_version == MVPP21) return rx_desc->pp21.buf_cookie; else return rx_desc->pp22.buf_cookie_misc & GENMASK_ULL(40, 0); } static size_t mvpp2_rxdesc_size_get(struct mvpp2_port *port, struct mvpp2_rx_desc *rx_desc) { if (port->priv->hw_version == MVPP21) return rx_desc->pp21.data_size; else return rx_desc->pp22.data_size; } static u32 mvpp2_rxdesc_status_get(struct mvpp2_port *port, struct mvpp2_rx_desc *rx_desc) { if (port->priv->hw_version == MVPP21) return rx_desc->pp21.status; else return rx_desc->pp22.status; } static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu) { txq_pcpu->txq_get_index++; if (txq_pcpu->txq_get_index == txq_pcpu->size) txq_pcpu->txq_get_index = 0; } /* Get number of physical egress port */ static inline int mvpp2_egress_port(struct mvpp2_port *port) { return MVPP2_MAX_TCONT + port->id; } /* Get number of physical TXQ */ static inline int mvpp2_txq_phys(int port, int txq) { return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq; } /* Parser configuration routines */ /* Update parser tcam and sram hw entries */ static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe) { int i; if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1) return -EINVAL; /* Clear entry invalidation bit */ pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK; /* Write tcam index - indirect access */ mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index); for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++) mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]); /* Write sram index - indirect access */ mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index); for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++) mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]); return 0; } /* Read tcam entry from hw */ static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe) { int i; if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1) return -EINVAL; /* Write tcam index - indirect access */ mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index); pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD)); if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK) return MVPP2_PRS_TCAM_ENTRY_INVALID; for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++) pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i)); /* Write sram index - indirect access */ mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index); for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++) pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i)); return 0; } /* Invalidate tcam hw entry */ static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index) { /* Write index - indirect access */ mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index); mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD), MVPP2_PRS_TCAM_INV_MASK); } /* Enable shadow table entry and set its lookup ID */ static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu) { priv->prs_shadow[index].valid = true; priv->prs_shadow[index].lu = lu; } /* Update ri fields in shadow table entry */ static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index, unsigned int ri, unsigned int ri_mask) { priv->prs_shadow[index].ri_mask = ri_mask; priv->prs_shadow[index].ri = ri; } /* Update lookup field in tcam sw entry */ static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu) { int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE); pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu; pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK; } /* Update mask for single port in tcam sw entry */ static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe, unsigned int port, bool add) { int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE); if (add) pe->tcam.byte[enable_off] &= ~(1 << port); else pe->tcam.byte[enable_off] |= 1 << port; } /* Update port map in tcam sw entry */ static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe, unsigned int ports) { unsigned char port_mask = MVPP2_PRS_PORT_MASK; int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE); pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0; pe->tcam.byte[enable_off] &= ~port_mask; pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK; } /* Obtain port map from tcam sw entry */ static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe) { int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE); return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK; } /* Set byte of data and its enable bits in tcam sw entry */ static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe, unsigned int offs, unsigned char byte, unsigned char enable) { pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte; pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable; } /* Get byte of data and its enable bits from tcam sw entry */ static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe, unsigned int offs, unsigned char *byte, unsigned char *enable) { *byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)]; *enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)]; } /* Set ethertype in tcam sw entry */ static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset, unsigned short ethertype) { mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff); mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff); } /* Set bits in sram sw entry */ static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num, int val) { pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8)); } /* Clear bits in sram sw entry */ static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num, int val) { pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8)); } /* Update ri bits in sram sw entry */ static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe, unsigned int bits, unsigned int mask) { unsigned int i; for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) { int ri_off = MVPP2_PRS_SRAM_RI_OFFS; if (!(mask & BIT(i))) continue; if (bits & BIT(i)) mvpp2_prs_sram_bits_set(pe, ri_off + i, 1); else mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1); mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1); } } /* Update ai bits in sram sw entry */ static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe, unsigned int bits, unsigned int mask) { unsigned int i; int ai_off = MVPP2_PRS_SRAM_AI_OFFS; for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) { if (!(mask & BIT(i))) continue; if (bits & BIT(i)) mvpp2_prs_sram_bits_set(pe, ai_off + i, 1); else mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1); mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1); } } /* Read ai bits from sram sw entry */ static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe) { u8 bits; int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS); int ai_en_off = ai_off + 1; int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8; bits = (pe->sram.byte[ai_off] >> ai_shift) | (pe->sram.byte[ai_en_off] << (8 - ai_shift)); return bits; } /* In sram sw entry set lookup ID field of the tcam key to be used in the next * lookup interation */ static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu) { int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS; mvpp2_prs_sram_bits_clear(pe, sram_next_off, MVPP2_PRS_SRAM_NEXT_LU_MASK); mvpp2_prs_sram_bits_set(pe, sram_next_off, lu); } /* In the sram sw entry set sign and value of the next lookup offset * and the offset value generated to the classifier */ static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift, unsigned int op) { /* Set sign */ if (shift < 0) { mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1); shift = 0 - shift; } else { mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1); } /* Set value */ pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] = (unsigned char)shift; /* Reset and set operation */ mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK); mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op); /* Set base offset as current */ mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1); } /* In the sram sw entry set sign and value of the user defined offset * generated to the classifier */ static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe, unsigned int type, int offset, unsigned int op) { /* Set sign */ if (offset < 0) { mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1); offset = 0 - offset; } else { mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1); } /* Set value */ mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS, MVPP2_PRS_SRAM_UDF_MASK); mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset); pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS + MVPP2_PRS_SRAM_UDF_BITS)] &= ~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8))); pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS + MVPP2_PRS_SRAM_UDF_BITS)] |= (offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8))); /* Set offset type */ mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, MVPP2_PRS_SRAM_UDF_TYPE_MASK); mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type); /* Set offset operation */ mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, MVPP2_PRS_SRAM_OP_SEL_UDF_MASK); mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op); pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS + MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &= ~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8))); pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS + MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |= (op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8))); /* Set base offset as current */ mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1); } /* Find parser flow entry */ static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow) { struct mvpp2_prs_entry *pe; int tid; pe = kzalloc(sizeof(*pe), GFP_KERNEL); if (!pe) return NULL; mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS); /* Go through the all entires with MVPP2_PRS_LU_FLOWS */ for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) { u8 bits; if (!priv->prs_shadow[tid].valid || priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS) continue; pe->index = tid; mvpp2_prs_hw_read(priv, pe); bits = mvpp2_prs_sram_ai_get(pe); /* Sram store classification lookup ID in AI bits [5:0] */ if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow) return pe; } kfree(pe); return NULL; } /* Return first free tcam index, seeking from start to end */ static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start, unsigned char end) { int tid; if (start > end) swap(start, end); if (end >= MVPP2_PRS_TCAM_SRAM_SIZE) end = MVPP2_PRS_TCAM_SRAM_SIZE - 1; for (tid = start; tid <= end; tid++) { if (!priv->prs_shadow[tid].valid) return tid; } return -EINVAL; } /* Enable/disable dropping all mac da's */ static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add) { struct mvpp2_prs_entry pe; if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) { /* Entry exist - update port only */ pe.index = MVPP2_PE_DROP_ALL; mvpp2_prs_hw_read(priv, &pe); } else { /* Entry doesn't exist - create new */ memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC); pe.index = MVPP2_PE_DROP_ALL; /* Non-promiscuous mode for all ports - DROP unknown packets */ mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK, MVPP2_PRS_RI_DROP_MASK); mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); /* Update shadow table */ mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC); /* Mask all ports */ mvpp2_prs_tcam_port_map_set(&pe, 0); } /* Update port mask */ mvpp2_prs_tcam_port_set(&pe, port, add); mvpp2_prs_hw_write(priv, &pe); } /* Set port to promiscuous mode */ static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add) { struct mvpp2_prs_entry pe; /* Promiscuous mode - Accept unknown packets */ if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) { /* Entry exist - update port only */ pe.index = MVPP2_PE_MAC_PROMISCUOUS; mvpp2_prs_hw_read(priv, &pe); } else { /* Entry doesn't exist - create new */ memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC); pe.index = MVPP2_PE_MAC_PROMISCUOUS; /* Continue - set next lookup */ mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA); /* Set result info bits */ mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST, MVPP2_PRS_RI_L2_CAST_MASK); /* Shift to ethertype */ mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); /* Mask all ports */ mvpp2_prs_tcam_port_map_set(&pe, 0); /* Update shadow table */ mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC); } /* Update port mask */ mvpp2_prs_tcam_port_set(&pe, port, add); mvpp2_prs_hw_write(priv, &pe); } /* Accept multicast */ static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index, bool add) { struct mvpp2_prs_entry pe; unsigned char da_mc; /* Ethernet multicast address first byte is * 0x01 for IPv4 and 0x33 for IPv6 */ da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33; if (priv->prs_shadow[index].valid) { /* Entry exist - update port only */ pe.index = index; mvpp2_prs_hw_read(priv, &pe); } else { /* Entry doesn't exist - create new */ memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC); pe.index = index; /* Continue - set next lookup */ mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA); /* Set result info bits */ mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST, MVPP2_PRS_RI_L2_CAST_MASK); /* Update tcam entry data first byte */ mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff); /* Shift to ethertype */ mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); /* Mask all ports */ mvpp2_prs_tcam_port_map_set(&pe, 0); /* Update shadow table */ mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC); } /* Update port mask */ mvpp2_prs_tcam_port_set(&pe, port, add); mvpp2_prs_hw_write(priv, &pe); } /* Parser per-port initialization */ static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first, int lu_max, int offset) { u32 val; /* Set lookup ID */ val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG); val &= ~MVPP2_PRS_PORT_LU_MASK(port); val |= MVPP2_PRS_PORT_LU_VAL(port, lu_first); mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val); /* Set maximum number of loops for packet received from port */ val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port)); val &= ~MVPP2_PRS_MAX_LOOP_MASK(port); val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max); mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val); /* Set initial offset for packet header extraction for the first * searching loop */ val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port)); val &= ~MVPP2_PRS_INIT_OFF_MASK(port); val |= MVPP2_PRS_INIT_OFF_VAL(port, offset); mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val); } /* Default flow entries initialization for all ports */ static void mvpp2_prs_def_flow_init(struct mvpp2 *priv) { struct mvpp2_prs_entry pe; int port; for (port = 0; port < MVPP2_MAX_PORTS; port++) { memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS); pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port; /* Mask all ports */ mvpp2_prs_tcam_port_map_set(&pe, 0); /* Set flow ID*/ mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK); mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1); /* Update shadow table and hw entry */ mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS); mvpp2_prs_hw_write(priv, &pe); } } /* Set default entry for Marvell Header field */ static void mvpp2_prs_mh_init(struct mvpp2 *priv) { struct mvpp2_prs_entry pe; memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); pe.index = MVPP2_PE_MH_DEFAULT; mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH); mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC); /* Unmask all ports */ mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); /* Update shadow table and hw entry */ mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH); mvpp2_prs_hw_write(priv, &pe); } /* Set default entires (place holder) for promiscuous, non-promiscuous and * multicast MAC addresses */ static void mvpp2_prs_mac_init(struct mvpp2 *priv) { struct mvpp2_prs_entry pe; memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); /* Non-promiscuous mode for all ports - DROP unknown packets */ pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS; mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC); mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK, MVPP2_PRS_RI_DROP_MASK); mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); /* Unmask all ports */ mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); /* Update shadow table and hw entry */ mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC); mvpp2_prs_hw_write(priv, &pe); /* place holders only - no ports */ mvpp2_prs_mac_drop_all_set(priv, 0, false); mvpp2_prs_mac_promisc_set(priv, 0, false); mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_ALL, 0, false); mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_IP6, 0, false); } /* Match basic ethertypes */ static int mvpp2_prs_etype_init(struct mvpp2 *priv) { struct mvpp2_prs_entry pe; int tid; /* Ethertype: PPPoE */ tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, MVPP2_PE_LAST_FREE_TID); if (tid < 0) return tid; memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2); pe.index = tid; mvpp2_prs_match_etype(&pe, 0, PROT_PPP_SES); mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE); mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK, MVPP2_PRS_RI_PPPOE_MASK); /* Update shadow table and hw entry */ mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; priv->prs_shadow[pe.index].finish = false; mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK, MVPP2_PRS_RI_PPPOE_MASK); mvpp2_prs_hw_write(priv, &pe); /* Ethertype: ARP */ tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, MVPP2_PE_LAST_FREE_TID); if (tid < 0) return tid; memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2); pe.index = tid; mvpp2_prs_match_etype(&pe, 0, PROT_ARP); /* Generate flow in the next iteration*/ mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP, MVPP2_PRS_RI_L3_PROTO_MASK); /* Set L3 offset */ mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3, MVPP2_ETH_TYPE_LEN, MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); /* Update shadow table and hw entry */ mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; priv->prs_shadow[pe.index].finish = true; mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP, MVPP2_PRS_RI_L3_PROTO_MASK); mvpp2_prs_hw_write(priv, &pe); /* Ethertype: LBTD */ tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, MVPP2_PE_LAST_FREE_TID); if (tid < 0) return tid; memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2); pe.index = tid; mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE); /* Generate flow in the next iteration*/ mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC | MVPP2_PRS_RI_UDF3_RX_SPECIAL, MVPP2_PRS_RI_CPU_CODE_MASK | MVPP2_PRS_RI_UDF3_MASK); /* Set L3 offset */ mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3, MVPP2_ETH_TYPE_LEN, MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); /* Update shadow table and hw entry */ mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; priv->prs_shadow[pe.index].finish = true; mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC | MVPP2_PRS_RI_UDF3_RX_SPECIAL, MVPP2_PRS_RI_CPU_CODE_MASK | MVPP2_PRS_RI_UDF3_MASK); mvpp2_prs_hw_write(priv, &pe); /* Ethertype: IPv4 without options */ tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, MVPP2_PE_LAST_FREE_TID); if (tid < 0) return tid; memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2); pe.index = tid; mvpp2_prs_match_etype(&pe, 0, PROT_IP); mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN, MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL, MVPP2_PRS_IPV4_HEAD_MASK | MVPP2_PRS_IPV4_IHL_MASK); mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4); mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4, MVPP2_PRS_RI_L3_PROTO_MASK); /* Skip eth_type + 4 bytes of IP header */ mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); /* Set L3 offset */ mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3, MVPP2_ETH_TYPE_LEN, MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); /* Update shadow table and hw entry */ mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; priv->prs_shadow[pe.index].finish = false; mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4, MVPP2_PRS_RI_L3_PROTO_MASK); mvpp2_prs_hw_write(priv, &pe); /* Ethertype: IPv4 with options */ tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, MVPP2_PE_LAST_FREE_TID); if (tid < 0) return tid; pe.index = tid; /* Clear tcam data before updating */ pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0; pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0; mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN, MVPP2_PRS_IPV4_HEAD, MVPP2_PRS_IPV4_HEAD_MASK); /* Clear ri before updating */ pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0; pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0; mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT, MVPP2_PRS_RI_L3_PROTO_MASK); /* Update shadow table and hw entry */ mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; priv->prs_shadow[pe.index].finish = false; mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT, MVPP2_PRS_RI_L3_PROTO_MASK); mvpp2_prs_hw_write(priv, &pe); /* Ethertype: IPv6 without options */ tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, MVPP2_PE_LAST_FREE_TID); if (tid < 0) return tid; memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2); pe.index = tid; mvpp2_prs_match_etype(&pe, 0, PROT_IPV6); /* Skip DIP of IPV6 header */ mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 + MVPP2_MAX_L3_ADDR_SIZE, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6); mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6, MVPP2_PRS_RI_L3_PROTO_MASK); /* Set L3 offset */ mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3, MVPP2_ETH_TYPE_LEN, MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; priv->prs_shadow[pe.index].finish = false; mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6, MVPP2_PRS_RI_L3_PROTO_MASK); mvpp2_prs_hw_write(priv, &pe); /* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */ memset(&pe, 0, sizeof(struct mvpp2_prs_entry)); mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2); pe.index = MVPP2_PE_ETH_TYPE_UN; /* Unmask all ports */ mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK); /* Generate flow in the next iteration*/ mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1); mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS); mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN, MVPP2_PRS_RI_L3_PROTO_MASK); /* Set L3 offset even it's unknown L3 */ mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3, MVPP2_ETH_TYPE_LEN, MVPP2_PRS_SRAM_OP_SEL_UDF_ADD); /* Update shadow table and hw entry */ mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2); priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF; priv->prs_shadow[pe.index].finish = true; mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN, MVPP2_PRS_RI_L3_PROTO_MASK); mvpp2_prs_hw_write(priv, &pe); return 0; } /* Parser default initialization */ static int mvpp2_prs_default_init(struct udevice *dev, struct mvpp2 *priv) { int err, index, i; /* Enable tcam table */ mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK); /* Clear all tcam and sram entries */ for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) { mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index); for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++) mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0); mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index); for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++) mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0); } /* Invalidate all tcam entries */ for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) mvpp2_prs_hw_inv(priv, index); priv->prs_shadow = devm_kcalloc(dev, MVPP2_PRS_TCAM_SRAM_SIZE, sizeof(struct mvpp2_prs_shadow), GFP_KERNEL); if (!priv->prs_shadow) return -ENOMEM; /* Always start from lookup = 0 */ for (index = 0; index < MVPP2_MAX_PORTS; index++) mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH, MVPP2_PRS_PORT_LU_MAX, 0); mvpp2_prs_def_flow_init(priv); mvpp2_prs_mh_init(priv); mvpp2_prs_mac_init(priv); err = mvpp2_prs_etype_init(priv); if (err) return err; return 0; } /* Compare MAC DA with tcam entry data */ static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe, const u8 *da, unsigned char *mask) { unsigned char tcam_byte, tcam_mask; int index; for (index = 0; index < ETH_ALEN; index++) { mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask); if (tcam_mask != mask[index]) return false; if ((tcam_mask & tcam_byte) != (da[index] & mask[index])) return false; } return true; } /* Find tcam entry with matched pair <MAC DA, port> */ static struct mvpp2_prs_entry * mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da, unsigned char *mask, int udf_type) { struct mvpp2_prs_entry *pe; int tid; pe = kzalloc(sizeof(*pe), GFP_KERNEL); if (!pe) return NULL; mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC); /* Go through the all entires with MVPP2_PRS_LU_MAC */ for (tid = MVPP2_PE_FIRST_FREE_TID; tid <= MVPP2_PE_LAST_FREE_TID; tid++) { unsigned int entry_pmap; if (!priv->prs_shadow[tid].valid || (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) || (priv->prs_shadow[tid].udf != udf_type)) continue; pe->index = tid; mvpp2_prs_hw_read(priv, pe); entry_pmap = mvpp2_prs_tcam_port_map_get(pe); if (mvpp2_prs_mac_range_equals(pe, da, mask) && entry_pmap == pmap) return pe; } kfree(pe); return NULL; } /* Update parser's mac da entry */ static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port, const u8 *da, bool add) { struct mvpp2_prs_entry *pe; unsigned int pmap, len, ri; unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; int tid; /* Scan TCAM and see if entry with this <MAC DA, port> already exist */ pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask, MVPP2_PRS_UDF_MAC_DEF); /* No such entry */ if (!pe) { if (!add) return 0; /* Create new TCAM entry */ /* Find first range mac entry*/ for (tid = MVPP2_PE_FIRST_FREE_TID; tid <= MVPP2_PE_LAST_FREE_TID; tid++) if (priv->prs_shadow[tid].valid && (priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) && (priv->prs_shadow[tid].udf == MVPP2_PRS_UDF_MAC_RANGE)) break; /* Go through the all entries from first to last */ tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID, tid - 1); if (tid < 0) return tid; pe = kzalloc(sizeof(*pe), GFP_KERNEL); if (!pe) return -1; mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC); pe->index = tid; /* Mask all ports */ mvpp2_prs_tcam_port_map_set(pe, 0); } /* Update port mask */ mvpp2_prs_tcam_port_set(pe, port, add); /* Invalidate the entry if no ports are left enabled */ pmap = mvpp2_prs_tcam_port_map_get(pe); if (pmap == 0) { if (add) { kfree(pe); return -1; } mvpp2_prs_hw_inv(priv, pe->index); priv->prs_shadow[pe->index].valid = false; kfree(pe); return 0; } /* Continue - set next lookup */ mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA); /* Set match on DA */ len = ETH_ALEN; while (len--) mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff); /* Set result info bits */ ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK; mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK | MVPP2_PRS_RI_MAC_ME_MASK); mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK | MVPP2_PRS_RI_MAC_ME_MASK); /* Shift to ethertype */ mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD); /* Update shadow table and hw entry */ priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF; mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC); mvpp2_prs_hw_write(priv, pe); kfree(pe); return 0; } static int mvpp2_prs_update_mac_da(struct mvpp2_port *port, const u8 *da) { int err; /* Remove old parser entry */ err = mvpp2_prs_mac_da_accept(port->priv, port->id, port->dev_addr, false); if (err) return err; /* Add new parser entry */ err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true); if (err) return err; /* Set addr in the device */ memcpy(port->dev_addr, da, ETH_ALEN); return 0; } /* Set prs flow for the port */ static int mvpp2_prs_def_flow(struct mvpp2_port *port) { struct mvpp2_prs_entry *pe; int tid; pe = mvpp2_prs_flow_find(port->priv, port->id); /* Such entry not exist */ if (!pe) { /* Go through the all entires from last to first */ tid = mvpp2_prs_tcam_first_free(port->priv, MVPP2_PE_LAST_FREE_TID, MVPP2_PE_FIRST_FREE_TID); if (tid < 0) return tid; pe = kzalloc(sizeof(*pe), GFP_KERNEL); if (!pe) return -ENOMEM; mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS); pe->index = tid; /* Set flow ID*/ mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK); mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1); /* Update shadow table */ mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS); } mvpp2_prs_tcam_port_map_set(pe, (1 << port->id)); mvpp2_prs_hw_write(port->priv, pe); kfree(pe); return 0; } /* Classifier configuration routines */ /* Update classification flow table registers */ static void mvpp2_cls_flow_write(struct mvpp2 *priv, struct mvpp2_cls_flow_entry *fe) { mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index); mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG, fe->data[0]); mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG, fe->data[1]); mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG, fe->data[2]); } /* Update classification lookup table register */ static void mvpp2_cls_lookup_write(struct mvpp2 *priv, struct mvpp2_cls_lookup_entry *le) { u32 val; val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid; mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val); mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data); } /* Classifier default initialization */ static void mvpp2_cls_init(struct mvpp2 *priv) { struct mvpp2_cls_lookup_entry le; struct mvpp2_cls_flow_entry fe; int index; /* Enable classifier */ mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK); /* Clear classifier flow table */ memset(&fe.data, 0, MVPP2_CLS_FLOWS_TBL_DATA_WORDS); for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) { fe.index = index; mvpp2_cls_flow_write(priv, &fe); } /* Clear classifier lookup table */ le.data = 0; for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) { le.lkpid = index; le.way = 0; mvpp2_cls_lookup_write(priv, &le); le.way = 1; mvpp2_cls_lookup_write(priv, &le); } } static void mvpp2_cls_port_config(struct mvpp2_port *port) { struct mvpp2_cls_lookup_entry le; u32 val; /* Set way for the port */ val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG); val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id); mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val); /* Pick the entry to be accessed in lookup ID decoding table * according to the way and lkpid. */ le.lkpid = port->id; le.way = 0; le.data = 0; /* Set initial CPU queue for receiving packets */ le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK; le.data |= port->first_rxq; /* Disable classification engines */ le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK; /* Update lookup ID table entry */ mvpp2_cls_lookup_write(port->priv, &le); } /* Set CPU queue number for oversize packets */ static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port) { u32 val; mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id), port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK); mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id), (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS)); val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG); val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id); mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val); } /* Buffer Manager configuration routines */ /* Create pool */ static int mvpp2_bm_pool_create(struct udevice *dev, struct mvpp2 *priv, struct mvpp2_bm_pool *bm_pool, int size) { u32 val; /* Number of buffer pointers must be a multiple of 16, as per * hardware constraints */ if (!IS_ALIGNED(size, 16)) return -EINVAL; bm_pool->virt_addr = buffer_loc.bm_pool[bm_pool->id]; bm_pool->dma_addr = (dma_addr_t)buffer_loc.bm_pool[bm_pool->id]; if (!bm_pool->virt_addr) return -ENOMEM; if (!IS_ALIGNED((unsigned long)bm_pool->virt_addr, MVPP2_BM_POOL_PTR_ALIGN)) { dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n", bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN); return -ENOMEM; } mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id), lower_32_bits(bm_pool->dma_addr)); if (priv->hw_version == MVPP22) mvpp2_write(priv, MVPP22_BM_POOL_BASE_HIGH_REG, (upper_32_bits(bm_pool->dma_addr) & MVPP22_BM_POOL_BASE_HIGH_MASK)); mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size); val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id)); val |= MVPP2_BM_START_MASK; mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val); bm_pool->type = MVPP2_BM_FREE; bm_pool->size = size; bm_pool->pkt_size = 0; bm_pool->buf_num = 0; return 0; } /* Set pool buffer size */ static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv, struct mvpp2_bm_pool *bm_pool, int buf_size) { u32 val; bm_pool->buf_size = buf_size; val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET); mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val); } /* Free all buffers from the pool */ static void mvpp2_bm_bufs_free(struct udevice *dev, struct mvpp2 *priv, struct mvpp2_bm_pool *bm_pool) { int i; for (i = 0; i < bm_pool->buf_num; i++) { /* Allocate buffer back from the buffer manager */ mvpp2_read(priv, MVPP2_BM_PHY_ALLOC_REG(bm_pool->id)); } bm_pool->buf_num = 0; } /* Cleanup pool */ static int mvpp2_bm_pool_destroy(struct udevice *dev, struct mvpp2 *priv, struct mvpp2_bm_pool *bm_pool) { u32 val; mvpp2_bm_bufs_free(dev, priv, bm_pool); if (bm_pool->buf_num) { dev_err(dev, "cannot free all buffers in pool %d\n", bm_pool->id); return 0; } val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id)); val |= MVPP2_BM_STOP_MASK; mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val); return 0; } static int mvpp2_bm_pools_init(struct udevice *dev, struct mvpp2 *priv) { int i, err, size; struct mvpp2_bm_pool *bm_pool; /* Create all pools with maximum size */ size = MVPP2_BM_POOL_SIZE_MAX; for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) { bm_pool = &priv->bm_pools[i]; bm_pool->id = i; err = mvpp2_bm_pool_create(dev, priv, bm_pool, size); if (err) goto err_unroll_pools; mvpp2_bm_pool_bufsize_set(priv, bm_pool, RX_BUFFER_SIZE); } return 0; err_unroll_pools: dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size); for (i = i - 1; i >= 0; i--) mvpp2_bm_pool_destroy(dev, priv, &priv->bm_pools[i]); return err; } static int mvpp2_bm_init(struct udevice *dev, struct mvpp2 *priv) { int i, err; for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) { /* Mask BM all interrupts */ mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0); /* Clear BM cause register */ mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0); } /* Allocate and initialize BM pools */ priv->bm_pools = devm_kcalloc(dev, MVPP2_BM_POOLS_NUM, sizeof(struct mvpp2_bm_pool), GFP_KERNEL); if (!priv->bm_pools) return -ENOMEM; err = mvpp2_bm_pools_init(dev, priv); if (err < 0) return err; return 0; } /* Attach long pool to rxq */ static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port, int lrxq, int long_pool) { u32 val, mask; int prxq; /* Get queue physical ID */ prxq = port->rxqs[lrxq]->id; if (port->priv->hw_version == MVPP21) mask = MVPP21_RXQ_POOL_LONG_MASK; else mask = MVPP22_RXQ_POOL_LONG_MASK; val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq)); val &= ~mask; val |= (long_pool << MVPP2_RXQ_POOL_LONG_OFFS) & mask; mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val); } /* Set pool number in a BM cookie */ static inline u32 mvpp2_bm_cookie_pool_set(u32 cookie, int pool) { u32 bm; bm = cookie & ~(0xFF << MVPP2_BM_COOKIE_POOL_OFFS); bm |= ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS); return bm; } /* Get pool number from a BM cookie */ static inline int mvpp2_bm_cookie_pool_get(unsigned long cookie) { return (cookie >> MVPP2_BM_COOKIE_POOL_OFFS) & 0xFF; } /* Release buffer to BM */ static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool, dma_addr_t buf_dma_addr, unsigned long buf_phys_addr) { if (port->priv->hw_version == MVPP22) { u32 val = 0; if (sizeof(dma_addr_t) == 8) val |= upper_32_bits(buf_dma_addr) & MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK; if (sizeof(phys_addr_t) == 8) val |= (upper_32_bits(buf_phys_addr) << MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT) & MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK; mvpp2_write(port->priv, MVPP22_BM_ADDR_HIGH_RLS_REG, val); } /* MVPP2_BM_VIRT_RLS_REG is not interpreted by HW, and simply * returned in the "cookie" field of the RX * descriptor. Instead of storing the virtual address, we * store the physical address */ mvpp2_write(port->priv, MVPP2_BM_VIRT_RLS_REG, buf_phys_addr); mvpp2_write(port->priv, MVPP2_BM_PHY_RLS_REG(pool), buf_dma_addr); } /* Refill BM pool */ static void mvpp2_pool_refill(struct mvpp2_port *port, u32 bm, dma_addr_t dma_addr, phys_addr_t phys_addr) { int pool = mvpp2_bm_cookie_pool_get(bm); mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr); } /* Allocate buffers for the pool */ static int mvpp2_bm_bufs_add(struct mvpp2_port *port, struct mvpp2_bm_pool *bm_pool, int buf_num) { int i; if (buf_num < 0 || (buf_num + bm_pool->buf_num > bm_pool->size)) { netdev_err(port->dev, "cannot allocate %d buffers for pool %d\n", buf_num, bm_pool->id); return 0; } for (i = 0; i < buf_num; i++) { mvpp2_bm_pool_put(port, bm_pool->id, (dma_addr_t)buffer_loc.rx_buffer[i], (unsigned long)buffer_loc.rx_buffer[i]); } /* Update BM driver with number of buffers added to pool */ bm_pool->buf_num += i; return i; } /* Notify the driver that BM pool is being used as specific type and return the * pool pointer on success */ static struct mvpp2_bm_pool * mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type, int pkt_size) { struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool]; int num; if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) { netdev_err(port->dev, "mixing pool types is forbidden\n"); return NULL; } if (new_pool->type == MVPP2_BM_FREE) new_pool->type = type; /* Allocate buffers in case BM pool is used as long pool, but packet * size doesn't match MTU or BM pool hasn't being used yet */ if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) || (new_pool->pkt_size == 0)) { int pkts_num; /* Set default buffer number or free all the buffers in case * the pool is not empty */ pkts_num = new_pool->buf_num; if (pkts_num == 0) pkts_num = type == MVPP2_BM_SWF_LONG ? MVPP2_BM_LONG_BUF_NUM : MVPP2_BM_SHORT_BUF_NUM; else mvpp2_bm_bufs_free(NULL, port->priv, new_pool); new_pool->pkt_size = pkt_size; /* Allocate buffers for this pool */ num = mvpp2_bm_bufs_add(port, new_pool, pkts_num); if (num != pkts_num) { dev_err(dev, "pool %d: %d of %d allocated\n", new_pool->id, num, pkts_num); return NULL; } } return new_pool; } /* Initialize pools for swf */ static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port) { int rxq; if (!port->pool_long) { port->pool_long = mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id), MVPP2_BM_SWF_LONG, port->pkt_size); if (!port->pool_long) return -ENOMEM; port->pool_long->port_map |= (1 << port->id); for (rxq = 0; rxq < rxq_number; rxq++) mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id); } return 0; } /* Port configuration routines */ static void mvpp2_port_mii_set(struct mvpp2_port *port) { u32 val; val = readl(port->base + MVPP2_GMAC_CTRL_2_REG); switch (port->phy_interface) { case PHY_INTERFACE_MODE_SGMII: val |= MVPP2_GMAC_INBAND_AN_MASK; break; case PHY_INTERFACE_MODE_RGMII: case PHY_INTERFACE_MODE_RGMII_ID: val |= MVPP2_GMAC_PORT_RGMII_MASK; default: val &= ~MVPP2_GMAC_PCS_ENABLE_MASK; } writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); } static void mvpp2_port_fc_adv_enable(struct mvpp2_port *port) { u32 val; val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG); val |= MVPP2_GMAC_FC_ADV_EN; writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG); } static void mvpp2_port_enable(struct mvpp2_port *port) { u32 val; val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); val |= MVPP2_GMAC_PORT_EN_MASK; val |= MVPP2_GMAC_MIB_CNTR_EN_MASK; writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); } static void mvpp2_port_disable(struct mvpp2_port *port) { u32 val; val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); val &= ~(MVPP2_GMAC_PORT_EN_MASK); writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); } /* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */ static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port) { u32 val; val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) & ~MVPP2_GMAC_PERIODIC_XON_EN_MASK; writel(val, port->base + MVPP2_GMAC_CTRL_1_REG); } /* Configure loopback port */ static void mvpp2_port_loopback_set(struct mvpp2_port *port) { u32 val; val = readl(port->base + MVPP2_GMAC_CTRL_1_REG); if (port->speed == 1000) val |= MVPP2_GMAC_GMII_LB_EN_MASK; else val &= ~MVPP2_GMAC_GMII_LB_EN_MASK; if (port->phy_interface == PHY_INTERFACE_MODE_SGMII) val |= MVPP2_GMAC_PCS_LB_EN_MASK; else val &= ~MVPP2_GMAC_PCS_LB_EN_MASK; writel(val, port->base + MVPP2_GMAC_CTRL_1_REG); } static void mvpp2_port_reset(struct mvpp2_port *port) { u32 val; val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) & ~MVPP2_GMAC_PORT_RESET_MASK; writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) & MVPP2_GMAC_PORT_RESET_MASK) continue; } /* Change maximum receive size of the port */ static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port) { u32 val; val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK; val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) << MVPP2_GMAC_MAX_RX_SIZE_OFFS); writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); } /* PPv2.2 GoP/GMAC config */ /* Set the MAC to reset or exit from reset */ static int gop_gmac_reset(struct mvpp2_port *port, int reset) { u32 val; /* read - modify - write */ val = readl(port->base + MVPP2_GMAC_CTRL_2_REG); if (reset) val |= MVPP2_GMAC_PORT_RESET_MASK; else val &= ~MVPP2_GMAC_PORT_RESET_MASK; writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); return 0; } /* * gop_gpcs_mode_cfg * * Configure port to working with Gig PCS or don't. */ static int gop_gpcs_mode_cfg(struct mvpp2_port *port, int en) { u32 val; val = readl(port->base + MVPP2_GMAC_CTRL_2_REG); if (en) val |= MVPP2_GMAC_PCS_ENABLE_MASK; else val &= ~MVPP2_GMAC_PCS_ENABLE_MASK; /* enable / disable PCS on this port */ writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); return 0; } static int gop_bypass_clk_cfg(struct mvpp2_port *port, int en) { u32 val; val = readl(port->base + MVPP2_GMAC_CTRL_2_REG); if (en) val |= MVPP2_GMAC_CLK_125_BYPS_EN_MASK; else val &= ~MVPP2_GMAC_CLK_125_BYPS_EN_MASK; /* enable / disable PCS on this port */ writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); return 0; } static void gop_gmac_sgmii2_5_cfg(struct mvpp2_port *port) { u32 val, thresh; /* * Configure minimal level of the Tx FIFO before the lower part * starts to read a packet */ thresh = MVPP2_SGMII2_5_TX_FIFO_MIN_TH; val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK; val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh); writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); /* Disable bypass of sync module */ val = readl(port->base + MVPP2_GMAC_CTRL_4_REG); val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK; /* configure DP clock select according to mode */ val |= MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK; /* configure QSGMII bypass according to mode */ val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK; writel(val, port->base + MVPP2_GMAC_CTRL_4_REG); val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); /* * Configure GIG MAC to 1000Base-X mode connected to a fiber * transceiver */ val |= MVPP2_GMAC_PORT_TYPE_MASK; writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); /* configure AN 0x9268 */ val = MVPP2_GMAC_EN_PCS_AN | MVPP2_GMAC_AN_BYPASS_EN | MVPP2_GMAC_CONFIG_MII_SPEED | MVPP2_GMAC_CONFIG_GMII_SPEED | MVPP2_GMAC_FC_ADV_EN | MVPP2_GMAC_CONFIG_FULL_DUPLEX | MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG; writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG); } static void gop_gmac_sgmii_cfg(struct mvpp2_port *port) { u32 val, thresh; /* * Configure minimal level of the Tx FIFO before the lower part * starts to read a packet */ thresh = MVPP2_SGMII_TX_FIFO_MIN_TH; val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK; val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh); writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); /* Disable bypass of sync module */ val = readl(port->base + MVPP2_GMAC_CTRL_4_REG); val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK; /* configure DP clock select according to mode */ val &= ~MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK; /* configure QSGMII bypass according to mode */ val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK; writel(val, port->base + MVPP2_GMAC_CTRL_4_REG); val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); /* configure GIG MAC to SGMII mode */ val &= ~MVPP2_GMAC_PORT_TYPE_MASK; writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); /* configure AN */ val = MVPP2_GMAC_EN_PCS_AN | MVPP2_GMAC_AN_BYPASS_EN | MVPP2_GMAC_AN_SPEED_EN | MVPP2_GMAC_EN_FC_AN | MVPP2_GMAC_AN_DUPLEX_EN | MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG; writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG); } static void gop_gmac_rgmii_cfg(struct mvpp2_port *port) { u32 val, thresh; /* * Configure minimal level of the Tx FIFO before the lower part * starts to read a packet */ thresh = MVPP2_RGMII_TX_FIFO_MIN_TH; val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK; val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(thresh); writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); /* Disable bypass of sync module */ val = readl(port->base + MVPP2_GMAC_CTRL_4_REG); val |= MVPP2_GMAC_CTRL4_SYNC_BYPASS_MASK; /* configure DP clock select according to mode */ val &= ~MVPP2_GMAC_CTRL4_DP_CLK_SEL_MASK; val |= MVPP2_GMAC_CTRL4_QSGMII_BYPASS_ACTIVE_MASK; val |= MVPP2_GMAC_CTRL4_EXT_PIN_GMII_SEL_MASK; writel(val, port->base + MVPP2_GMAC_CTRL_4_REG); val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); /* configure GIG MAC to SGMII mode */ val &= ~MVPP2_GMAC_PORT_TYPE_MASK; writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); /* configure AN 0xb8e8 */ val = MVPP2_GMAC_AN_BYPASS_EN | MVPP2_GMAC_AN_SPEED_EN | MVPP2_GMAC_EN_FC_AN | MVPP2_GMAC_AN_DUPLEX_EN | MVPP2_GMAC_CHOOSE_SAMPLE_TX_CONFIG; writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG); } /* Set the internal mux's to the required MAC in the GOP */ static int gop_gmac_mode_cfg(struct mvpp2_port *port) { u32 val; /* Set TX FIFO thresholds */ switch (port->phy_interface) { case PHY_INTERFACE_MODE_SGMII: if (port->phy_speed == 2500) gop_gmac_sgmii2_5_cfg(port); else gop_gmac_sgmii_cfg(port); break; case PHY_INTERFACE_MODE_RGMII: case PHY_INTERFACE_MODE_RGMII_ID: gop_gmac_rgmii_cfg(port); break; default: return -1; } /* Jumbo frame support - 0x1400*2= 0x2800 bytes */ val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK; val |= 0x1400 << MVPP2_GMAC_MAX_RX_SIZE_OFFS; writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); /* PeriodicXonEn disable */ val = readl(port->base + MVPP2_GMAC_CTRL_1_REG); val &= ~MVPP2_GMAC_PERIODIC_XON_EN_MASK; writel(val, port->base + MVPP2_GMAC_CTRL_1_REG); return 0; } static void gop_xlg_2_gig_mac_cfg(struct mvpp2_port *port) { u32 val; /* relevant only for MAC0 (XLG0 and GMAC0) */ if (port->gop_id > 0) return; /* configure 1Gig MAC mode */ val = readl(port->base + MVPP22_XLG_CTRL3_REG); val &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK; val |= MVPP22_XLG_CTRL3_MACMODESELECT_GMAC; writel(val, port->base + MVPP22_XLG_CTRL3_REG); } static int gop_gpcs_reset(struct mvpp2_port *port, int reset) { u32 val; val = readl(port->base + MVPP2_GMAC_CTRL_2_REG); if (reset) val &= ~MVPP2_GMAC_SGMII_MODE_MASK; else val |= MVPP2_GMAC_SGMII_MODE_MASK; writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); return 0; } /* Set the internal mux's to the required PCS in the PI */ static int gop_xpcs_mode(struct mvpp2_port *port, int num_of_lanes) { u32 val; int lane; switch (num_of_lanes) { case 1: lane = 0; break; case 2: lane = 1; break; case 4: lane = 2; break; default: return -1; } /* configure XG MAC mode */ val = readl(port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG); val &= ~MVPP22_XPCS_PCSMODE_MASK; val &= ~MVPP22_XPCS_LANEACTIVE_MASK; val |= (2 * lane) << MVPP22_XPCS_LANEACTIVE_OFFS; writel(val, port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG); return 0; } static int gop_mpcs_mode(struct mvpp2_port *port) { u32 val; /* configure PCS40G COMMON CONTROL */ val = readl(port->priv->mpcs_base + PCS40G_COMMON_CONTROL); val &= ~FORWARD_ERROR_CORRECTION_MASK; writel(val, port->priv->mpcs_base + PCS40G_COMMON_CONTROL); /* configure PCS CLOCK RESET */ val = readl(port->priv->mpcs_base + PCS_CLOCK_RESET); val &= ~CLK_DIVISION_RATIO_MASK; val |= 1 << CLK_DIVISION_RATIO_OFFS; writel(val, port->priv->mpcs_base + PCS_CLOCK_RESET); val &= ~CLK_DIV_PHASE_SET_MASK; val |= MAC_CLK_RESET_MASK; val |= RX_SD_CLK_RESET_MASK; val |= TX_SD_CLK_RESET_MASK; writel(val, port->priv->mpcs_base + PCS_CLOCK_RESET); return 0; } /* Set the internal mux's to the required MAC in the GOP */ static int gop_xlg_mac_mode_cfg(struct mvpp2_port *port, int num_of_act_lanes) { u32 val; /* configure 10G MAC mode */ val = readl(port->base + MVPP22_XLG_CTRL0_REG); val |= MVPP22_XLG_RX_FC_EN; writel(val, port->base + MVPP22_XLG_CTRL0_REG); val = readl(port->base + MVPP22_XLG_CTRL3_REG); val &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK; val |= MVPP22_XLG_CTRL3_MACMODESELECT_10GMAC; writel(val, port->base + MVPP22_XLG_CTRL3_REG); /* read - modify - write */ val = readl(port->base + MVPP22_XLG_CTRL4_REG); val &= ~MVPP22_XLG_MODE_DMA_1G; val |= MVPP22_XLG_FORWARD_PFC_EN; val |= MVPP22_XLG_FORWARD_802_3X_FC_EN; val &= ~MVPP22_XLG_EN_IDLE_CHECK_FOR_LINK; writel(val, port->base + MVPP22_XLG_CTRL4_REG); /* Jumbo frame support: 0x1400 * 2 = 0x2800 bytes */ val = readl(port->base + MVPP22_XLG_CTRL1_REG); val &= ~MVPP22_XLG_MAX_RX_SIZE_MASK; val |= 0x1400 << MVPP22_XLG_MAX_RX_SIZE_OFFS; writel(val, port->base + MVPP22_XLG_CTRL1_REG); /* unmask link change interrupt */ val = readl(port->base + MVPP22_XLG_INTERRUPT_MASK_REG); val |= MVPP22_XLG_INTERRUPT_LINK_CHANGE; val |= 1; /* unmask summary bit */ writel(val, port->base + MVPP22_XLG_INTERRUPT_MASK_REG); return 0; } /* Set PCS to reset or exit from reset */ static int gop_xpcs_reset(struct mvpp2_port *port, int reset) { u32 val; /* read - modify - write */ val = readl(port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG); if (reset) val &= ~MVPP22_XPCS_PCSRESET; else val |= MVPP22_XPCS_PCSRESET; writel(val, port->priv->xpcs_base + MVPP22_XPCS_GLOBAL_CFG_0_REG); return 0; } /* Set the MAC to reset or exit from reset */ static int gop_xlg_mac_reset(struct mvpp2_port *port, int reset) { u32 val; /* read - modify - write */ val = readl(port->base + MVPP22_XLG_CTRL0_REG); if (reset) val &= ~MVPP22_XLG_MAC_RESETN; else val |= MVPP22_XLG_MAC_RESETN; writel(val, port->base + MVPP22_XLG_CTRL0_REG); return 0; } /* * gop_port_init * * Init physical port. Configures the port mode and all it's elements * accordingly. * Does not verify that the selected mode/port number is valid at the * core level. */ static int gop_port_init(struct mvpp2_port *port) { int mac_num = port->gop_id; int num_of_act_lanes; if (mac_num >= MVPP22_GOP_MAC_NUM) { netdev_err(NULL, "%s: illegal port number %d", __func__, mac_num); return -1; } switch (port->phy_interface) { case PHY_INTERFACE_MODE_RGMII: case PHY_INTERFACE_MODE_RGMII_ID: gop_gmac_reset(port, 1); /* configure PCS */ gop_gpcs_mode_cfg(port, 0); gop_bypass_clk_cfg(port, 1); /* configure MAC */ gop_gmac_mode_cfg(port); /* pcs unreset */ gop_gpcs_reset(port, 0); /* mac unreset */ gop_gmac_reset(port, 0); break; case PHY_INTERFACE_MODE_SGMII: /* configure PCS */ gop_gpcs_mode_cfg(port, 1); /* configure MAC */ gop_gmac_mode_cfg(port); /* select proper Mac mode */ gop_xlg_2_gig_mac_cfg(port); /* pcs unreset */ gop_gpcs_reset(port, 0); /* mac unreset */ gop_gmac_reset(port, 0); break; case PHY_INTERFACE_MODE_SFI: num_of_act_lanes = 2; mac_num = 0; /* configure PCS */ gop_xpcs_mode(port, num_of_act_lanes); gop_mpcs_mode(port); /* configure MAC */ gop_xlg_mac_mode_cfg(port, num_of_act_lanes); /* pcs unreset */ gop_xpcs_reset(port, 0); /* mac unreset */ gop_xlg_mac_reset(port, 0); break; default: netdev_err(NULL, "%s: Requested port mode (%d) not supported\n", __func__, port->phy_interface); return -1; } return 0; } static void gop_xlg_mac_port_enable(struct mvpp2_port *port, int enable) { u32 val; val = readl(port->base + MVPP22_XLG_CTRL0_REG); if (enable) { /* Enable port and MIB counters update */ val |= MVPP22_XLG_PORT_EN; val &= ~MVPP22_XLG_MIBCNT_DIS; } else { /* Disable port */ val &= ~MVPP22_XLG_PORT_EN; } writel(val, port->base + MVPP22_XLG_CTRL0_REG); } static void gop_port_enable(struct mvpp2_port *port, int enable) { switch (port->phy_interface) { case PHY_INTERFACE_MODE_RGMII: case PHY_INTERFACE_MODE_RGMII_ID: case PHY_INTERFACE_MODE_SGMII: if (enable) mvpp2_port_enable(port); else mvpp2_port_disable(port); break; case PHY_INTERFACE_MODE_SFI: gop_xlg_mac_port_enable(port, enable); break; default: netdev_err(NULL, "%s: Wrong port mode (%d)\n", __func__, port->phy_interface); return; } } /* RFU1 functions */ static inline u32 gop_rfu1_read(struct mvpp2 *priv, u32 offset) { return readl(priv->rfu1_base + offset); } static inline void gop_rfu1_write(struct mvpp2 *priv, u32 offset, u32 data) { writel(data, priv->rfu1_base + offset); } static u32 mvpp2_netc_cfg_create(int gop_id, phy_interface_t phy_type) { u32 val = 0; if (gop_id == 2) { if (phy_type == PHY_INTERFACE_MODE_SGMII) val |= MV_NETC_GE_MAC2_SGMII; } if (gop_id == 3) { if (phy_type == PHY_INTERFACE_MODE_SGMII) val |= MV_NETC_GE_MAC3_SGMII; else if (phy_type == PHY_INTERFACE_MODE_RGMII || phy_type == PHY_INTERFACE_MODE_RGMII_ID) val |= MV_NETC_GE_MAC3_RGMII; } return val; } static void gop_netc_active_port(struct mvpp2 *priv, int gop_id, u32 val) { u32 reg; reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_1_REG); reg &= ~(NETC_PORTS_ACTIVE_MASK(gop_id)); val <<= NETC_PORTS_ACTIVE_OFFSET(gop_id); val &= NETC_PORTS_ACTIVE_MASK(gop_id); reg |= val; gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_1_REG, reg); } static void gop_netc_mii_mode(struct mvpp2 *priv, int gop_id, u32 val) { u32 reg; reg = gop_rfu1_read(priv, NETCOMP_CONTROL_0_REG); reg &= ~NETC_GBE_PORT1_MII_MODE_MASK; val <<= NETC_GBE_PORT1_MII_MODE_OFFS; val &= NETC_GBE_PORT1_MII_MODE_MASK; reg |= val; gop_rfu1_write(priv, NETCOMP_CONTROL_0_REG, reg); } static void gop_netc_gop_reset(struct mvpp2 *priv, u32 val) { u32 reg; reg = gop_rfu1_read(priv, GOP_SOFT_RESET_1_REG); reg &= ~NETC_GOP_SOFT_RESET_MASK; val <<= NETC_GOP_SOFT_RESET_OFFS; val &= NETC_GOP_SOFT_RESET_MASK; reg |= val; gop_rfu1_write(priv, GOP_SOFT_RESET_1_REG, reg); } static void gop_netc_gop_clock_logic_set(struct mvpp2 *priv, u32 val) { u32 reg; reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG); reg &= ~NETC_CLK_DIV_PHASE_MASK; val <<= NETC_CLK_DIV_PHASE_OFFS; val &= NETC_CLK_DIV_PHASE_MASK; reg |= val; gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg); } static void gop_netc_port_rf_reset(struct mvpp2 *priv, int gop_id, u32 val) { u32 reg; reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_1_REG); reg &= ~(NETC_PORT_GIG_RF_RESET_MASK(gop_id)); val <<= NETC_PORT_GIG_RF_RESET_OFFS(gop_id); val &= NETC_PORT_GIG_RF_RESET_MASK(gop_id); reg |= val; gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_1_REG, reg); } static void gop_netc_gbe_sgmii_mode_select(struct mvpp2 *priv, int gop_id, u32 val) { u32 reg, mask, offset; if (gop_id == 2) { mask = NETC_GBE_PORT0_SGMII_MODE_MASK; offset = NETC_GBE_PORT0_SGMII_MODE_OFFS; } else { mask = NETC_GBE_PORT1_SGMII_MODE_MASK; offset = NETC_GBE_PORT1_SGMII_MODE_OFFS; } reg = gop_rfu1_read(priv, NETCOMP_CONTROL_0_REG); reg &= ~mask; val <<= offset; val &= mask; reg |= val; gop_rfu1_write(priv, NETCOMP_CONTROL_0_REG, reg); } static void gop_netc_bus_width_select(struct mvpp2 *priv, u32 val) { u32 reg; reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG); reg &= ~NETC_BUS_WIDTH_SELECT_MASK; val <<= NETC_BUS_WIDTH_SELECT_OFFS; val &= NETC_BUS_WIDTH_SELECT_MASK; reg |= val; gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg); } static void gop_netc_sample_stages_timing(struct mvpp2 *priv, u32 val) { u32 reg; reg = gop_rfu1_read(priv, NETCOMP_PORTS_CONTROL_0_REG); reg &= ~NETC_GIG_RX_DATA_SAMPLE_MASK; val <<= NETC_GIG_RX_DATA_SAMPLE_OFFS; val &= NETC_GIG_RX_DATA_SAMPLE_MASK; reg |= val; gop_rfu1_write(priv, NETCOMP_PORTS_CONTROL_0_REG, reg); } static void gop_netc_mac_to_xgmii(struct mvpp2 *priv, int gop_id, enum mv_netc_phase phase) { switch (phase) { case MV_NETC_FIRST_PHASE: /* Set Bus Width to HB mode = 1 */ gop_netc_bus_width_select(priv, 1); /* Select RGMII mode */ gop_netc_gbe_sgmii_mode_select(priv, gop_id, MV_NETC_GBE_XMII); break; case MV_NETC_SECOND_PHASE: /* De-assert the relevant port HB reset */ gop_netc_port_rf_reset(priv, gop_id, 1); break; } } static void gop_netc_mac_to_sgmii(struct mvpp2 *priv, int gop_id, enum mv_netc_phase phase) { switch (phase) { case MV_NETC_FIRST_PHASE: /* Set Bus Width to HB mode = 1 */ gop_netc_bus_width_select(priv, 1); /* Select SGMII mode */ if (gop_id >= 1) { gop_netc_gbe_sgmii_mode_select(priv, gop_id, MV_NETC_GBE_SGMII); } /* Configure the sample stages */ gop_netc_sample_stages_timing(priv, 0); /* Configure the ComPhy Selector */ /* gop_netc_com_phy_selector_config(netComplex); */ break; case MV_NETC_SECOND_PHASE: /* De-assert the relevant port HB reset */ gop_netc_port_rf_reset(priv, gop_id, 1); break; } } static int gop_netc_init(struct mvpp2 *priv, enum mv_netc_phase phase) { u32 c = priv->netc_config; if (c & MV_NETC_GE_MAC2_SGMII) gop_netc_mac_to_sgmii(priv, 2, phase); else gop_netc_mac_to_xgmii(priv, 2, phase); if (c & MV_NETC_GE_MAC3_SGMII) { gop_netc_mac_to_sgmii(priv, 3, phase); } else { gop_netc_mac_to_xgmii(priv, 3, phase); if (c & MV_NETC_GE_MAC3_RGMII) gop_netc_mii_mode(priv, 3, MV_NETC_GBE_RGMII); else gop_netc_mii_mode(priv, 3, MV_NETC_GBE_MII); } /* Activate gop ports 0, 2, 3 */ gop_netc_active_port(priv, 0, 1); gop_netc_active_port(priv, 2, 1); gop_netc_active_port(priv, 3, 1); if (phase == MV_NETC_SECOND_PHASE) { /* Enable the GOP internal clock logic */ gop_netc_gop_clock_logic_set(priv, 1); /* De-assert GOP unit reset */ gop_netc_gop_reset(priv, 1); } return 0; } /* Set defaults to the MVPP2 port */ static void mvpp2_defaults_set(struct mvpp2_port *port) { int tx_port_num, val, queue, ptxq, lrxq; if (port->priv->hw_version == MVPP21) { /* Configure port to loopback if needed */ if (port->flags & MVPP2_F_LOOPBACK) mvpp2_port_loopback_set(port); /* Update TX FIFO MIN Threshold */ val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK; /* Min. TX threshold must be less than minimal packet length */ val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2); writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); } /* Disable Legacy WRR, Disable EJP, Release from reset */ tx_port_num = mvpp2_egress_port(port); mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num); mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0); /* Close bandwidth for all queues */ for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) { ptxq = mvpp2_txq_phys(port->id, queue); mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0); } /* Set refill period to 1 usec, refill tokens * and bucket size to maximum */ mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG, 0xc8); val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG); val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK; val |= MVPP2_TXP_REFILL_PERIOD_MASK(1); val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK; mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val); val = MVPP2_TXP_TOKEN_SIZE_MAX; mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val); /* Set MaximumLowLatencyPacketSize value to 256 */ mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id), MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK | MVPP2_RX_LOW_LATENCY_PKT_SIZE(256)); /* Enable Rx cache snoop */ for (lrxq = 0; lrxq < rxq_number; lrxq++) { queue = port->rxqs[lrxq]->id; val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue)); val |= MVPP2_SNOOP_PKT_SIZE_MASK | MVPP2_SNOOP_BUF_HDR_MASK; mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val); } } /* Enable/disable receiving packets */ static void mvpp2_ingress_enable(struct mvpp2_port *port) { u32 val; int lrxq, queue; for (lrxq = 0; lrxq < rxq_number; lrxq++) { queue = port->rxqs[lrxq]->id; val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue)); val &= ~MVPP2_RXQ_DISABLE_MASK; mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val); } } static void mvpp2_ingress_disable(struct mvpp2_port *port) { u32 val; int lrxq, queue; for (lrxq = 0; lrxq < rxq_number; lrxq++) { queue = port->rxqs[lrxq]->id; val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue)); val |= MVPP2_RXQ_DISABLE_MASK; mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val); } } /* Enable transmit via physical egress queue * - HW starts take descriptors from DRAM */ static void mvpp2_egress_enable(struct mvpp2_port *port) { u32 qmap; int queue; int tx_port_num = mvpp2_egress_port(port); /* Enable all initialized TXs. */ qmap = 0; for (queue = 0; queue < txq_number; queue++) { struct mvpp2_tx_queue *txq = port->txqs[queue]; if (txq->descs != NULL) qmap |= (1 << queue); } mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num); mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap); } /* Disable transmit via physical egress queue * - HW doesn't take descriptors from DRAM */ static void mvpp2_egress_disable(struct mvpp2_port *port) { u32 reg_data; int delay; int tx_port_num = mvpp2_egress_port(port); /* Issue stop command for active channels only */ mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num); reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) & MVPP2_TXP_SCHED_ENQ_MASK; if (reg_data != 0) mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET)); /* Wait for all Tx activity to terminate. */ delay = 0; do { if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) { netdev_warn(port->dev, "Tx stop timed out, status=0x%08x\n", reg_data); break; } mdelay(1); delay++; /* Check port TX Command register that all * Tx queues are stopped */ reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG); } while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK); } /* Rx descriptors helper methods */ /* Get number of Rx descriptors occupied by received packets */ static inline int mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id) { u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id)); return val & MVPP2_RXQ_OCCUPIED_MASK; } /* Update Rx queue status with the number of occupied and available * Rx descriptor slots. */ static inline void mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id, int used_count, int free_count) { /* Decrement the number of used descriptors and increment count * increment the number of free descriptors. */ u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET); mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val); } /* Get pointer to next RX descriptor to be processed by SW */ static inline struct mvpp2_rx_desc * mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq) { int rx_desc = rxq->next_desc_to_proc; rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc); prefetch(rxq->descs + rxq->next_desc_to_proc); return rxq->descs + rx_desc; } /* Set rx queue offset */ static void mvpp2_rxq_offset_set(struct mvpp2_port *port, int prxq, int offset) { u32 val; /* Convert offset from bytes to units of 32 bytes */ offset = offset >> 5; val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq)); val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK; /* Offset is in */ val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) & MVPP2_RXQ_PACKET_OFFSET_MASK); mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val); } /* Obtain BM cookie information from descriptor */ static u32 mvpp2_bm_cookie_build(struct mvpp2_port *port, struct mvpp2_rx_desc *rx_desc) { int cpu = smp_processor_id(); int pool; pool = (mvpp2_rxdesc_status_get(port, rx_desc) & MVPP2_RXD_BM_POOL_ID_MASK) >> MVPP2_RXD_BM_POOL_ID_OFFS; return ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS) | ((cpu & 0xFF) << MVPP2_BM_COOKIE_CPU_OFFS); } /* Tx descriptors helper methods */ /* Get number of Tx descriptors waiting to be transmitted by HW */ static int mvpp2_txq_pend_desc_num_get(struct mvpp2_port *port, struct mvpp2_tx_queue *txq) { u32 val; mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id); val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG); return val & MVPP2_TXQ_PENDING_MASK; } /* Get pointer to next Tx descriptor to be processed (send) by HW */ static struct mvpp2_tx_desc * mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq) { int tx_desc = txq->next_desc_to_proc; txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc); return txq->descs + tx_desc; } /* Update HW with number of aggregated Tx descriptors to be sent */ static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending) { /* aggregated access - relevant TXQ number is written in TX desc */ mvpp2_write(port->priv, MVPP2_AGGR_TXQ_UPDATE_REG, pending); } /* Get number of sent descriptors and decrement counter. * The number of sent descriptors is returned. * Per-CPU access */ static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port, struct mvpp2_tx_queue *txq) { u32 val; /* Reading status reg resets transmitted descriptor counter */ val = mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(txq->id)); return (val & MVPP2_TRANSMITTED_COUNT_MASK) >> MVPP2_TRANSMITTED_COUNT_OFFSET; } static void mvpp2_txq_sent_counter_clear(void *arg) { struct mvpp2_port *port = arg; int queue; for (queue = 0; queue < txq_number; queue++) { int id = port->txqs[queue]->id; mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(id)); } } /* Set max sizes for Tx queues */ static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port) { u32 val, size, mtu; int txq, tx_port_num; mtu = port->pkt_size * 8; if (mtu > MVPP2_TXP_MTU_MAX) mtu = MVPP2_TXP_MTU_MAX; /* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */ mtu = 3 * mtu; /* Indirect access to registers */ tx_port_num = mvpp2_egress_port(port); mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num); /* Set MTU */ val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG); val &= ~MVPP2_TXP_MTU_MAX; val |= mtu; mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val); /* TXP token size and all TXQs token size must be larger that MTU */ val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG); size = val & MVPP2_TXP_TOKEN_SIZE_MAX; if (size < mtu) { size = mtu; val &= ~MVPP2_TXP_TOKEN_SIZE_MAX; val |= size; mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val); } for (txq = 0; txq < txq_number; txq++) { val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq)); size = val & MVPP2_TXQ_TOKEN_SIZE_MAX; if (size < mtu) { size = mtu; val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX; val |= size; mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq), val); } } } /* Free Tx queue skbuffs */ static void mvpp2_txq_bufs_free(struct mvpp2_port *port, struct mvpp2_tx_queue *txq, struct mvpp2_txq_pcpu *txq_pcpu, int num) { int i; for (i = 0; i < num; i++) mvpp2_txq_inc_get(txq_pcpu); } static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port, u32 cause) { int queue = fls(cause) - 1; return port->rxqs[queue]; } static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port, u32 cause) { int queue = fls(cause) - 1; return port->txqs[queue]; } /* Rx/Tx queue initialization/cleanup methods */ /* Allocate and initialize descriptors for aggr TXQ */ static int mvpp2_aggr_txq_init(struct udevice *dev, struct mvpp2_tx_queue *aggr_txq, int desc_num, int cpu, struct mvpp2 *priv) { u32 txq_dma; /* Allocate memory for TX descriptors */ aggr_txq->descs = buffer_loc.aggr_tx_descs; aggr_txq->descs_dma = (dma_addr_t)buffer_loc.aggr_tx_descs; if (!aggr_txq->descs) return -ENOMEM; /* Make sure descriptor address is cache line size aligned */ BUG_ON(aggr_txq->descs != PTR_ALIGN(aggr_txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE)); aggr_txq->last_desc = aggr_txq->size - 1; /* Aggr TXQ no reset WA */ aggr_txq->next_desc_to_proc = mvpp2_read(priv, MVPP2_AGGR_TXQ_INDEX_REG(cpu)); /* Set Tx descriptors queue starting address indirect * access */ if (priv->hw_version == MVPP21) txq_dma = aggr_txq->descs_dma; else txq_dma = aggr_txq->descs_dma >> MVPP22_AGGR_TXQ_DESC_ADDR_OFFS; mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu), txq_dma); mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu), desc_num); return 0; } /* Create a specified Rx queue */ static int mvpp2_rxq_init(struct mvpp2_port *port, struct mvpp2_rx_queue *rxq) { u32 rxq_dma; rxq->size = port->rx_ring_size; /* Allocate memory for RX descriptors */ rxq->descs = buffer_loc.rx_descs; rxq->descs_dma = (dma_addr_t)buffer_loc.rx_descs; if (!rxq->descs) return -ENOMEM; BUG_ON(rxq->descs != PTR_ALIGN(rxq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE)); rxq->last_desc = rxq->size - 1; /* Zero occupied and non-occupied counters - direct access */ mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0); /* Set Rx descriptors queue starting address - indirect access */ mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id); if (port->priv->hw_version == MVPP21) rxq_dma = rxq->descs_dma; else rxq_dma = rxq->descs_dma >> MVPP22_DESC_ADDR_OFFS; mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, rxq_dma); mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, rxq->size); mvpp2_write(port->priv, MVPP2_RXQ_INDEX_REG, 0); /* Set Offset */ mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD); /* Add number of descriptors ready for receiving packets */ mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size); return 0; } /* Push packets received by the RXQ to BM pool */ static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port, struct mvpp2_rx_queue *rxq) { int rx_received, i; rx_received = mvpp2_rxq_received(port, rxq->id); if (!rx_received) return; for (i = 0; i < rx_received; i++) { struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq); u32 bm = mvpp2_bm_cookie_build(port, rx_desc); mvpp2_pool_refill(port, bm, mvpp2_rxdesc_dma_addr_get(port, rx_desc), mvpp2_rxdesc_cookie_get(port, rx_desc)); } mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received); } /* Cleanup Rx queue */ static void mvpp2_rxq_deinit(struct mvpp2_port *port, struct mvpp2_rx_queue *rxq) { mvpp2_rxq_drop_pkts(port, rxq); rxq->descs = NULL; rxq->last_desc = 0; rxq->next_desc_to_proc = 0; rxq->descs_dma = 0; /* Clear Rx descriptors queue starting address and size; * free descriptor number */ mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0); mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id); mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, 0); mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, 0); } /* Create and initialize a Tx queue */ static int mvpp2_txq_init(struct mvpp2_port *port, struct mvpp2_tx_queue *txq) { u32 val; int cpu, desc, desc_per_txq, tx_port_num; struct mvpp2_txq_pcpu *txq_pcpu; txq->size = port->tx_ring_size; /* Allocate memory for Tx descriptors */ txq->descs = buffer_loc.tx_descs; txq->descs_dma = (dma_addr_t)buffer_loc.tx_descs; if (!txq->descs) return -ENOMEM; /* Make sure descriptor address is cache line size aligned */ BUG_ON(txq->descs != PTR_ALIGN(txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE)); txq->last_desc = txq->size - 1; /* Set Tx descriptors queue starting address - indirect access */ mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id); mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, txq->descs_dma); mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, txq->size & MVPP2_TXQ_DESC_SIZE_MASK); mvpp2_write(port->priv, MVPP2_TXQ_INDEX_REG, 0); mvpp2_write(port->priv, MVPP2_TXQ_RSVD_CLR_REG, txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET); val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG); val &= ~MVPP2_TXQ_PENDING_MASK; mvpp2_write(port->priv, MVPP2_TXQ_PENDING_REG, val); /* Calculate base address in prefetch buffer. We reserve 16 descriptors * for each existing TXQ. * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT * GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS */ desc_per_txq = 16; desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) + (txq->log_id * desc_per_txq); mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 | MVPP2_PREF_BUF_THRESH(desc_per_txq / 2)); /* WRR / EJP configuration - indirect access */ tx_port_num = mvpp2_egress_port(port); mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num); val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id)); val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK; val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1); val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK; mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val); val = MVPP2_TXQ_TOKEN_SIZE_MAX; mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id), val); for_each_present_cpu(cpu) { txq_pcpu = per_cpu_ptr(txq->pcpu, cpu); txq_pcpu->size = txq->size; } return 0; } /* Free allocated TXQ resources */ static void mvpp2_txq_deinit(struct mvpp2_port *port, struct mvpp2_tx_queue *txq) { txq->descs = NULL; txq->last_desc = 0; txq->next_desc_to_proc = 0; txq->descs_dma = 0; /* Set minimum bandwidth for disabled TXQs */ mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0); /* Set Tx descriptors queue starting address and size */ mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id); mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, 0); mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, 0); } /* Cleanup Tx ports */ static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq) { struct mvpp2_txq_pcpu *txq_pcpu; int delay, pending, cpu; u32 val; mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id); val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG); val |= MVPP2_TXQ_DRAIN_EN_MASK; mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val); /* The napi queue has been stopped so wait for all packets * to be transmitted. */ delay = 0; do { if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) { netdev_warn(port->dev, "port %d: cleaning queue %d timed out\n", port->id, txq->log_id); break; } mdelay(1); delay++; pending = mvpp2_txq_pend_desc_num_get(port, txq); } while (pending); val &= ~MVPP2_TXQ_DRAIN_EN_MASK; mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val); for_each_present_cpu(cpu) { txq_pcpu = per_cpu_ptr(txq->pcpu, cpu); /* Release all packets */ mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count); /* Reset queue */ txq_pcpu->count = 0; txq_pcpu->txq_put_index = 0; txq_pcpu->txq_get_index = 0; } } /* Cleanup all Tx queues */ static void mvpp2_cleanup_txqs(struct mvpp2_port *port) { struct mvpp2_tx_queue *txq; int queue; u32 val; val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG); /* Reset Tx ports and delete Tx queues */ val |= MVPP2_TX_PORT_FLUSH_MASK(port->id); mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val); for (queue = 0; queue < txq_number; queue++) { txq = port->txqs[queue]; mvpp2_txq_clean(port, txq); mvpp2_txq_deinit(port, txq); } mvpp2_txq_sent_counter_clear(port); val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id); mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val); } /* Cleanup all Rx queues */ static void mvpp2_cleanup_rxqs(struct mvpp2_port *port) { int queue; for (queue = 0; queue < rxq_number; queue++) mvpp2_rxq_deinit(port, port->rxqs[queue]); } /* Init all Rx queues for port */ static int mvpp2_setup_rxqs(struct mvpp2_port *port) { int queue, err; for (queue = 0; queue < rxq_number; queue++) { err = mvpp2_rxq_init(port, port->rxqs[queue]); if (err) goto err_cleanup; } return 0; err_cleanup: mvpp2_cleanup_rxqs(port); return err; } /* Init all tx queues for port */ static int mvpp2_setup_txqs(struct mvpp2_port *port) { struct mvpp2_tx_queue *txq; int queue, err; for (queue = 0; queue < txq_number; queue++) { txq = port->txqs[queue]; err = mvpp2_txq_init(port, txq); if (err) goto err_cleanup; } mvpp2_txq_sent_counter_clear(port); return 0; err_cleanup: mvpp2_cleanup_txqs(port); return err; } /* Adjust link */ static void mvpp2_link_event(struct mvpp2_port *port) { struct phy_device *phydev = port->phy_dev; int status_change = 0; u32 val; if (phydev->link) { if ((port->speed != phydev->speed) || (port->duplex != phydev->duplex)) { u32 val; val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG); val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED | MVPP2_GMAC_CONFIG_GMII_SPEED | MVPP2_GMAC_CONFIG_FULL_DUPLEX | MVPP2_GMAC_AN_SPEED_EN | MVPP2_GMAC_AN_DUPLEX_EN); if (phydev->duplex) val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX; if (phydev->speed == SPEED_1000) val |= MVPP2_GMAC_CONFIG_GMII_SPEED; else if (phydev->speed == SPEED_100) val |= MVPP2_GMAC_CONFIG_MII_SPEED; writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG); port->duplex = phydev->duplex; port->speed = phydev->speed; } } if (phydev->link != port->link) { if (!phydev->link) { port->duplex = -1; port->speed = 0; } port->link = phydev->link; status_change = 1; } if (status_change) { if (phydev->link) { val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG); val |= (MVPP2_GMAC_FORCE_LINK_PASS | MVPP2_GMAC_FORCE_LINK_DOWN); writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG); mvpp2_egress_enable(port); mvpp2_ingress_enable(port); } else { mvpp2_ingress_disable(port); mvpp2_egress_disable(port); } } } /* Main RX/TX processing routines */ /* Display more error info */ static void mvpp2_rx_error(struct mvpp2_port *port, struct mvpp2_rx_desc *rx_desc) { u32 status = mvpp2_rxdesc_status_get(port, rx_desc); size_t sz = mvpp2_rxdesc_size_get(port, rx_desc); switch (status & MVPP2_RXD_ERR_CODE_MASK) { case MVPP2_RXD_ERR_CRC: netdev_err(port->dev, "bad rx status %08x (crc error), size=%zu\n", status, sz); break; case MVPP2_RXD_ERR_OVERRUN: netdev_err(port->dev, "bad rx status %08x (overrun error), size=%zu\n", status, sz); break; case MVPP2_RXD_ERR_RESOURCE: netdev_err(port->dev, "bad rx status %08x (resource error), size=%zu\n", status, sz); break; } } /* Reuse skb if possible, or allocate a new skb and add it to BM pool */ static int mvpp2_rx_refill(struct mvpp2_port *port, struct mvpp2_bm_pool *bm_pool, u32 bm, dma_addr_t dma_addr) { mvpp2_pool_refill(port, bm, dma_addr, (unsigned long)dma_addr); return 0; } /* Set hw internals when starting port */ static void mvpp2_start_dev(struct mvpp2_port *port) { switch (port->phy_interface) { case PHY_INTERFACE_MODE_RGMII: case PHY_INTERFACE_MODE_RGMII_ID: case PHY_INTERFACE_MODE_SGMII: mvpp2_gmac_max_rx_size_set(port); default: break; } mvpp2_txp_max_tx_size_set(port); if (port->priv->hw_version == MVPP21) mvpp2_port_enable(port); else gop_port_enable(port, 1); } /* Set hw internals when stopping port */ static void mvpp2_stop_dev(struct mvpp2_port *port) { /* Stop new packets from arriving to RXQs */ mvpp2_ingress_disable(port); mvpp2_egress_disable(port); if (port->priv->hw_version == MVPP21) mvpp2_port_disable(port); else gop_port_enable(port, 0); } static int mvpp2_phy_connect(struct udevice *dev, struct mvpp2_port *port) { struct phy_device *phy_dev; if (!port->init || port->link == 0) { phy_dev = phy_connect(port->bus, port->phyaddr, dev, port->phy_interface); port->phy_dev = phy_dev; if (!phy_dev) { netdev_err(port->dev, "cannot connect to phy\n"); return -ENODEV; } phy_dev->supported &= PHY_GBIT_FEATURES; phy_dev->advertising = phy_dev->supported; port->phy_dev = phy_dev; port->link = 0; port->duplex = 0; port->speed = 0; phy_config(phy_dev); phy_startup(phy_dev); if (!phy_dev->link) { printf("%s: No link\n", phy_dev->dev->name); return -1; } port->init = 1; } else { mvpp2_egress_enable(port); mvpp2_ingress_enable(port); } return 0; } static int mvpp2_open(struct udevice *dev, struct mvpp2_port *port) { unsigned char mac_bcast[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; int err; err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true); if (err) { netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n"); return err; } err = mvpp2_prs_mac_da_accept(port->priv, port->id, port->dev_addr, true); if (err) { netdev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n"); return err; } err = mvpp2_prs_def_flow(port); if (err) { netdev_err(dev, "mvpp2_prs_def_flow failed\n"); return err; } /* Allocate the Rx/Tx queues */ err = mvpp2_setup_rxqs(port); if (err) { netdev_err(port->dev, "cannot allocate Rx queues\n"); return err; } err = mvpp2_setup_txqs(port); if (err) { netdev_err(port->dev, "cannot allocate Tx queues\n"); return err; } if (port->phy_node) { err = mvpp2_phy_connect(dev, port); if (err < 0) return err; mvpp2_link_event(port); } else { mvpp2_egress_enable(port); mvpp2_ingress_enable(port); } mvpp2_start_dev(port); return 0; } /* No Device ops here in U-Boot */ /* Driver initialization */ static void mvpp2_port_power_up(struct mvpp2_port *port) { struct mvpp2 *priv = port->priv; /* On PPv2.2 the GoP / interface configuration has already been done */ if (priv->hw_version == MVPP21) mvpp2_port_mii_set(port); mvpp2_port_periodic_xon_disable(port); if (priv->hw_version == MVPP21) mvpp2_port_fc_adv_enable(port); mvpp2_port_reset(port); } /* Initialize port HW */ static int mvpp2_port_init(struct udevice *dev, struct mvpp2_port *port) { struct mvpp2 *priv = port->priv; struct mvpp2_txq_pcpu *txq_pcpu; int queue, cpu, err; if (port->first_rxq + rxq_number > MVPP2_MAX_PORTS * priv->max_port_rxqs) return -EINVAL; /* Disable port */ mvpp2_egress_disable(port); if (priv->hw_version == MVPP21) mvpp2_port_disable(port); else gop_port_enable(port, 0); port->txqs = devm_kcalloc(dev, txq_number, sizeof(*port->txqs), GFP_KERNEL); if (!port->txqs) return -ENOMEM; /* Associate physical Tx queues to this port and initialize. * The mapping is predefined. */ for (queue = 0; queue < txq_number; queue++) { int queue_phy_id = mvpp2_txq_phys(port->id, queue); struct mvpp2_tx_queue *txq; txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL); if (!txq) return -ENOMEM; txq->pcpu = devm_kzalloc(dev, sizeof(struct mvpp2_txq_pcpu), GFP_KERNEL); if (!txq->pcpu) return -ENOMEM; txq->id = queue_phy_id; txq->log_id = queue; txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH; for_each_present_cpu(cpu) { txq_pcpu = per_cpu_ptr(txq->pcpu, cpu); txq_pcpu->cpu = cpu; } port->txqs[queue] = txq; } port->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*port->rxqs), GFP_KERNEL); if (!port->rxqs) return -ENOMEM; /* Allocate and initialize Rx queue for this port */ for (queue = 0; queue < rxq_number; queue++) { struct mvpp2_rx_queue *rxq; /* Map physical Rx queue to port's logical Rx queue */ rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL); if (!rxq) return -ENOMEM; /* Map this Rx queue to a physical queue */ rxq->id = port->first_rxq + queue; rxq->port = port->id; rxq->logic_rxq = queue; port->rxqs[queue] = rxq; } /* Create Rx descriptor rings */ for (queue = 0; queue < rxq_number; queue++) { struct mvpp2_rx_queue *rxq = port->rxqs[queue]; rxq->size = port->rx_ring_size; rxq->pkts_coal = MVPP2_RX_COAL_PKTS; rxq->time_coal = MVPP2_RX_COAL_USEC; } mvpp2_ingress_disable(port); /* Port default configuration */ mvpp2_defaults_set(port); /* Port's classifier configuration */ mvpp2_cls_oversize_rxq_set(port); mvpp2_cls_port_config(port); /* Provide an initial Rx packet size */ port->pkt_size = MVPP2_RX_PKT_SIZE(PKTSIZE_ALIGN); /* Initialize pools for swf */ err = mvpp2_swf_bm_pool_init(port); if (err) return err; return 0; } static int phy_info_parse(struct udevice *dev, struct mvpp2_port *port) { int port_node = dev_of_offset(dev); const char *phy_mode_str; int phy_node; u32 id; u32 phyaddr = 0; int phy_mode = -1; /* Default mdio_base from the same eth base */ if (port->priv->hw_version == MVPP21) port->mdio_base = port->priv->lms_base + MVPP21_SMI; else port->mdio_base = port->priv->iface_base + MVPP22_SMI; phy_node = fdtdec_lookup_phandle(gd->fdt_blob, port_node, "phy"); if (phy_node > 0) { ofnode phy_ofnode; fdt_addr_t phy_base; phyaddr = fdtdec_get_int(gd->fdt_blob, phy_node, "reg", 0); if (phyaddr < 0) { dev_err(&pdev->dev, "could not find phy address\n"); return -1; } phy_ofnode = ofnode_get_parent(offset_to_ofnode(phy_node)); phy_base = ofnode_get_addr(phy_ofnode); port->mdio_base = (void *)phy_base; if (port->mdio_base < 0) { dev_err(&pdev->dev, "could not find mdio base address\n"); return -1; } } else { phy_node = 0; } phy_mode_str = fdt_getprop(gd->fdt_blob, port_node, "phy-mode", NULL); if (phy_mode_str) phy_mode = phy_get_interface_by_name(phy_mode_str); if (phy_mode == -1) { dev_err(&pdev->dev, "incorrect phy mode\n"); return -EINVAL; } id = fdtdec_get_int(gd->fdt_blob, port_node, "port-id", -1); if (id == -1) { dev_err(&pdev->dev, "missing port-id value\n"); return -EINVAL; } #ifdef CONFIG_DM_GPIO gpio_request_by_name(dev, "phy-reset-gpios", 0, &port->phy_reset_gpio, GPIOD_IS_OUT); gpio_request_by_name(dev, "marvell,sfp-tx-disable-gpio", 0, &port->phy_tx_disable_gpio, GPIOD_IS_OUT); #endif /* * ToDo: * Not sure if this DT property "phy-speed" will get accepted, so * this might change later */ /* Get phy-speed for SGMII 2.5Gbps vs 1Gbps setup */ port->phy_speed = fdtdec_get_int(gd->fdt_blob, port_node, "phy-speed", 1000); port->id = id; if (port->priv->hw_version == MVPP21) port->first_rxq = port->id * rxq_number; else port->first_rxq = port->id * port->priv->max_port_rxqs; port->phy_node = phy_node; port->phy_interface = phy_mode; port->phyaddr = phyaddr; return 0; } #ifdef CONFIG_DM_GPIO /* Port GPIO initialization */ static void mvpp2_gpio_init(struct mvpp2_port *port) { if (dm_gpio_is_valid(&port->phy_reset_gpio)) { dm_gpio_set_value(&port->phy_reset_gpio, 1); mdelay(10); dm_gpio_set_value(&port->phy_reset_gpio, 0); } if (dm_gpio_is_valid(&port->phy_tx_disable_gpio)) dm_gpio_set_value(&port->phy_tx_disable_gpio, 0); } #endif /* Ports initialization */ static int mvpp2_port_probe(struct udevice *dev, struct mvpp2_port *port, int port_node, struct mvpp2 *priv) { int err; port->tx_ring_size = MVPP2_MAX_TXD; port->rx_ring_size = MVPP2_MAX_RXD; err = mvpp2_port_init(dev, port); if (err < 0) { dev_err(&pdev->dev, "failed to init port %d\n", port->id); return err; } mvpp2_port_power_up(port); #ifdef CONFIG_DM_GPIO mvpp2_gpio_init(port); #endif priv->port_list[port->id] = port; priv->num_ports++; return 0; } /* Initialize decoding windows */ static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram, struct mvpp2 *priv) { u32 win_enable; int i; for (i = 0; i < 6; i++) { mvpp2_write(priv, MVPP2_WIN_BASE(i), 0); mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0); if (i < 4) mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0); } win_enable = 0; for (i = 0; i < dram->num_cs; i++) { const struct mbus_dram_window *cs = dram->cs + i; mvpp2_write(priv, MVPP2_WIN_BASE(i), (cs->base & 0xffff0000) | (cs->mbus_attr << 8) | dram->mbus_dram_target_id); mvpp2_write(priv, MVPP2_WIN_SIZE(i), (cs->size - 1) & 0xffff0000); win_enable |= (1 << i); } mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable); } /* Initialize Rx FIFO's */ static void mvpp2_rx_fifo_init(struct mvpp2 *priv) { int port; for (port = 0; port < MVPP2_MAX_PORTS; port++) { if (priv->hw_version == MVPP22) { if (port == 0) { mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port), MVPP22_RX_FIFO_10GB_PORT_DATA_SIZE); mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port), MVPP22_RX_FIFO_10GB_PORT_ATTR_SIZE); } else if (port == 1) { mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port), MVPP22_RX_FIFO_2_5GB_PORT_DATA_SIZE); mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port), MVPP22_RX_FIFO_2_5GB_PORT_ATTR_SIZE); } else { mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port), MVPP22_RX_FIFO_1GB_PORT_DATA_SIZE); mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port), MVPP22_RX_FIFO_1GB_PORT_ATTR_SIZE); } } else { mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port), MVPP21_RX_FIFO_PORT_DATA_SIZE); mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port), MVPP21_RX_FIFO_PORT_ATTR_SIZE); } } mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG, MVPP2_RX_FIFO_PORT_MIN_PKT); mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1); } /* Initialize Tx FIFO's */ static void mvpp2_tx_fifo_init(struct mvpp2 *priv) { int port, val; for (port = 0; port < MVPP2_MAX_PORTS; port++) { /* Port 0 supports 10KB TX FIFO */ if (port == 0) { val = MVPP2_TX_FIFO_DATA_SIZE_10KB & MVPP22_TX_FIFO_SIZE_MASK; } else { val = MVPP2_TX_FIFO_DATA_SIZE_3KB & MVPP22_TX_FIFO_SIZE_MASK; } mvpp2_write(priv, MVPP22_TX_FIFO_SIZE_REG(port), val); } } static void mvpp2_axi_init(struct mvpp2 *priv) { u32 val, rdval, wrval; mvpp2_write(priv, MVPP22_BM_ADDR_HIGH_RLS_REG, 0x0); /* AXI Bridge Configuration */ rdval = MVPP22_AXI_CODE_CACHE_RD_CACHE << MVPP22_AXI_ATTR_CACHE_OFFS; rdval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM << MVPP22_AXI_ATTR_DOMAIN_OFFS; wrval = MVPP22_AXI_CODE_CACHE_WR_CACHE << MVPP22_AXI_ATTR_CACHE_OFFS; wrval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM << MVPP22_AXI_ATTR_DOMAIN_OFFS; /* BM */ mvpp2_write(priv, MVPP22_AXI_BM_WR_ATTR_REG, wrval); mvpp2_write(priv, MVPP22_AXI_BM_RD_ATTR_REG, rdval); /* Descriptors */ mvpp2_write(priv, MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG, rdval); mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG, wrval); mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG, rdval); mvpp2_write(priv, MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG, wrval); /* Buffer Data */ mvpp2_write(priv, MVPP22_AXI_TX_DATA_RD_ATTR_REG, rdval); mvpp2_write(priv, MVPP22_AXI_RX_DATA_WR_ATTR_REG, wrval); val = MVPP22_AXI_CODE_CACHE_NON_CACHE << MVPP22_AXI_CODE_CACHE_OFFS; val |= MVPP22_AXI_CODE_DOMAIN_SYSTEM << MVPP22_AXI_CODE_DOMAIN_OFFS; mvpp2_write(priv, MVPP22_AXI_RD_NORMAL_CODE_REG, val); mvpp2_write(priv, MVPP22_AXI_WR_NORMAL_CODE_REG, val); val = MVPP22_AXI_CODE_CACHE_RD_CACHE << MVPP22_AXI_CODE_CACHE_OFFS; val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM << MVPP22_AXI_CODE_DOMAIN_OFFS; mvpp2_write(priv, MVPP22_AXI_RD_SNOOP_CODE_REG, val); val = MVPP22_AXI_CODE_CACHE_WR_CACHE << MVPP22_AXI_CODE_CACHE_OFFS; val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM << MVPP22_AXI_CODE_DOMAIN_OFFS; mvpp2_write(priv, MVPP22_AXI_WR_SNOOP_CODE_REG, val); } /* Initialize network controller common part HW */ static int mvpp2_init(struct udevice *dev, struct mvpp2 *priv) { const struct mbus_dram_target_info *dram_target_info; int err, i; u32 val; /* Checks for hardware constraints (U-Boot uses only one rxq) */ if ((rxq_number > priv->max_port_rxqs) || (txq_number > MVPP2_MAX_TXQ)) { dev_err(&pdev->dev, "invalid queue size parameter\n"); return -EINVAL; } if (priv->hw_version == MVPP22) mvpp2_axi_init(priv); else { /* MBUS windows configuration */ dram_target_info = mvebu_mbus_dram_info(); if (dram_target_info) mvpp2_conf_mbus_windows(dram_target_info, priv); } if (priv->hw_version == MVPP21) { /* Disable HW PHY polling */ val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG); val |= MVPP2_PHY_AN_STOP_SMI0_MASK; writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG); } else { /* Enable HW PHY polling */ val = readl(priv->iface_base + MVPP22_SMI_MISC_CFG_REG); val |= MVPP22_SMI_POLLING_EN; writel(val, priv->iface_base + MVPP22_SMI_MISC_CFG_REG); } /* Allocate and initialize aggregated TXQs */ priv->aggr_txqs = devm_kcalloc(dev, num_present_cpus(), sizeof(struct mvpp2_tx_queue), GFP_KERNEL); if (!priv->aggr_txqs) return -ENOMEM; for_each_present_cpu(i) { priv->aggr_txqs[i].id = i; priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE; err = mvpp2_aggr_txq_init(dev, &priv->aggr_txqs[i], MVPP2_AGGR_TXQ_SIZE, i, priv); if (err < 0) return err; } /* Rx Fifo Init */ mvpp2_rx_fifo_init(priv); /* Tx Fifo Init */ if (priv->hw_version == MVPP22) mvpp2_tx_fifo_init(priv); if (priv->hw_version == MVPP21) writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT, priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG); /* Allow cache snoop when transmiting packets */ mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1); /* Buffer Manager initialization */ err = mvpp2_bm_init(dev, priv); if (err < 0) return err; /* Parser default initialization */ err = mvpp2_prs_default_init(dev, priv); if (err < 0) return err; /* Classifier default initialization */ mvpp2_cls_init(priv); return 0; } /* SMI / MDIO functions */ static int smi_wait_ready(struct mvpp2_port *priv) { u32 timeout = MVPP2_SMI_TIMEOUT; u32 smi_reg; /* wait till the SMI is not busy */ do { /* read smi register */ smi_reg = readl(priv->mdio_base); if (timeout-- == 0) { printf("Error: SMI busy timeout\n"); return -EFAULT; } } while (smi_reg & MVPP2_SMI_BUSY); return 0; } /* * mpp2_mdio_read - miiphy_read callback function. * * Returns 16bit phy register value, or 0xffff on error */ static int mpp2_mdio_read(struct mii_dev *bus, int addr, int devad, int reg) { struct mvpp2_port *priv = bus->priv; u32 smi_reg; u32 timeout; /* check parameters */ if (addr > MVPP2_PHY_ADDR_MASK) { printf("Error: Invalid PHY address %d\n", addr); return -EFAULT; } if (reg > MVPP2_PHY_REG_MASK) { printf("Err: Invalid register offset %d\n", reg); return -EFAULT; } /* wait till the SMI is not busy */ if (smi_wait_ready(priv) < 0) return -EFAULT; /* fill the phy address and regiser offset and read opcode */ smi_reg = (addr << MVPP2_SMI_DEV_ADDR_OFFS) | (reg << MVPP2_SMI_REG_ADDR_OFFS) | MVPP2_SMI_OPCODE_READ; /* write the smi register */ writel(smi_reg, priv->mdio_base); /* wait till read value is ready */ timeout = MVPP2_SMI_TIMEOUT; do { /* read smi register */ smi_reg = readl(priv->mdio_base); if (timeout-- == 0) { printf("Err: SMI read ready timeout\n"); return -EFAULT; } } while (!(smi_reg & MVPP2_SMI_READ_VALID)); /* Wait for the data to update in the SMI register */ for (timeout = 0; timeout < MVPP2_SMI_TIMEOUT; timeout++) ; return readl(priv->mdio_base) & MVPP2_SMI_DATA_MASK; } /* * mpp2_mdio_write - miiphy_write callback function. * * Returns 0 if write succeed, -EINVAL on bad parameters * -ETIME on timeout */ static int mpp2_mdio_write(struct mii_dev *bus, int addr, int devad, int reg, u16 value) { struct mvpp2_port *priv = bus->priv; u32 smi_reg; /* check parameters */ if (addr > MVPP2_PHY_ADDR_MASK) { printf("Error: Invalid PHY address %d\n", addr); return -EFAULT; } if (reg > MVPP2_PHY_REG_MASK) { printf("Err: Invalid register offset %d\n", reg); return -EFAULT; } /* wait till the SMI is not busy */ if (smi_wait_ready(priv) < 0) return -EFAULT; /* fill the phy addr and reg offset and write opcode and data */ smi_reg = value << MVPP2_SMI_DATA_OFFS; smi_reg |= (addr << MVPP2_SMI_DEV_ADDR_OFFS) | (reg << MVPP2_SMI_REG_ADDR_OFFS); smi_reg &= ~MVPP2_SMI_OPCODE_READ; /* write the smi register */ writel(smi_reg, priv->mdio_base); return 0; } static int mvpp2_recv(struct udevice *dev, int flags, uchar **packetp) { struct mvpp2_port *port = dev_get_priv(dev); struct mvpp2_rx_desc *rx_desc; struct mvpp2_bm_pool *bm_pool; dma_addr_t dma_addr; u32 bm, rx_status; int pool, rx_bytes, err; int rx_received; struct mvpp2_rx_queue *rxq; u8 *data; /* Process RX packets */ rxq = port->rxqs[0]; /* Get number of received packets and clamp the to-do */ rx_received = mvpp2_rxq_received(port, rxq->id); /* Return if no packets are received */ if (!rx_received) return 0; rx_desc = mvpp2_rxq_next_desc_get(rxq); rx_status = mvpp2_rxdesc_status_get(port, rx_desc); rx_bytes = mvpp2_rxdesc_size_get(port, rx_desc); rx_bytes -= MVPP2_MH_SIZE; dma_addr = mvpp2_rxdesc_dma_addr_get(port, rx_desc); bm = mvpp2_bm_cookie_build(port, rx_desc); pool = mvpp2_bm_cookie_pool_get(bm); bm_pool = &port->priv->bm_pools[pool]; /* In case of an error, release the requested buffer pointer * to the Buffer Manager. This request process is controlled * by the hardware, and the information about the buffer is * comprised by the RX descriptor. */ if (rx_status & MVPP2_RXD_ERR_SUMMARY) { mvpp2_rx_error(port, rx_desc); /* Return the buffer to the pool */ mvpp2_pool_refill(port, bm, dma_addr, dma_addr); return 0; } err = mvpp2_rx_refill(port, bm_pool, bm, dma_addr); if (err) { netdev_err(port->dev, "failed to refill BM pools\n"); return 0; } /* Update Rx queue management counters */ mb(); mvpp2_rxq_status_update(port, rxq->id, 1, 1); /* give packet to stack - skip on first n bytes */ data = (u8 *)dma_addr + 2 + 32; if (rx_bytes <= 0) return 0; /* * No cache invalidation needed here, since the rx_buffer's are * located in a uncached memory region */ *packetp = data; return rx_bytes; } static int mvpp2_send(struct udevice *dev, void *packet, int length) { struct mvpp2_port *port = dev_get_priv(dev); struct mvpp2_tx_queue *txq, *aggr_txq; struct mvpp2_tx_desc *tx_desc; int tx_done; int timeout; txq = port->txqs[0]; aggr_txq = &port->priv->aggr_txqs[smp_processor_id()]; /* Get a descriptor for the first part of the packet */ tx_desc = mvpp2_txq_next_desc_get(aggr_txq); mvpp2_txdesc_txq_set(port, tx_desc, txq->id); mvpp2_txdesc_size_set(port, tx_desc, length); mvpp2_txdesc_offset_set(port, tx_desc, (dma_addr_t)packet & MVPP2_TX_DESC_ALIGN); mvpp2_txdesc_dma_addr_set(port, tx_desc, (dma_addr_t)packet & ~MVPP2_TX_DESC_ALIGN); /* First and Last descriptor */ mvpp2_txdesc_cmd_set(port, tx_desc, MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE | MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC); /* Flush tx data */ flush_dcache_range((unsigned long)packet, (unsigned long)packet + ALIGN(length, PKTALIGN)); /* Enable transmit */ mb(); mvpp2_aggr_txq_pend_desc_add(port, 1); mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id); timeout = 0; do { if (timeout++ > 10000) { printf("timeout: packet not sent from aggregated to phys TXQ\n"); return 0; } tx_done = mvpp2_txq_pend_desc_num_get(port, txq); } while (tx_done); timeout = 0; do { if (timeout++ > 10000) { printf("timeout: packet not sent\n"); return 0; } tx_done = mvpp2_txq_sent_desc_proc(port, txq); } while (!tx_done); return 0; } static int mvpp2_start(struct udevice *dev) { struct eth_pdata *pdata = dev_get_platdata(dev); struct mvpp2_port *port = dev_get_priv(dev); /* Load current MAC address */ memcpy(port->dev_addr, pdata->enetaddr, ETH_ALEN); /* Reconfigure parser accept the original MAC address */ mvpp2_prs_update_mac_da(port, port->dev_addr); switch (port->phy_interface) { case PHY_INTERFACE_MODE_RGMII: case PHY_INTERFACE_MODE_RGMII_ID: case PHY_INTERFACE_MODE_SGMII: mvpp2_port_power_up(port); default: break; } mvpp2_open(dev, port); return 0; } static void mvpp2_stop(struct udevice *dev) { struct mvpp2_port *port = dev_get_priv(dev); mvpp2_stop_dev(port); mvpp2_cleanup_rxqs(port); mvpp2_cleanup_txqs(port); } static int mvpp22_smi_phy_addr_cfg(struct mvpp2_port *port) { writel(port->phyaddr, port->priv->iface_base + MVPP22_SMI_PHY_ADDR_REG(port->gop_id)); return 0; } static int mvpp2_base_probe(struct udevice *dev) { struct mvpp2 *priv = dev_get_priv(dev); void *bd_space; u32 size = 0; int i; /* Save hw-version */ priv->hw_version = dev_get_driver_data(dev); /* * U-Boot special buffer handling: * * Allocate buffer area for descs and rx_buffers. This is only * done once for all interfaces. As only one interface can * be active. Make this area DMA-safe by disabling the D-cache */ /* Align buffer area for descs and rx_buffers to 1MiB */ bd_space = memalign(1 << MMU_SECTION_SHIFT, BD_SPACE); mmu_set_region_dcache_behaviour((unsigned long)bd_space, BD_SPACE, DCACHE_OFF); buffer_loc.aggr_tx_descs = (struct mvpp2_tx_desc *)bd_space; size += MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE; buffer_loc.tx_descs = (struct mvpp2_tx_desc *)((unsigned long)bd_space + size); size += MVPP2_MAX_TXD * MVPP2_DESC_ALIGNED_SIZE; buffer_loc.rx_descs = (struct mvpp2_rx_desc *)((unsigned long)bd_space + size); size += MVPP2_MAX_RXD * MVPP2_DESC_ALIGNED_SIZE; for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) { buffer_loc.bm_pool[i] = (unsigned long *)((unsigned long)bd_space + size); if (priv->hw_version == MVPP21) size += MVPP2_BM_POOL_SIZE_MAX * 2 * sizeof(u32); else size += MVPP2_BM_POOL_SIZE_MAX * 2 * sizeof(u64); } for (i = 0; i < MVPP2_BM_LONG_BUF_NUM; i++) { buffer_loc.rx_buffer[i] = (unsigned long *)((unsigned long)bd_space + size); size += RX_BUFFER_SIZE; } /* Clear the complete area so that all descriptors are cleared */ memset(bd_space, 0, size); /* Save base addresses for later use */ priv->base = (void *)devfdt_get_addr_index(dev, 0); if (IS_ERR(priv->base)) return PTR_ERR(priv->base); if (priv->hw_version == MVPP21) { priv->lms_base = (void *)devfdt_get_addr_index(dev, 1); if (IS_ERR(priv->lms_base)) return PTR_ERR(priv->lms_base); } else { priv->iface_base = (void *)devfdt_get_addr_index(dev, 1); if (IS_ERR(priv->iface_base)) return PTR_ERR(priv->iface_base); /* Store common base addresses for all ports */ priv->mpcs_base = priv->iface_base + MVPP22_MPCS; priv->xpcs_base = priv->iface_base + MVPP22_XPCS; priv->rfu1_base = priv->iface_base + MVPP22_RFU1; } if (priv->hw_version == MVPP21) priv->max_port_rxqs = 8; else priv->max_port_rxqs = 32; return 0; } static int mvpp2_probe(struct udevice *dev) { struct mvpp2_port *port = dev_get_priv(dev); struct mvpp2 *priv = dev_get_priv(dev->parent); struct mii_dev *bus; int err; /* Only call the probe function for the parent once */ if (!priv->probe_done) err = mvpp2_base_probe(dev->parent); port->priv = dev_get_priv(dev->parent); /* Create and register the MDIO bus driver */ bus = mdio_alloc(); if (!bus) { printf("Failed to allocate MDIO bus\n"); return -ENOMEM; } bus->read = mpp2_mdio_read; bus->write = mpp2_mdio_write; snprintf(bus->name, sizeof(bus->name), dev->name); bus->priv = (void *)port; port->bus = bus; err = mdio_register(bus); if (err) return err; err = phy_info_parse(dev, port); if (err) return err; /* * We need the port specific io base addresses at this stage, since * gop_port_init() accesses these registers */ if (priv->hw_version == MVPP21) { int priv_common_regs_num = 2; port->base = (void __iomem *)devfdt_get_addr_index( dev->parent, priv_common_regs_num + port->id); if (IS_ERR(port->base)) return PTR_ERR(port->base); } else { port->gop_id = fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev), "gop-port-id", -1); if (port->id == -1) { dev_err(&pdev->dev, "missing gop-port-id value\n"); return -EINVAL; } port->base = priv->iface_base + MVPP22_PORT_BASE + port->gop_id * MVPP22_PORT_OFFSET; /* Set phy address of the port */ if(port->phy_node) mvpp22_smi_phy_addr_cfg(port); /* GoP Init */ gop_port_init(port); } if (!priv->probe_done) { /* Initialize network controller */ err = mvpp2_init(dev, priv); if (err < 0) { dev_err(&pdev->dev, "failed to initialize controller\n"); return err; } priv->num_ports = 0; priv->probe_done = 1; } err = mvpp2_port_probe(dev, port, dev_of_offset(dev), priv); if (err) return err; if (priv->hw_version == MVPP22) { priv->netc_config |= mvpp2_netc_cfg_create(port->gop_id, port->phy_interface); /* Netcomplex configurations for all ports */ gop_netc_init(priv, MV_NETC_FIRST_PHASE); gop_netc_init(priv, MV_NETC_SECOND_PHASE); } return 0; } /* * Empty BM pool and stop its activity before the OS is started */ static int mvpp2_remove(struct udevice *dev) { struct mvpp2_port *port = dev_get_priv(dev); struct mvpp2 *priv = port->priv; int i; priv->num_ports--; if (priv->num_ports) return 0; for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) mvpp2_bm_pool_destroy(dev, priv, &priv->bm_pools[i]); return 0; } static const struct eth_ops mvpp2_ops = { .start = mvpp2_start, .send = mvpp2_send, .recv = mvpp2_recv, .stop = mvpp2_stop, }; static struct driver mvpp2_driver = { .name = "mvpp2", .id = UCLASS_ETH, .probe = mvpp2_probe, .remove = mvpp2_remove, .ops = &mvpp2_ops, .priv_auto_alloc_size = sizeof(struct mvpp2_port), .platdata_auto_alloc_size = sizeof(struct eth_pdata), .flags = DM_FLAG_ACTIVE_DMA, }; /* * Use a MISC device to bind the n instances (child nodes) of the * network base controller in UCLASS_ETH. */ static int mvpp2_base_bind(struct udevice *parent) { const void *blob = gd->fdt_blob; int node = dev_of_offset(parent); struct uclass_driver *drv; struct udevice *dev; struct eth_pdata *plat; char *name; int subnode; u32 id; int base_id_add; /* Lookup eth driver */ drv = lists_uclass_lookup(UCLASS_ETH); if (!drv) { puts("Cannot find eth driver\n"); return -ENOENT; } base_id_add = base_id; fdt_for_each_subnode(subnode, blob, node) { /* Increment base_id for all subnodes, also the disabled ones */ base_id++; /* Skip disabled ports */ if (!fdtdec_get_is_enabled(blob, subnode)) continue; plat = calloc(1, sizeof(*plat)); if (!plat) return -ENOMEM; id = fdtdec_get_int(blob, subnode, "port-id", -1); id += base_id_add; name = calloc(1, 16); if (!name) { free(plat); return -ENOMEM; } sprintf(name, "mvpp2-%d", id); /* Create child device UCLASS_ETH and bind it */ device_bind(parent, &mvpp2_driver, name, plat, subnode, &dev); dev_set_of_offset(dev, subnode); } return 0; } static const struct udevice_id mvpp2_ids[] = { { .compatible = "marvell,armada-375-pp2", .data = MVPP21, }, { .compatible = "marvell,armada-7k-pp22", .data = MVPP22, }, { } }; U_BOOT_DRIVER(mvpp2_base) = { .name = "mvpp2_base", .id = UCLASS_MISC, .of_match = mvpp2_ids, .bind = mvpp2_base_bind, .priv_auto_alloc_size = sizeof(struct mvpp2), };