// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2015-2016 Freescale Semiconductor, Inc. * Copyright 2017 NXP */ #include #include #include static struct pe_info pe[MAX_PE]; /* * Initializes the PFE library. * Must be called before using any of the library functions. */ void pfe_lib_init(void) { int pfe_pe_id; for (pfe_pe_id = CLASS0_ID; pfe_pe_id <= CLASS_MAX_ID; pfe_pe_id++) { pe[pfe_pe_id].dmem_base_addr = (u32)CLASS_DMEM_BASE_ADDR(pfe_pe_id); pe[pfe_pe_id].pmem_base_addr = (u32)CLASS_IMEM_BASE_ADDR(pfe_pe_id); pe[pfe_pe_id].pmem_size = (u32)CLASS_IMEM_SIZE; pe[pfe_pe_id].mem_access_wdata = (void *)CLASS_MEM_ACCESS_WDATA; pe[pfe_pe_id].mem_access_addr = (void *)CLASS_MEM_ACCESS_ADDR; pe[pfe_pe_id].mem_access_rdata = (void *)CLASS_MEM_ACCESS_RDATA; } for (pfe_pe_id = TMU0_ID; pfe_pe_id <= TMU_MAX_ID; pfe_pe_id++) { if (pfe_pe_id == TMU2_ID) continue; pe[pfe_pe_id].dmem_base_addr = (u32)TMU_DMEM_BASE_ADDR(pfe_pe_id - TMU0_ID); pe[pfe_pe_id].pmem_base_addr = (u32)TMU_IMEM_BASE_ADDR(pfe_pe_id - TMU0_ID); pe[pfe_pe_id].pmem_size = (u32)TMU_IMEM_SIZE; pe[pfe_pe_id].mem_access_wdata = (void *)TMU_MEM_ACCESS_WDATA; pe[pfe_pe_id].mem_access_addr = (void *)TMU_MEM_ACCESS_ADDR; pe[pfe_pe_id].mem_access_rdata = (void *)TMU_MEM_ACCESS_RDATA; } } /* * Writes a buffer to PE internal memory from the host * through indirect access registers. * * @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID, * ..., UTIL_ID) * @param[in] mem_access_addr DMEM destination address (must be 32bit * aligned) * @param[in] src Buffer source address * @param[in] len Number of bytes to copy */ static void pe_mem_memcpy_to32(int id, u32 mem_access_addr, const void *src, unsigned int len) { u32 offset = 0, val, addr; unsigned int len32 = len >> 2; int i; addr = mem_access_addr | PE_MEM_ACCESS_WRITE | PE_MEM_ACCESS_BYTE_ENABLE(0, 4); for (i = 0; i < len32; i++, offset += 4, src += 4) { val = *(u32 *)src; writel(cpu_to_be32(val), pe[id].mem_access_wdata); writel(addr + offset, pe[id].mem_access_addr); } len = (len & 0x3); if (len) { val = 0; addr = (mem_access_addr | PE_MEM_ACCESS_WRITE | PE_MEM_ACCESS_BYTE_ENABLE(0, len)) + offset; for (i = 0; i < len; i++, src++) val |= (*(u8 *)src) << (8 * i); writel(cpu_to_be32(val), pe[id].mem_access_wdata); writel(addr, pe[id].mem_access_addr); } } /* * Writes a buffer to PE internal data memory (DMEM) from the host * through indirect access registers. * @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID, * ..., UTIL_ID) * @param[in] dst DMEM destination address (must be 32bit * aligned) * @param[in] src Buffer source address * @param[in] len Number of bytes to copy */ static void pe_dmem_memcpy_to32(int id, u32 dst, const void *src, unsigned int len) { pe_mem_memcpy_to32(id, pe[id].dmem_base_addr | dst | PE_MEM_ACCESS_DMEM, src, len); } /* * Writes a buffer to PE internal program memory (PMEM) from the host * through indirect access registers. * @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID, * ..., TMU3_ID) * @param[in] dst PMEM destination address (must be 32bit * aligned) * @param[in] src Buffer source address * @param[in] len Number of bytes to copy */ static void pe_pmem_memcpy_to32(int id, u32 dst, const void *src, unsigned int len) { pe_mem_memcpy_to32(id, pe[id].pmem_base_addr | (dst & (pe[id].pmem_size - 1)) | PE_MEM_ACCESS_IMEM, src, len); } /* * Reads PE internal program memory (IMEM) from the host * through indirect access registers. * @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID, * ..., TMU3_ID) * @param[in] addr PMEM read address (must be aligned on size) * @param[in] size Number of bytes to read (maximum 4, must not * cross 32bit boundaries) * @return the data read (in PE endianness, i.e BE). */ u32 pe_pmem_read(int id, u32 addr, u8 size) { u32 offset = addr & 0x3; u32 mask = 0xffffffff >> ((4 - size) << 3); u32 val; addr = pe[id].pmem_base_addr | ((addr & ~0x3) & (pe[id].pmem_size - 1)) | PE_MEM_ACCESS_READ | PE_MEM_ACCESS_IMEM | PE_MEM_ACCESS_BYTE_ENABLE(offset, size); writel(addr, pe[id].mem_access_addr); val = be32_to_cpu(readl(pe[id].mem_access_rdata)); return (val >> (offset << 3)) & mask; } /* * Writes PE internal data memory (DMEM) from the host * through indirect access registers. * @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID, * ..., UTIL_ID) * @param[in] val Value to write (in PE endianness, i.e BE) * @param[in] addr DMEM write address (must be aligned on size) * @param[in] size Number of bytes to write (maximum 4, must not * cross 32bit boundaries) */ void pe_dmem_write(int id, u32 val, u32 addr, u8 size) { u32 offset = addr & 0x3; addr = pe[id].dmem_base_addr | (addr & ~0x3) | PE_MEM_ACCESS_WRITE | PE_MEM_ACCESS_DMEM | PE_MEM_ACCESS_BYTE_ENABLE(offset, size); /* Indirect access interface is byte swapping data being written */ writel(cpu_to_be32(val << (offset << 3)), pe[id].mem_access_wdata); writel(addr, pe[id].mem_access_addr); } /* * Reads PE internal data memory (DMEM) from the host * through indirect access registers. * @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID, * ..., UTIL_ID) * @param[in] addr DMEM read address (must be aligned on size) * @param[in] size Number of bytes to read (maximum 4, must not * cross 32bit boundaries) * @return the data read (in PE endianness, i.e BE). */ u32 pe_dmem_read(int id, u32 addr, u8 size) { u32 offset = addr & 0x3; u32 mask = 0xffffffff >> ((4 - size) << 3); u32 val; addr = pe[id].dmem_base_addr | (addr & ~0x3) | PE_MEM_ACCESS_READ | PE_MEM_ACCESS_DMEM | PE_MEM_ACCESS_BYTE_ENABLE(offset, size); writel(addr, pe[id].mem_access_addr); /* Indirect access interface is byte swapping data being read */ val = be32_to_cpu(readl(pe[id].mem_access_rdata)); return (val >> (offset << 3)) & mask; } /* * This function is used to write to CLASS internal bus peripherals (ccu, * pe-lem) from the host * through indirect access registers. * @param[in] val value to write * @param[in] addr Address to write to (must be aligned on size) * @param[in] size Number of bytes to write (1, 2 or 4) * */ static void class_bus_write(u32 val, u32 addr, u8 size) { u32 offset = addr & 0x3; writel((addr & CLASS_BUS_ACCESS_BASE_MASK), CLASS_BUS_ACCESS_BASE); addr = (addr & ~CLASS_BUS_ACCESS_BASE_MASK) | PE_MEM_ACCESS_WRITE | (size << 24); writel(cpu_to_be32(val << (offset << 3)), CLASS_BUS_ACCESS_WDATA); writel(addr, CLASS_BUS_ACCESS_ADDR); } /* * Reads from CLASS internal bus peripherals (ccu, pe-lem) from the host * through indirect access registers. * @param[in] addr Address to read from (must be aligned on size) * @param[in] size Number of bytes to read (1, 2 or 4) * @return the read data */ static u32 class_bus_read(u32 addr, u8 size) { u32 offset = addr & 0x3; u32 mask = 0xffffffff >> ((4 - size) << 3); u32 val; writel((addr & CLASS_BUS_ACCESS_BASE_MASK), CLASS_BUS_ACCESS_BASE); addr = (addr & ~CLASS_BUS_ACCESS_BASE_MASK) | (size << 24); writel(addr, CLASS_BUS_ACCESS_ADDR); val = be32_to_cpu(readl(CLASS_BUS_ACCESS_RDATA)); return (val >> (offset << 3)) & mask; } /* * Writes data to the cluster memory (PE_LMEM) * @param[in] dst PE LMEM destination address (must be 32bit aligned) * @param[in] src Buffer source address * @param[in] len Number of bytes to copy */ static void class_pe_lmem_memcpy_to32(u32 dst, const void *src, unsigned int len) { u32 len32 = len >> 2; int i; for (i = 0; i < len32; i++, src += 4, dst += 4) class_bus_write(*(u32 *)src, dst, 4); if (len & 0x2) { class_bus_write(*(u16 *)src, dst, 2); src += 2; dst += 2; } if (len & 0x1) { class_bus_write(*(u8 *)src, dst, 1); src++; dst++; } } /* * Writes value to the cluster memory (PE_LMEM) * @param[in] dst PE LMEM destination address (must be 32bit aligned) * @param[in] val Value to write * @param[in] len Number of bytes to write */ static void class_pe_lmem_memset(u32 dst, int val, unsigned int len) { u32 len32 = len >> 2; int i; val = val | (val << 8) | (val << 16) | (val << 24); for (i = 0; i < len32; i++, dst += 4) class_bus_write(val, dst, 4); if (len & 0x2) { class_bus_write(val, dst, 2); dst += 2; } if (len & 0x1) { class_bus_write(val, dst, 1); dst++; } } /* * Reads data from the cluster memory (PE_LMEM) * @param[out] dst pointer to the source buffer data are copied to * @param[in] len length in bytes of the amount of data to read * from cluster memory * @param[in] offset offset in bytes in the cluster memory where data are * read from */ void pe_lmem_read(u32 *dst, u32 len, u32 offset) { u32 len32 = len >> 2; int i = 0; for (i = 0; i < len32; dst++, i++, offset += 4) *dst = class_bus_read(PE_LMEM_BASE_ADDR + offset, 4); if (len & 0x03) *dst = class_bus_read(PE_LMEM_BASE_ADDR + offset, (len & 0x03)); } /* * Writes data to the cluster memory (PE_LMEM) * @param[in] src pointer to the source buffer data are copied from * @param[in] len length in bytes of the amount of data to write to the * cluster memory * @param[in] offset offset in bytes in the cluster memory where data are * written to */ void pe_lmem_write(u32 *src, u32 len, u32 offset) { u32 len32 = len >> 2; int i = 0; for (i = 0; i < len32; src++, i++, offset += 4) class_bus_write(*src, PE_LMEM_BASE_ADDR + offset, 4); if (len & 0x03) class_bus_write(*src, PE_LMEM_BASE_ADDR + offset, (len & 0x03)); } /* * Loads an elf section into pmem * Code needs to be at least 16bit aligned and only PROGBITS sections are * supported * * @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID, ..., * TMU3_ID) * @param[in] data pointer to the elf firmware * @param[in] shdr pointer to the elf section header */ static int pe_load_pmem_section(int id, const void *data, Elf32_Shdr *shdr) { u32 offset = be32_to_cpu(shdr->sh_offset); u32 addr = be32_to_cpu(shdr->sh_addr); u32 size = be32_to_cpu(shdr->sh_size); u32 type = be32_to_cpu(shdr->sh_type); if (((unsigned long)(data + offset) & 0x3) != (addr & 0x3)) { printf( "%s: load address(%x) and elf file address(%lx) don't have the same alignment\n", __func__, addr, (unsigned long)data + offset); return -1; } if (addr & 0x1) { printf("%s: load address(%x) is not 16bit aligned\n", __func__, addr); return -1; } if (size & 0x1) { printf("%s: load size(%x) is not 16bit aligned\n", __func__, size); return -1; } debug("pmem pe%d @%x len %d\n", id, addr, size); switch (type) { case SHT_PROGBITS: pe_pmem_memcpy_to32(id, addr, data + offset, size); break; default: printf("%s: unsupported section type(%x)\n", __func__, type); return -1; } return 0; } /* * Loads an elf section into dmem * Data needs to be at least 32bit aligned, NOBITS sections are correctly * initialized to 0 * * @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID, * ..., UTIL_ID) * @param[in] data pointer to the elf firmware * @param[in] shdr pointer to the elf section header */ static int pe_load_dmem_section(int id, const void *data, Elf32_Shdr *shdr) { u32 offset = be32_to_cpu(shdr->sh_offset); u32 addr = be32_to_cpu(shdr->sh_addr); u32 size = be32_to_cpu(shdr->sh_size); u32 type = be32_to_cpu(shdr->sh_type); u32 size32 = size >> 2; int i; if (((unsigned long)(data + offset) & 0x3) != (addr & 0x3)) { printf( "%s: load address(%x) and elf file address(%lx) don't have the same alignment\n", __func__, addr, (unsigned long)data + offset); return -1; } if (addr & 0x3) { printf("%s: load address(%x) is not 32bit aligned\n", __func__, addr); return -1; } switch (type) { case SHT_PROGBITS: debug("dmem pe%d @%x len %d\n", id, addr, size); pe_dmem_memcpy_to32(id, addr, data + offset, size); break; case SHT_NOBITS: debug("dmem zero pe%d @%x len %d\n", id, addr, size); for (i = 0; i < size32; i++, addr += 4) pe_dmem_write(id, 0, addr, 4); if (size & 0x3) pe_dmem_write(id, 0, addr, size & 0x3); break; default: printf("%s: unsupported section type(%x)\n", __func__, type); return -1; } return 0; } /* * Loads an elf section into DDR * Data needs to be at least 32bit aligned, NOBITS sections are correctly * initialized to 0 * * @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID, * ..., UTIL_ID) * @param[in] data pointer to the elf firmware * @param[in] shdr pointer to the elf section header */ static int pe_load_ddr_section(int id, const void *data, Elf32_Shdr *shdr) { u32 offset = be32_to_cpu(shdr->sh_offset); u32 addr = be32_to_cpu(shdr->sh_addr); u32 size = be32_to_cpu(shdr->sh_size); u32 type = be32_to_cpu(shdr->sh_type); u32 flags = be32_to_cpu(shdr->sh_flags); switch (type) { case SHT_PROGBITS: debug("ddr pe%d @%x len %d\n", id, addr, size); if (flags & SHF_EXECINSTR) { if (id <= CLASS_MAX_ID) { /* DO the loading only once in DDR */ if (id == CLASS0_ID) { debug( "%s: load address(%x) and elf file address(%lx) rcvd\n" , __func__, addr, (unsigned long)data + offset); if (((unsigned long)(data + offset) & 0x3) != (addr & 0x3)) { printf( "%s: load address(%x) and elf file address(%lx) don't have the same alignment\n", __func__, addr, (unsigned long)data + offset); return -1; } if (addr & 0x1) { printf( "%s: load address(%x) is not 16bit aligned\n" , __func__, addr); return -1; } if (size & 0x1) { printf( "%s: load length(%x) is not 16bit aligned\n" , __func__, size); return -1; } memcpy((void *)DDR_PFE_TO_VIRT(addr), data + offset, size); } } else { printf( "%s: unsupported ddr section type(%x) for PE(%d)\n" , __func__, type, id); return -1; } } else { memcpy((void *)DDR_PFE_TO_VIRT(addr), data + offset, size); } break; case SHT_NOBITS: debug("ddr zero pe%d @%x len %d\n", id, addr, size); memset((void *)DDR_PFE_TO_VIRT(addr), 0, size); break; default: printf("%s: unsupported section type(%x)\n", __func__, type); return -1; } return 0; } /* * Loads an elf section into pe lmem * Data needs to be at least 32bit aligned, NOBITS sections are correctly * initialized to 0 * * @param[in] id PE identification (CLASS0_ID,..., CLASS5_ID) * @param[in] data pointer to the elf firmware * @param[in] shdr pointer to the elf section header */ static int pe_load_pe_lmem_section(int id, const void *data, Elf32_Shdr *shdr) { u32 offset = be32_to_cpu(shdr->sh_offset); u32 addr = be32_to_cpu(shdr->sh_addr); u32 size = be32_to_cpu(shdr->sh_size); u32 type = be32_to_cpu(shdr->sh_type); if (id > CLASS_MAX_ID) { printf("%s: unsupported pe-lmem section type(%x) for PE(%d)\n", __func__, type, id); return -1; } if (((unsigned long)(data + offset) & 0x3) != (addr & 0x3)) { printf( "%s: load address(%x) and elf file address(%lx) don't have the same alignment\n", __func__, addr, (unsigned long)data + offset); return -1; } if (addr & 0x3) { printf("%s: load address(%x) is not 32bit aligned\n", __func__, addr); return -1; } debug("lmem pe%d @%x len %d\n", id, addr, size); switch (type) { case SHT_PROGBITS: class_pe_lmem_memcpy_to32(addr, data + offset, size); break; case SHT_NOBITS: class_pe_lmem_memset(addr, 0, size); break; default: printf("%s: unsupported section type(%x)\n", __func__, type); return -1; } return 0; } /* * Loads an elf section into a PE * For now only supports loading a section to dmem (all PE's), pmem (class and * tmu PE's), DDDR (util PE code) * @param[in] id PE identification (CLASS0_ID, ..., TMU0_ID, * ..., UTIL_ID) * @param[in] data pointer to the elf firmware * @param[in] shdr pointer to the elf section header */ int pe_load_elf_section(int id, const void *data, Elf32_Shdr *shdr) { u32 addr = be32_to_cpu(shdr->sh_addr); u32 size = be32_to_cpu(shdr->sh_size); if (IS_DMEM(addr, size)) return pe_load_dmem_section(id, data, shdr); else if (IS_PMEM(addr, size)) return pe_load_pmem_section(id, data, shdr); else if (IS_PFE_LMEM(addr, size)) return 0; else if (IS_PHYS_DDR(addr, size)) return pe_load_ddr_section(id, data, shdr); else if (IS_PE_LMEM(addr, size)) return pe_load_pe_lmem_section(id, data, shdr); printf("%s: unsupported memory range(%x)\n", __func__, addr); return 0; } /**************************** BMU ***************************/ /* * Resets a BMU block. * @param[in] base BMU block base address */ static inline void bmu_reset(void *base) { writel(CORE_SW_RESET, base + BMU_CTRL); /* Wait for self clear */ while (readl(base + BMU_CTRL) & CORE_SW_RESET) ; } /* * Enabled a BMU block. * @param[in] base BMU block base address */ void bmu_enable(void *base) { writel(CORE_ENABLE, base + BMU_CTRL); } /* * Disables a BMU block. * @param[in] base BMU block base address */ static inline void bmu_disable(void *base) { writel(CORE_DISABLE, base + BMU_CTRL); } /* * Sets the configuration of a BMU block. * @param[in] base BMU block base address * @param[in] cfg BMU configuration */ static inline void bmu_set_config(void *base, struct bmu_cfg *cfg) { writel(cfg->baseaddr, base + BMU_UCAST_BASE_ADDR); writel(cfg->count & 0xffff, base + BMU_UCAST_CONFIG); writel(cfg->size & 0xffff, base + BMU_BUF_SIZE); /* Interrupts are never used */ writel(0x0, base + BMU_INT_ENABLE); } /* * Initializes a BMU block. * @param[in] base BMU block base address * @param[in] cfg BMU configuration */ void bmu_init(void *base, struct bmu_cfg *cfg) { bmu_disable(base); bmu_set_config(base, cfg); bmu_reset(base); } /**************************** GPI ***************************/ /* * Resets a GPI block. * @param[in] base GPI base address */ static inline void gpi_reset(void *base) { writel(CORE_SW_RESET, base + GPI_CTRL); } /* * Enables a GPI block. * @param[in] base GPI base address */ void gpi_enable(void *base) { writel(CORE_ENABLE, base + GPI_CTRL); } /* * Disables a GPI block. * @param[in] base GPI base address */ void gpi_disable(void *base) { writel(CORE_DISABLE, base + GPI_CTRL); } /* * Sets the configuration of a GPI block. * @param[in] base GPI base address * @param[in] cfg GPI configuration */ static inline void gpi_set_config(void *base, struct gpi_cfg *cfg) { writel(CBUS_VIRT_TO_PFE(BMU1_BASE_ADDR + BMU_ALLOC_CTRL), base + GPI_LMEM_ALLOC_ADDR); writel(CBUS_VIRT_TO_PFE(BMU1_BASE_ADDR + BMU_FREE_CTRL), base + GPI_LMEM_FREE_ADDR); writel(CBUS_VIRT_TO_PFE(BMU2_BASE_ADDR + BMU_ALLOC_CTRL), base + GPI_DDR_ALLOC_ADDR); writel(CBUS_VIRT_TO_PFE(BMU2_BASE_ADDR + BMU_FREE_CTRL), base + GPI_DDR_FREE_ADDR); writel(CBUS_VIRT_TO_PFE(CLASS_INQ_PKTPTR), base + GPI_CLASS_ADDR); writel(DDR_HDR_SIZE, base + GPI_DDR_DATA_OFFSET); writel(LMEM_HDR_SIZE, base + GPI_LMEM_DATA_OFFSET); writel(0, base + GPI_LMEM_SEC_BUF_DATA_OFFSET); writel(0, base + GPI_DDR_SEC_BUF_DATA_OFFSET); writel((DDR_HDR_SIZE << 16) | LMEM_HDR_SIZE, base + GPI_HDR_SIZE); writel((DDR_BUF_SIZE << 16) | LMEM_BUF_SIZE, base + GPI_BUF_SIZE); writel(((cfg->lmem_rtry_cnt << 16) | (GPI_DDR_BUF_EN << 1) | GPI_LMEM_BUF_EN), base + GPI_RX_CONFIG); writel(cfg->tmlf_txthres, base + GPI_TMLF_TX); writel(cfg->aseq_len, base + GPI_DTX_ASEQ); /*Make GPI AXI transactions non-bufferable */ writel(0x1, base + GPI_AXI_CTRL); } /* * Initializes a GPI block. * @param[in] base GPI base address * @param[in] cfg GPI configuration */ void gpi_init(void *base, struct gpi_cfg *cfg) { gpi_reset(base); gpi_disable(base); gpi_set_config(base, cfg); } /**************************** CLASSIFIER ***************************/ /* * Resets CLASSIFIER block. */ static inline void class_reset(void) { writel(CORE_SW_RESET, CLASS_TX_CTRL); } /* * Enables all CLASS-PE's cores. */ void class_enable(void) { writel(CORE_ENABLE, CLASS_TX_CTRL); } /* * Disables all CLASS-PE's cores. */ void class_disable(void) { writel(CORE_DISABLE, CLASS_TX_CTRL); } /* * Sets the configuration of the CLASSIFIER block. * @param[in] cfg CLASSIFIER configuration */ static inline void class_set_config(struct class_cfg *cfg) { if (PLL_CLK_EN == 0) { /* Clock ratio: for 1:1 the value is 0 */ writel(0x0, CLASS_PE_SYS_CLK_RATIO); } else { /* Clock ratio: for 1:2 the value is 1 */ writel(0x1, CLASS_PE_SYS_CLK_RATIO); } writel((DDR_HDR_SIZE << 16) | LMEM_HDR_SIZE, CLASS_HDR_SIZE); writel(LMEM_BUF_SIZE, CLASS_LMEM_BUF_SIZE); writel(CLASS_ROUTE_ENTRY_SIZE(CLASS_ROUTE_SIZE) | CLASS_ROUTE_HASH_SIZE(cfg->route_table_hash_bits), CLASS_ROUTE_HASH_ENTRY_SIZE); writel(HASH_CRC_PORT_IP | QB2BUS_LE, CLASS_ROUTE_MULTI); writel(cfg->route_table_baseaddr, CLASS_ROUTE_TABLE_BASE); memset((void *)DDR_PFE_TO_VIRT(cfg->route_table_baseaddr), 0, ROUTE_TABLE_SIZE); writel(CLASS_PE0_RO_DM_ADDR0_VAL, CLASS_PE0_RO_DM_ADDR0); writel(CLASS_PE0_RO_DM_ADDR1_VAL, CLASS_PE0_RO_DM_ADDR1); writel(CLASS_PE0_QB_DM_ADDR0_VAL, CLASS_PE0_QB_DM_ADDR0); writel(CLASS_PE0_QB_DM_ADDR1_VAL, CLASS_PE0_QB_DM_ADDR1); writel(CBUS_VIRT_TO_PFE(TMU_PHY_INQ_PKTPTR), CLASS_TM_INQ_ADDR); writel(23, CLASS_AFULL_THRES); writel(23, CLASS_TSQ_FIFO_THRES); writel(24, CLASS_MAX_BUF_CNT); writel(24, CLASS_TSQ_MAX_CNT); /*Make Class AXI transactions non-bufferable */ writel(0x1, CLASS_AXI_CTRL); /*Make Util AXI transactions non-bufferable */ /*Util is disabled in U-boot, do it from here */ writel(0x1, UTIL_AXI_CTRL); } /* * Initializes CLASSIFIER block. * @param[in] cfg CLASSIFIER configuration */ void class_init(struct class_cfg *cfg) { class_reset(); class_disable(); class_set_config(cfg); } /**************************** TMU ***************************/ /* * Enables TMU-PE cores. * @param[in] pe_mask TMU PE mask */ void tmu_enable(u32 pe_mask) { writel(readl(TMU_TX_CTRL) | (pe_mask & 0xF), TMU_TX_CTRL); } /* * Disables TMU cores. * @param[in] pe_mask TMU PE mask */ void tmu_disable(u32 pe_mask) { writel(readl(TMU_TX_CTRL) & ~(pe_mask & 0xF), TMU_TX_CTRL); } /* * Initializes TMU block. * @param[in] cfg TMU configuration */ void tmu_init(struct tmu_cfg *cfg) { int q, phyno; /* keep in soft reset */ writel(SW_RESET, TMU_CTRL); /*Make Class AXI transactions non-bufferable */ writel(0x1, TMU_AXI_CTRL); /* enable EMAC PHY ports */ writel(0x3, TMU_SYS_GENERIC_CONTROL); writel(750, TMU_INQ_WATERMARK); writel(CBUS_VIRT_TO_PFE(EGPI1_BASE_ADDR + GPI_INQ_PKTPTR), TMU_PHY0_INQ_ADDR); writel(CBUS_VIRT_TO_PFE(EGPI2_BASE_ADDR + GPI_INQ_PKTPTR), TMU_PHY1_INQ_ADDR); writel(CBUS_VIRT_TO_PFE(HGPI_BASE_ADDR + GPI_INQ_PKTPTR), TMU_PHY3_INQ_ADDR); writel(CBUS_VIRT_TO_PFE(HIF_NOCPY_RX_INQ0_PKTPTR), TMU_PHY4_INQ_ADDR); writel(CBUS_VIRT_TO_PFE(UTIL_INQ_PKTPTR), TMU_PHY5_INQ_ADDR); writel(CBUS_VIRT_TO_PFE(BMU2_BASE_ADDR + BMU_FREE_CTRL), TMU_BMU_INQ_ADDR); /* enabling all 10 schedulers [9:0] of each TDQ */ writel(0x3FF, TMU_TDQ0_SCH_CTRL); writel(0x3FF, TMU_TDQ1_SCH_CTRL); writel(0x3FF, TMU_TDQ3_SCH_CTRL); if (PLL_CLK_EN == 0) { /* Clock ratio: for 1:1 the value is 0 */ writel(0x0, TMU_PE_SYS_CLK_RATIO); } else { /* Clock ratio: for 1:2 the value is 1 */ writel(0x1, TMU_PE_SYS_CLK_RATIO); } /* Extra packet pointers will be stored from this address onwards */ debug("TMU_LLM_BASE_ADDR %x\n", cfg->llm_base_addr); writel(cfg->llm_base_addr, TMU_LLM_BASE_ADDR); debug("TMU_LLM_QUE_LEN %x\n", cfg->llm_queue_len); writel(cfg->llm_queue_len, TMU_LLM_QUE_LEN); writel(5, TMU_TDQ_IIFG_CFG); writel(DDR_BUF_SIZE, TMU_BMU_BUF_SIZE); writel(0x0, TMU_CTRL); /* MEM init */ writel(MEM_INIT, TMU_CTRL); while (!(readl(TMU_CTRL) & MEM_INIT_DONE)) ; /* LLM init */ writel(LLM_INIT, TMU_CTRL); while (!(readl(TMU_CTRL) & LLM_INIT_DONE)) ; /* set up each queue for tail drop */ for (phyno = 0; phyno < 4; phyno++) { if (phyno == 2) continue; for (q = 0; q < 16; q++) { u32 qmax; writel((phyno << 8) | q, TMU_TEQ_CTRL); writel(BIT(22), TMU_TEQ_QCFG); if (phyno == 3) qmax = DEFAULT_TMU3_QDEPTH; else qmax = (q == 0) ? DEFAULT_Q0_QDEPTH : DEFAULT_MAX_QDEPTH; writel(qmax << 18, TMU_TEQ_HW_PROB_CFG2); writel(qmax >> 14, TMU_TEQ_HW_PROB_CFG3); } } writel(0x05, TMU_TEQ_DISABLE_DROPCHK); writel(0, TMU_CTRL); } /**************************** HIF ***************************/ /* * Enable hif tx DMA and interrupt */ void hif_tx_enable(void) { writel(HIF_CTRL_DMA_EN, HIF_TX_CTRL); } /* * Disable hif tx DMA and interrupt */ void hif_tx_disable(void) { u32 hif_int; writel(0, HIF_TX_CTRL); hif_int = readl(HIF_INT_ENABLE); hif_int &= HIF_TXPKT_INT_EN; writel(hif_int, HIF_INT_ENABLE); } /* * Enable hif rx DMA and interrupt */ void hif_rx_enable(void) { writel((HIF_CTRL_DMA_EN | HIF_CTRL_BDP_CH_START_WSTB), HIF_RX_CTRL); } /* * Disable hif rx DMA and interrupt */ void hif_rx_disable(void) { u32 hif_int; writel(0, HIF_RX_CTRL); hif_int = readl(HIF_INT_ENABLE); hif_int &= HIF_RXPKT_INT_EN; writel(hif_int, HIF_INT_ENABLE); } /* * Initializes HIF copy block. */ void hif_init(void) { /* Initialize HIF registers */ writel(HIF_RX_POLL_CTRL_CYCLE << 16 | HIF_TX_POLL_CTRL_CYCLE, HIF_POLL_CTRL); /* Make HIF AXI transactions non-bufferable */ writel(0x1, HIF_AXI_CTRL); }