// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2015-2016 Freescale Semiconductor, Inc. * Copyright 2017 NXP */ #include <log.h> #include <malloc.h> #include <linux/delay.h> #include <net/pfe_eth/pfe_eth.h> #include <net/pfe_eth/pfe_firmware.h> static struct tx_desc_s *g_tx_desc; static struct rx_desc_s *g_rx_desc; /* * HIF Rx interface function * Reads the rx descriptor from the current location (rx_to_read). * - If the descriptor has a valid data/pkt, then get the data pointer * - check for the input rx phy number * - increment the rx data pointer by pkt_head_room_size * - decrement the data length by pkt_head_room_size * - handover the packet to caller. * * @param[out] pkt_ptr - Pointer to store rx packet * @param[out] phy_port - Pointer to store recv phy port * * @return -1 if no packet, else return length of packet. */ int pfe_recv(uchar **pkt_ptr, int *phy_port) { struct rx_desc_s *rx_desc = g_rx_desc; struct buf_desc *bd; int len = 0; struct hif_header_s *hif_header; bd = rx_desc->rx_base + rx_desc->rx_to_read; if (readl(&bd->ctrl) & BD_CTRL_DESC_EN) return len; /* No pending Rx packet */ /* this len include hif_header(8 bytes) */ len = readl(&bd->ctrl) & 0xFFFF; hif_header = (struct hif_header_s *)DDR_PFE_TO_VIRT(readl(&bd->data)); /* Get the receive port info from the packet */ debug("Pkt received:"); debug(" Pkt ptr(%p), len(%d), gemac_port(%d) status(%08x)\n", hif_header, len, hif_header->port_no, readl(&bd->status)); #ifdef DEBUG { int i; unsigned char *p = (unsigned char *)hif_header; for (i = 0; i < len; i++) { if (!(i % 16)) printf("\n"); printf(" %02x", p[i]); } printf("\n"); } #endif *pkt_ptr = (uchar *)(hif_header + 1); *phy_port = hif_header->port_no; len -= sizeof(struct hif_header_s); return len; } /* * HIF function to check the Rx done * This function will check the rx done indication of the current rx_to_read * locations * if success, moves the rx_to_read to next location. */ int pfe_eth_free_pkt(struct udevice *dev, uchar *packet, int length) { struct rx_desc_s *rx_desc = g_rx_desc; struct buf_desc *bd; debug("%s:rx_base: %p, rx_to_read: %d\n", __func__, rx_desc->rx_base, rx_desc->rx_to_read); bd = rx_desc->rx_base + rx_desc->rx_to_read; /* reset the control field */ writel((MAX_FRAME_SIZE | BD_CTRL_LIFM | BD_CTRL_DESC_EN | BD_CTRL_DIR), &bd->ctrl); writel(0, &bd->status); debug("Rx Done : status: %08x, ctrl: %08x\n", readl(&bd->status), readl(&bd->ctrl)); /* Give START_STROBE to BDP to fetch the descriptor __NOW__, * BDP need not wait for rx_poll_cycle time to fetch the descriptor, * In idle state (ie., no rx pkt), BDP will not fetch * the descriptor even if strobe is given. */ writel((readl(HIF_RX_CTRL) | HIF_CTRL_BDP_CH_START_WSTB), HIF_RX_CTRL); /* increment the rx_to_read index to next location */ rx_desc->rx_to_read = (rx_desc->rx_to_read + 1) & (rx_desc->rx_ring_size - 1); debug("Rx next pkt location: %d\n", rx_desc->rx_to_read); return 0; } /* * HIF Tx interface function * This function sends a single packet to PFE from HIF interface. * - No interrupt indication on tx completion. * - Data is copied to tx buffers before tx descriptor is updated * and TX DMA is enabled. * * @param[in] phy_port Phy port number to send out this packet * @param[in] data Pointer to the data * @param[in] length Length of the ethernet packet to be transferred. * * @return -1 if tx Q is full, else returns the tx location where the pkt is * placed. */ int pfe_send(int phy_port, void *data, int length) { struct tx_desc_s *tx_desc = g_tx_desc; struct buf_desc *bd; struct hif_header_s hif_header; u8 *tx_buf_va; debug("%s:pkt: %p, len: %d, tx_base: %p, tx_to_send: %d\n", __func__, data, length, tx_desc->tx_base, tx_desc->tx_to_send); bd = tx_desc->tx_base + tx_desc->tx_to_send; /* check queue-full condition */ if (readl(&bd->ctrl) & BD_CTRL_DESC_EN) return -1; /* PFE checks for min pkt size */ if (length < MIN_PKT_SIZE) length = MIN_PKT_SIZE; tx_buf_va = (void *)DDR_PFE_TO_VIRT(readl(&bd->data)); debug("%s: tx_buf_va: %p, tx_buf_pa: %08x\n", __func__, tx_buf_va, readl(&bd->data)); /* Fill the gemac/phy port number to send this packet out */ memset(&hif_header, 0, sizeof(struct hif_header_s)); hif_header.port_no = phy_port; memcpy(tx_buf_va, (u8 *)&hif_header, sizeof(struct hif_header_s)); memcpy(tx_buf_va + sizeof(struct hif_header_s), data, length); length += sizeof(struct hif_header_s); #ifdef DEBUG { int i; unsigned char *p = (unsigned char *)tx_buf_va; for (i = 0; i < length; i++) { if (!(i % 16)) printf("\n"); printf("%02x ", p[i]); } } #endif debug("Tx Done: status: %08x, ctrl: %08x\n", readl(&bd->status), readl(&bd->ctrl)); /* fill the tx desc */ writel((u32)(BD_CTRL_DESC_EN | BD_CTRL_LIFM | (length & 0xFFFF)), &bd->ctrl); writel(0, &bd->status); writel((HIF_CTRL_DMA_EN | HIF_CTRL_BDP_CH_START_WSTB), HIF_TX_CTRL); udelay(100); return tx_desc->tx_to_send; } /* * HIF function to check the Tx done * This function will check the tx done indication of the current tx_to_send * locations * if success, moves the tx_to_send to next location. * * @return -1 if TX ownership bit is not cleared by hw. * else on success (tx done completion) return zero. */ int pfe_tx_done(void) { struct tx_desc_s *tx_desc = g_tx_desc; struct buf_desc *bd; debug("%s:tx_base: %p, tx_to_send: %d\n", __func__, tx_desc->tx_base, tx_desc->tx_to_send); bd = tx_desc->tx_base + tx_desc->tx_to_send; /* check queue-full condition */ if (readl(&bd->ctrl) & BD_CTRL_DESC_EN) return -1; /* reset the control field */ writel(0, &bd->ctrl); writel(0, &bd->status); debug("Tx Done : status: %08x, ctrl: %08x\n", readl(&bd->status), readl(&bd->ctrl)); /* increment the txtosend index to next location */ tx_desc->tx_to_send = (tx_desc->tx_to_send + 1) & (tx_desc->tx_ring_size - 1); debug("Tx next pkt location: %d\n", tx_desc->tx_to_send); return 0; } /* * Helper function to dump Rx descriptors. */ static inline void hif_rx_desc_dump(void) { struct buf_desc *bd_va; int i; struct rx_desc_s *rx_desc; if (!g_rx_desc) { printf("%s: HIF Rx desc no init\n", __func__); return; } rx_desc = g_rx_desc; bd_va = rx_desc->rx_base; debug("HIF rx desc: base_va: %p, base_pa: %08x\n", rx_desc->rx_base, rx_desc->rx_base_pa); for (i = 0; i < rx_desc->rx_ring_size; i++) { debug("status: %08x, ctrl: %08x, data: %08x, next: 0x%08x\n", readl(&bd_va->status), readl(&bd_va->ctrl), readl(&bd_va->data), readl(&bd_va->next)); bd_va++; } } /* * This function mark all Rx descriptors as LAST_BD. */ void hif_rx_desc_disable(void) { int i; struct rx_desc_s *rx_desc; struct buf_desc *bd_va; if (!g_rx_desc) { printf("%s: HIF Rx desc not initialized\n", __func__); return; } rx_desc = g_rx_desc; bd_va = rx_desc->rx_base; for (i = 0; i < rx_desc->rx_ring_size; i++) { writel(readl(&bd_va->ctrl) | BD_CTRL_LAST_BD, &bd_va->ctrl); bd_va++; } } /* * HIF Rx Desc initialization function. */ static int hif_rx_desc_init(struct pfe_ddr_address *pfe_addr) { u32 ctrl; struct buf_desc *bd_va; struct buf_desc *bd_pa; struct rx_desc_s *rx_desc; u32 rx_buf_pa; int i; /* sanity check */ if (g_rx_desc) { printf("%s: HIF Rx desc re-init request\n", __func__); return 0; } rx_desc = (struct rx_desc_s *)malloc(sizeof(struct rx_desc_s)); if (!rx_desc) { printf("%s: Memory allocation failure\n", __func__); return -ENOMEM; } memset(rx_desc, 0, sizeof(struct rx_desc_s)); /* init: Rx ring buffer */ rx_desc->rx_ring_size = HIF_RX_DESC_NT; /* NOTE: must be 64bit aligned */ bd_va = (struct buf_desc *)(pfe_addr->ddr_pfe_baseaddr + RX_BD_BASEADDR); bd_pa = (struct buf_desc *)(pfe_addr->ddr_pfe_phys_baseaddr + RX_BD_BASEADDR); rx_desc->rx_base = bd_va; rx_desc->rx_base_pa = (unsigned long)bd_pa; rx_buf_pa = pfe_addr->ddr_pfe_phys_baseaddr + HIF_RX_PKT_DDR_BASEADDR; debug("%s: Rx desc base: %p, base_pa: %08x, desc_count: %d\n", __func__, rx_desc->rx_base, rx_desc->rx_base_pa, rx_desc->rx_ring_size); memset(bd_va, 0, sizeof(struct buf_desc) * rx_desc->rx_ring_size); ctrl = (MAX_FRAME_SIZE | BD_CTRL_DESC_EN | BD_CTRL_DIR | BD_CTRL_LIFM); for (i = 0; i < rx_desc->rx_ring_size; i++) { writel((unsigned long)(bd_pa + 1), &bd_va->next); writel(ctrl, &bd_va->ctrl); writel(rx_buf_pa + (i * MAX_FRAME_SIZE), &bd_va->data); bd_va++; bd_pa++; } --bd_va; writel((u32)rx_desc->rx_base_pa, &bd_va->next); writel(rx_desc->rx_base_pa, HIF_RX_BDP_ADDR); writel((readl(HIF_RX_CTRL) | HIF_CTRL_BDP_CH_START_WSTB), HIF_RX_CTRL); g_rx_desc = rx_desc; return 0; } /* * Helper function to dump Tx Descriptors. */ static inline void hif_tx_desc_dump(void) { struct tx_desc_s *tx_desc; int i; struct buf_desc *bd_va; if (!g_tx_desc) { printf("%s: HIF Tx desc no init\n", __func__); return; } tx_desc = g_tx_desc; bd_va = tx_desc->tx_base; debug("HIF tx desc: base_va: %p, base_pa: %08x\n", tx_desc->tx_base, tx_desc->tx_base_pa); for (i = 0; i < tx_desc->tx_ring_size; i++) bd_va++; } /* * HIF Tx descriptor initialization function. */ static int hif_tx_desc_init(struct pfe_ddr_address *pfe_addr) { struct buf_desc *bd_va; struct buf_desc *bd_pa; int i; struct tx_desc_s *tx_desc; u32 tx_buf_pa; /* sanity check */ if (g_tx_desc) { printf("%s: HIF Tx desc re-init request\n", __func__); return 0; } tx_desc = (struct tx_desc_s *)malloc(sizeof(struct tx_desc_s)); if (!tx_desc) { printf("%s:%d:Memory allocation failure\n", __func__, __LINE__); return -ENOMEM; } memset(tx_desc, 0, sizeof(struct tx_desc_s)); /* init: Tx ring buffer */ tx_desc->tx_ring_size = HIF_TX_DESC_NT; /* NOTE: must be 64bit aligned */ bd_va = (struct buf_desc *)(pfe_addr->ddr_pfe_baseaddr + TX_BD_BASEADDR); bd_pa = (struct buf_desc *)(pfe_addr->ddr_pfe_phys_baseaddr + TX_BD_BASEADDR); tx_desc->tx_base_pa = (unsigned long)bd_pa; tx_desc->tx_base = bd_va; debug("%s: Tx desc_base: %p, base_pa: %08x, desc_count: %d\n", __func__, tx_desc->tx_base, tx_desc->tx_base_pa, tx_desc->tx_ring_size); memset(bd_va, 0, sizeof(struct buf_desc) * tx_desc->tx_ring_size); tx_buf_pa = pfe_addr->ddr_pfe_phys_baseaddr + HIF_TX_PKT_DDR_BASEADDR; for (i = 0; i < tx_desc->tx_ring_size; i++) { writel((unsigned long)(bd_pa + 1), &bd_va->next); writel(tx_buf_pa + (i * MAX_FRAME_SIZE), &bd_va->data); bd_va++; bd_pa++; } --bd_va; writel((u32)tx_desc->tx_base_pa, &bd_va->next); writel(tx_desc->tx_base_pa, HIF_TX_BDP_ADDR); g_tx_desc = tx_desc; return 0; } /* * PFE/Class initialization. */ static void pfe_class_init(struct pfe_ddr_address *pfe_addr) { struct class_cfg class_cfg = { .route_table_baseaddr = pfe_addr->ddr_pfe_phys_baseaddr + ROUTE_TABLE_BASEADDR, .route_table_hash_bits = ROUTE_TABLE_HASH_BITS, }; class_init(&class_cfg); debug("class init complete\n"); } /* * PFE/TMU initialization. */ static void pfe_tmu_init(struct pfe_ddr_address *pfe_addr) { struct tmu_cfg tmu_cfg = { .llm_base_addr = pfe_addr->ddr_pfe_phys_baseaddr + TMU_LLM_BASEADDR, .llm_queue_len = TMU_LLM_QUEUE_LEN, }; tmu_init(&tmu_cfg); debug("tmu init complete\n"); } /* * PFE/BMU (both BMU1 & BMU2) initialization. */ static void pfe_bmu_init(struct pfe_ddr_address *pfe_addr) { struct bmu_cfg bmu1_cfg = { .baseaddr = CBUS_VIRT_TO_PFE(LMEM_BASE_ADDR + BMU1_LMEM_BASEADDR), .count = BMU1_BUF_COUNT, .size = BMU1_BUF_SIZE, }; struct bmu_cfg bmu2_cfg = { .baseaddr = pfe_addr->ddr_pfe_phys_baseaddr + BMU2_DDR_BASEADDR, .count = BMU2_BUF_COUNT, .size = BMU2_BUF_SIZE, }; bmu_init(BMU1_BASE_ADDR, &bmu1_cfg); debug("bmu1 init: done\n"); bmu_init(BMU2_BASE_ADDR, &bmu2_cfg); debug("bmu2 init: done\n"); } /* * PFE/GPI initialization function. * - egpi1, egpi2, egpi3, hgpi */ static void pfe_gpi_init(struct pfe_ddr_address *pfe_addr) { struct gpi_cfg egpi1_cfg = { .lmem_rtry_cnt = EGPI1_LMEM_RTRY_CNT, .tmlf_txthres = EGPI1_TMLF_TXTHRES, .aseq_len = EGPI1_ASEQ_LEN, }; struct gpi_cfg egpi2_cfg = { .lmem_rtry_cnt = EGPI2_LMEM_RTRY_CNT, .tmlf_txthres = EGPI2_TMLF_TXTHRES, .aseq_len = EGPI2_ASEQ_LEN, }; struct gpi_cfg hgpi_cfg = { .lmem_rtry_cnt = HGPI_LMEM_RTRY_CNT, .tmlf_txthres = HGPI_TMLF_TXTHRES, .aseq_len = HGPI_ASEQ_LEN, }; gpi_init(EGPI1_BASE_ADDR, &egpi1_cfg); debug("GPI1 init complete\n"); gpi_init(EGPI2_BASE_ADDR, &egpi2_cfg); debug("GPI2 init complete\n"); gpi_init(HGPI_BASE_ADDR, &hgpi_cfg); debug("HGPI init complete\n"); } /* * PFE/HIF initialization function. */ static int pfe_hif_init(struct pfe_ddr_address *pfe_addr) { int ret = 0; hif_tx_disable(); hif_rx_disable(); ret = hif_tx_desc_init(pfe_addr); if (ret) return ret; ret = hif_rx_desc_init(pfe_addr); if (ret) return ret; hif_init(); hif_tx_enable(); hif_rx_enable(); hif_rx_desc_dump(); hif_tx_desc_dump(); debug("HIF init complete\n"); return ret; } /* * PFE initialization * - Firmware loading (CLASS-PE and TMU-PE) * - BMU1 and BMU2 init * - GEMAC init * - GPI init * - CLASS-PE init * - TMU-PE init * - HIF tx and rx descriptors init * * @param[in] edev Pointer to eth device structure. * * @return 0, on success. */ static int pfe_hw_init(struct pfe_ddr_address *pfe_addr) { int ret = 0; debug("%s: start\n", __func__); writel(0x3, CLASS_PE_SYS_CLK_RATIO); writel(0x3, TMU_PE_SYS_CLK_RATIO); writel(0x3, UTIL_PE_SYS_CLK_RATIO); udelay(10); pfe_class_init(pfe_addr); pfe_tmu_init(pfe_addr); pfe_bmu_init(pfe_addr); pfe_gpi_init(pfe_addr); ret = pfe_hif_init(pfe_addr); if (ret) return ret; bmu_enable(BMU1_BASE_ADDR); debug("bmu1 enabled\n"); bmu_enable(BMU2_BASE_ADDR); debug("bmu2 enabled\n"); debug("%s: done\n", __func__); return ret; } /* * PFE driver init function. * - Initializes pfe_lib * - pfe hw init * - fw loading and enables PEs * - should be executed once. * * @param[in] pfe Pointer the pfe control block */ int pfe_drv_init(struct pfe_ddr_address *pfe_addr) { int ret = 0; pfe_lib_init(); ret = pfe_hw_init(pfe_addr); if (ret) return ret; /* Load the class,TM, Util fw. * By now pfe is: * - out of reset + disabled + configured. * Fw loading should be done after pfe_hw_init() */ /* It loads default inbuilt sbl firmware */ pfe_firmware_init(); return ret; } /* * PFE remove function * - stops PEs * - frees tx/rx descriptor resources * - should be called once. * * @param[in] pfe Pointer to pfe control block. */ int pfe_eth_remove(struct udevice *dev) { if (g_tx_desc) free(g_tx_desc); if (g_rx_desc) free(g_rx_desc); pfe_firmware_exit(); return 0; }