/* * Generic PHY Management code * * SPDX-License-Identifier: GPL-2.0+ * * Copyright 2011 Freescale Semiconductor, Inc. * author Andy Fleming * * Based loosely off of Linux's PHY Lib */ #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; /* Generic PHY support and helper functions */ /** * genphy_config_advert - sanitize and advertise auto-negotation parameters * @phydev: target phy_device struct * * Description: Writes MII_ADVERTISE with the appropriate values, * after sanitizing the values to make sure we only advertise * what is supported. Returns < 0 on error, 0 if the PHY's advertisement * hasn't changed, and > 0 if it has changed. */ static int genphy_config_advert(struct phy_device *phydev) { u32 advertise; int oldadv, adv, bmsr; int err, changed = 0; /* Only allow advertising what this PHY supports */ phydev->advertising &= phydev->supported; advertise = phydev->advertising; /* Setup standard advertisement */ adv = phy_read(phydev, MDIO_DEVAD_NONE, MII_ADVERTISE); oldadv = adv; if (adv < 0) return adv; adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); if (advertise & ADVERTISED_10baseT_Half) adv |= ADVERTISE_10HALF; if (advertise & ADVERTISED_10baseT_Full) adv |= ADVERTISE_10FULL; if (advertise & ADVERTISED_100baseT_Half) adv |= ADVERTISE_100HALF; if (advertise & ADVERTISED_100baseT_Full) adv |= ADVERTISE_100FULL; if (advertise & ADVERTISED_Pause) adv |= ADVERTISE_PAUSE_CAP; if (advertise & ADVERTISED_Asym_Pause) adv |= ADVERTISE_PAUSE_ASYM; if (advertise & ADVERTISED_1000baseX_Half) adv |= ADVERTISE_1000XHALF; if (advertise & ADVERTISED_1000baseX_Full) adv |= ADVERTISE_1000XFULL; if (adv != oldadv) { err = phy_write(phydev, MDIO_DEVAD_NONE, MII_ADVERTISE, adv); if (err < 0) return err; changed = 1; } bmsr = phy_read(phydev, MDIO_DEVAD_NONE, MII_BMSR); if (bmsr < 0) return bmsr; /* Per 802.3-2008, Section 22.2.4.2.16 Extended status all * 1000Mbits/sec capable PHYs shall have the BMSR_ESTATEN bit set to a * logical 1. */ if (!(bmsr & BMSR_ESTATEN)) return changed; /* Configure gigabit if it's supported */ adv = phy_read(phydev, MDIO_DEVAD_NONE, MII_CTRL1000); oldadv = adv; if (adv < 0) return adv; adv &= ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF); if (phydev->supported & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)) { if (advertise & SUPPORTED_1000baseT_Half) adv |= ADVERTISE_1000HALF; if (advertise & SUPPORTED_1000baseT_Full) adv |= ADVERTISE_1000FULL; } if (adv != oldadv) changed = 1; err = phy_write(phydev, MDIO_DEVAD_NONE, MII_CTRL1000, adv); if (err < 0) return err; return changed; } /** * genphy_setup_forced - configures/forces speed/duplex from @phydev * @phydev: target phy_device struct * * Description: Configures MII_BMCR to force speed/duplex * to the values in phydev. Assumes that the values are valid. */ static int genphy_setup_forced(struct phy_device *phydev) { int err; int ctl = 0; phydev->pause = phydev->asym_pause = 0; if (SPEED_1000 == phydev->speed) ctl |= BMCR_SPEED1000; else if (SPEED_100 == phydev->speed) ctl |= BMCR_SPEED100; if (DUPLEX_FULL == phydev->duplex) ctl |= BMCR_FULLDPLX; err = phy_write(phydev, MDIO_DEVAD_NONE, MII_BMCR, ctl); return err; } /** * genphy_restart_aneg - Enable and Restart Autonegotiation * @phydev: target phy_device struct */ int genphy_restart_aneg(struct phy_device *phydev) { int ctl; ctl = phy_read(phydev, MDIO_DEVAD_NONE, MII_BMCR); if (ctl < 0) return ctl; ctl |= (BMCR_ANENABLE | BMCR_ANRESTART); /* Don't isolate the PHY if we're negotiating */ ctl &= ~(BMCR_ISOLATE); ctl = phy_write(phydev, MDIO_DEVAD_NONE, MII_BMCR, ctl); return ctl; } /** * genphy_config_aneg - restart auto-negotiation or write BMCR * @phydev: target phy_device struct * * Description: If auto-negotiation is enabled, we configure the * advertising, and then restart auto-negotiation. If it is not * enabled, then we write the BMCR. */ int genphy_config_aneg(struct phy_device *phydev) { int result; if (AUTONEG_ENABLE != phydev->autoneg) return genphy_setup_forced(phydev); result = genphy_config_advert(phydev); if (result < 0) /* error */ return result; if (result == 0) { /* Advertisment hasn't changed, but maybe aneg was never on to * begin with? Or maybe phy was isolated? */ int ctl = phy_read(phydev, MDIO_DEVAD_NONE, MII_BMCR); if (ctl < 0) return ctl; if (!(ctl & BMCR_ANENABLE) || (ctl & BMCR_ISOLATE)) result = 1; /* do restart aneg */ } /* Only restart aneg if we are advertising something different * than we were before. */ if (result > 0) result = genphy_restart_aneg(phydev); return result; } /** * genphy_update_link - update link status in @phydev * @phydev: target phy_device struct * * Description: Update the value in phydev->link to reflect the * current link value. In order to do this, we need to read * the status register twice, keeping the second value. */ int genphy_update_link(struct phy_device *phydev) { unsigned int mii_reg; /* * Wait if the link is up, and autonegotiation is in progress * (ie - we're capable and it's not done) */ mii_reg = phy_read(phydev, MDIO_DEVAD_NONE, MII_BMSR); /* * If we already saw the link up, and it hasn't gone down, then * we don't need to wait for autoneg again */ if (phydev->link && mii_reg & BMSR_LSTATUS) return 0; if ((mii_reg & BMSR_ANEGCAPABLE) && !(mii_reg & BMSR_ANEGCOMPLETE)) { int i = 0; printf("%s Waiting for PHY auto negotiation to complete", phydev->dev->name); while (!(mii_reg & BMSR_ANEGCOMPLETE)) { /* * Timeout reached ? */ if (i > PHY_ANEG_TIMEOUT) { printf(" TIMEOUT !\n"); phydev->link = 0; return 0; } if (ctrlc()) { puts("user interrupt!\n"); phydev->link = 0; return -EINTR; } if ((i++ % 500) == 0) printf("."); udelay(1000); /* 1 ms */ mii_reg = phy_read(phydev, MDIO_DEVAD_NONE, MII_BMSR); } printf(" done\n"); phydev->link = 1; } else { /* Read the link a second time to clear the latched state */ mii_reg = phy_read(phydev, MDIO_DEVAD_NONE, MII_BMSR); if (mii_reg & BMSR_LSTATUS) phydev->link = 1; else phydev->link = 0; } return 0; } /* * Generic function which updates the speed and duplex. If * autonegotiation is enabled, it uses the AND of the link * partner's advertised capabilities and our advertised * capabilities. If autonegotiation is disabled, we use the * appropriate bits in the control register. * * Stolen from Linux's mii.c and phy_device.c */ int genphy_parse_link(struct phy_device *phydev) { int mii_reg = phy_read(phydev, MDIO_DEVAD_NONE, MII_BMSR); /* We're using autonegotiation */ if (phydev->supported & SUPPORTED_Autoneg) { u32 lpa = 0; int gblpa = 0; u32 estatus = 0; /* Check for gigabit capability */ if (phydev->supported & (SUPPORTED_1000baseT_Full | SUPPORTED_1000baseT_Half)) { /* We want a list of states supported by * both PHYs in the link */ gblpa = phy_read(phydev, MDIO_DEVAD_NONE, MII_STAT1000); if (gblpa < 0) { debug("Could not read MII_STAT1000. Ignoring gigabit capability\n"); gblpa = 0; } gblpa &= phy_read(phydev, MDIO_DEVAD_NONE, MII_CTRL1000) << 2; } /* Set the baseline so we only have to set them * if they're different */ phydev->speed = SPEED_10; phydev->duplex = DUPLEX_HALF; /* Check the gigabit fields */ if (gblpa & (PHY_1000BTSR_1000FD | PHY_1000BTSR_1000HD)) { phydev->speed = SPEED_1000; if (gblpa & PHY_1000BTSR_1000FD) phydev->duplex = DUPLEX_FULL; /* We're done! */ return 0; } lpa = phy_read(phydev, MDIO_DEVAD_NONE, MII_ADVERTISE); lpa &= phy_read(phydev, MDIO_DEVAD_NONE, MII_LPA); if (lpa & (LPA_100FULL | LPA_100HALF)) { phydev->speed = SPEED_100; if (lpa & LPA_100FULL) phydev->duplex = DUPLEX_FULL; } else if (lpa & LPA_10FULL) phydev->duplex = DUPLEX_FULL; /* * Extended status may indicate that the PHY supports * 1000BASE-T/X even though the 1000BASE-T registers * are missing. In this case we can't tell whether the * peer also supports it, so we only check extended * status if the 1000BASE-T registers are actually * missing. */ if ((mii_reg & BMSR_ESTATEN) && !(mii_reg & BMSR_ERCAP)) estatus = phy_read(phydev, MDIO_DEVAD_NONE, MII_ESTATUS); if (estatus & (ESTATUS_1000_XFULL | ESTATUS_1000_XHALF | ESTATUS_1000_TFULL | ESTATUS_1000_THALF)) { phydev->speed = SPEED_1000; if (estatus & (ESTATUS_1000_XFULL | ESTATUS_1000_TFULL)) phydev->duplex = DUPLEX_FULL; } } else { u32 bmcr = phy_read(phydev, MDIO_DEVAD_NONE, MII_BMCR); phydev->speed = SPEED_10; phydev->duplex = DUPLEX_HALF; if (bmcr & BMCR_FULLDPLX) phydev->duplex = DUPLEX_FULL; if (bmcr & BMCR_SPEED1000) phydev->speed = SPEED_1000; else if (bmcr & BMCR_SPEED100) phydev->speed = SPEED_100; } return 0; } int genphy_config(struct phy_device *phydev) { int val; u32 features; features = (SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_AUI | SUPPORTED_FIBRE | SUPPORTED_BNC); /* Do we support autonegotiation? */ val = phy_read(phydev, MDIO_DEVAD_NONE, MII_BMSR); if (val < 0) return val; if (val & BMSR_ANEGCAPABLE) features |= SUPPORTED_Autoneg; if (val & BMSR_100FULL) features |= SUPPORTED_100baseT_Full; if (val & BMSR_100HALF) features |= SUPPORTED_100baseT_Half; if (val & BMSR_10FULL) features |= SUPPORTED_10baseT_Full; if (val & BMSR_10HALF) features |= SUPPORTED_10baseT_Half; if (val & BMSR_ESTATEN) { val = phy_read(phydev, MDIO_DEVAD_NONE, MII_ESTATUS); if (val < 0) return val; if (val & ESTATUS_1000_TFULL) features |= SUPPORTED_1000baseT_Full; if (val & ESTATUS_1000_THALF) features |= SUPPORTED_1000baseT_Half; if (val & ESTATUS_1000_XFULL) features |= SUPPORTED_1000baseX_Full; if (val & ESTATUS_1000_XHALF) features |= SUPPORTED_1000baseX_Half; } phydev->supported &= features; phydev->advertising &= features; genphy_config_aneg(phydev); return 0; } int genphy_startup(struct phy_device *phydev) { genphy_update_link(phydev); genphy_parse_link(phydev); return 0; } int genphy_shutdown(struct phy_device *phydev) { return 0; } static struct phy_driver genphy_driver = { .uid = 0xffffffff, .mask = 0xffffffff, .name = "Generic PHY", .features = PHY_GBIT_FEATURES | SUPPORTED_MII | SUPPORTED_AUI | SUPPORTED_FIBRE | SUPPORTED_BNC, .config = genphy_config, .startup = genphy_startup, .shutdown = genphy_shutdown, }; static LIST_HEAD(phy_drivers); int phy_init(void) { #ifdef CONFIG_PHY_AQUANTIA phy_aquantia_init(); #endif #ifdef CONFIG_PHY_ATHEROS phy_atheros_init(); #endif #ifdef CONFIG_PHY_BROADCOM phy_broadcom_init(); #endif #ifdef CONFIG_PHY_CORTINA phy_cortina_init(); #endif #ifdef CONFIG_PHY_DAVICOM phy_davicom_init(); #endif #ifdef CONFIG_PHY_ET1011C phy_et1011c_init(); #endif #ifdef CONFIG_PHY_LXT phy_lxt_init(); #endif #ifdef CONFIG_PHY_MARVELL phy_marvell_init(); #endif #ifdef CONFIG_PHY_MICREL phy_micrel_init(); #endif #ifdef CONFIG_PHY_NATSEMI phy_natsemi_init(); #endif #ifdef CONFIG_PHY_REALTEK phy_realtek_init(); #endif #ifdef CONFIG_PHY_SMSC phy_smsc_init(); #endif #ifdef CONFIG_PHY_TERANETICS phy_teranetics_init(); #endif #ifdef CONFIG_PHY_TI phy_ti_init(); #endif #ifdef CONFIG_PHY_VITESSE phy_vitesse_init(); #endif return 0; } int phy_register(struct phy_driver *drv) { INIT_LIST_HEAD(&drv->list); list_add_tail(&drv->list, &phy_drivers); #ifdef CONFIG_NEEDS_MANUAL_RELOC if (drv->probe) drv->probe += gd->reloc_off; if (drv->config) drv->config += gd->reloc_off; if (drv->startup) drv->startup += gd->reloc_off; if (drv->shutdown) drv->shutdown += gd->reloc_off; if (drv->readext) drv->readext += gd->reloc_off; if (drv->writeext) drv->writeext += gd->reloc_off; #endif return 0; } int phy_set_supported(struct phy_device *phydev, u32 max_speed) { /* The default values for phydev->supported are provided by the PHY * driver "features" member, we want to reset to sane defaults first * before supporting higher speeds. */ phydev->supported &= PHY_DEFAULT_FEATURES; switch (max_speed) { default: return -ENOTSUPP; case SPEED_1000: phydev->supported |= PHY_1000BT_FEATURES; /* fall through */ case SPEED_100: phydev->supported |= PHY_100BT_FEATURES; /* fall through */ case SPEED_10: phydev->supported |= PHY_10BT_FEATURES; } return 0; } static int phy_probe(struct phy_device *phydev) { int err = 0; phydev->advertising = phydev->supported = phydev->drv->features; phydev->mmds = phydev->drv->mmds; if (phydev->drv->probe) err = phydev->drv->probe(phydev); return err; } static struct phy_driver *generic_for_interface(phy_interface_t interface) { #ifdef CONFIG_PHYLIB_10G if (is_10g_interface(interface)) return &gen10g_driver; #endif return &genphy_driver; } static struct phy_driver *get_phy_driver(struct phy_device *phydev, phy_interface_t interface) { struct list_head *entry; int phy_id = phydev->phy_id; struct phy_driver *drv = NULL; list_for_each(entry, &phy_drivers) { drv = list_entry(entry, struct phy_driver, list); if ((drv->uid & drv->mask) == (phy_id & drv->mask)) return drv; } /* If we made it here, there's no driver for this PHY */ return generic_for_interface(interface); } static struct phy_device *phy_device_create(struct mii_dev *bus, int addr, u32 phy_id, phy_interface_t interface) { struct phy_device *dev; /* We allocate the device, and initialize the * default values */ dev = malloc(sizeof(*dev)); if (!dev) { printf("Failed to allocate PHY device for %s:%d\n", bus->name, addr); return NULL; } memset(dev, 0, sizeof(*dev)); dev->duplex = -1; dev->link = 0; dev->interface = interface; dev->autoneg = AUTONEG_ENABLE; dev->addr = addr; dev->phy_id = phy_id; dev->bus = bus; dev->drv = get_phy_driver(dev, interface); phy_probe(dev); bus->phymap[addr] = dev; return dev; } /** * get_phy_id - reads the specified addr for its ID. * @bus: the target MII bus * @addr: PHY address on the MII bus * @phy_id: where to store the ID retrieved. * * Description: Reads the ID registers of the PHY at @addr on the * @bus, stores it in @phy_id and returns zero on success. */ int __weak get_phy_id(struct mii_dev *bus, int addr, int devad, u32 *phy_id) { int phy_reg; /* Grab the bits from PHYIR1, and put them * in the upper half */ phy_reg = bus->read(bus, addr, devad, MII_PHYSID1); if (phy_reg < 0) return -EIO; *phy_id = (phy_reg & 0xffff) << 16; /* Grab the bits from PHYIR2, and put them in the lower half */ phy_reg = bus->read(bus, addr, devad, MII_PHYSID2); if (phy_reg < 0) return -EIO; *phy_id |= (phy_reg & 0xffff); return 0; } static struct phy_device *create_phy_by_mask(struct mii_dev *bus, unsigned phy_mask, int devad, phy_interface_t interface) { u32 phy_id = 0xffffffff; while (phy_mask) { int addr = ffs(phy_mask) - 1; int r = get_phy_id(bus, addr, devad, &phy_id); /* If the PHY ID is mostly f's, we didn't find anything */ if (r == 0 && (phy_id & 0x1fffffff) != 0x1fffffff) return phy_device_create(bus, addr, phy_id, interface); phy_mask &= ~(1 << addr); } return NULL; } static struct phy_device *search_for_existing_phy(struct mii_dev *bus, unsigned phy_mask, phy_interface_t interface) { /* If we have one, return the existing device, with new interface */ while (phy_mask) { int addr = ffs(phy_mask) - 1; if (bus->phymap[addr]) { bus->phymap[addr]->interface = interface; return bus->phymap[addr]; } phy_mask &= ~(1 << addr); } return NULL; } static struct phy_device *get_phy_device_by_mask(struct mii_dev *bus, unsigned phy_mask, phy_interface_t interface) { int i; struct phy_device *phydev; phydev = search_for_existing_phy(bus, phy_mask, interface); if (phydev) return phydev; /* Try Standard (ie Clause 22) access */ /* Otherwise we have to try Clause 45 */ for (i = 0; i < 5; i++) { phydev = create_phy_by_mask(bus, phy_mask, i ? i : MDIO_DEVAD_NONE, interface); if (IS_ERR(phydev)) return NULL; if (phydev) return phydev; } debug("\n%s PHY: ", bus->name); while (phy_mask) { int addr = ffs(phy_mask) - 1; debug("%d ", addr); phy_mask &= ~(1 << addr); } debug("not found\n"); return NULL; } /** * get_phy_device - reads the specified PHY device and returns its @phy_device struct * @bus: the target MII bus * @addr: PHY address on the MII bus * * Description: Reads the ID registers of the PHY at @addr on the * @bus, then allocates and returns the phy_device to represent it. */ static struct phy_device *get_phy_device(struct mii_dev *bus, int addr, phy_interface_t interface) { return get_phy_device_by_mask(bus, 1 << addr, interface); } int phy_reset(struct phy_device *phydev) { int reg; int timeout = 500; int devad = MDIO_DEVAD_NONE; #ifdef CONFIG_PHYLIB_10G /* If it's 10G, we need to issue reset through one of the MMDs */ if (is_10g_interface(phydev->interface)) { if (!phydev->mmds) gen10g_discover_mmds(phydev); devad = ffs(phydev->mmds) - 1; } #endif if (phy_write(phydev, devad, MII_BMCR, BMCR_RESET) < 0) { debug("PHY reset failed\n"); return -1; } #ifdef CONFIG_PHY_RESET_DELAY udelay(CONFIG_PHY_RESET_DELAY); /* Intel LXT971A needs this */ #endif /* * Poll the control register for the reset bit to go to 0 (it is * auto-clearing). This should happen within 0.5 seconds per the * IEEE spec. */ reg = phy_read(phydev, devad, MII_BMCR); while ((reg & BMCR_RESET) && timeout--) { reg = phy_read(phydev, devad, MII_BMCR); if (reg < 0) { debug("PHY status read failed\n"); return -1; } udelay(1000); } if (reg & BMCR_RESET) { puts("PHY reset timed out\n"); return -1; } return 0; } int miiphy_reset(const char *devname, unsigned char addr) { struct mii_dev *bus = miiphy_get_dev_by_name(devname); struct phy_device *phydev; /* * miiphy_reset was only used on standard PHYs, so we'll fake it here. * If later code tries to connect with the right interface, this will * be corrected by get_phy_device in phy_connect() */ phydev = get_phy_device(bus, addr, PHY_INTERFACE_MODE_MII); return phy_reset(phydev); } struct phy_device *phy_find_by_mask(struct mii_dev *bus, unsigned phy_mask, phy_interface_t interface) { /* Reset the bus */ if (bus->reset) { bus->reset(bus); /* Wait 15ms to make sure the PHY has come out of hard reset */ udelay(15000); } return get_phy_device_by_mask(bus, phy_mask, interface); } #ifdef CONFIG_DM_ETH void phy_connect_dev(struct phy_device *phydev, struct udevice *dev) #else void phy_connect_dev(struct phy_device *phydev, struct eth_device *dev) #endif { /* Soft Reset the PHY */ phy_reset(phydev); if (phydev->dev && phydev->dev != dev) { printf("%s:%d is connected to %s. Reconnecting to %s\n", phydev->bus->name, phydev->addr, phydev->dev->name, dev->name); } phydev->dev = dev; debug("%s connected to %s\n", dev->name, phydev->drv->name); } #ifdef CONFIG_DM_ETH struct phy_device *phy_connect(struct mii_dev *bus, int addr, struct udevice *dev, phy_interface_t interface) #else struct phy_device *phy_connect(struct mii_dev *bus, int addr, struct eth_device *dev, phy_interface_t interface) #endif { struct phy_device *phydev; phydev = phy_find_by_mask(bus, 1 << addr, interface); if (phydev) phy_connect_dev(phydev, dev); else printf("Could not get PHY for %s: addr %d\n", bus->name, addr); return phydev; } /* * Start the PHY. Returns 0 on success, or a negative error code. */ int phy_startup(struct phy_device *phydev) { if (phydev->drv->startup) return phydev->drv->startup(phydev); return 0; } __weak int board_phy_config(struct phy_device *phydev) { if (phydev->drv->config) return phydev->drv->config(phydev); return 0; } int phy_config(struct phy_device *phydev) { /* Invoke an optional board-specific helper */ board_phy_config(phydev); return 0; } int phy_shutdown(struct phy_device *phydev) { if (phydev->drv->shutdown) phydev->drv->shutdown(phydev); return 0; } int phy_get_interface_by_name(const char *str) { int i; for (i = 0; i < PHY_INTERFACE_MODE_COUNT; i++) { if (!strcmp(str, phy_interface_strings[i])) return i; } return -1; }