/* * sh_eth.c - Driver for Renesas ethernet controler. * * Copyright (C) 2008, 2011 Renesas Solutions Corp. * Copyright (c) 2008, 2011, 2014 2014 Nobuhiro Iwamatsu * Copyright (c) 2007 Carlos Munoz <carlos@kenati.com> * Copyright (C) 2013, 2014 Renesas Electronics Corporation * * SPDX-License-Identifier: GPL-2.0+ */ #include <config.h> #include <common.h> #include <malloc.h> #include <net.h> #include <netdev.h> #include <miiphy.h> #include <asm/errno.h> #include <asm/io.h> #include "sh_eth.h" #ifndef CONFIG_SH_ETHER_USE_PORT # error "Please define CONFIG_SH_ETHER_USE_PORT" #endif #ifndef CONFIG_SH_ETHER_PHY_ADDR # error "Please define CONFIG_SH_ETHER_PHY_ADDR" #endif #if defined(CONFIG_SH_ETHER_CACHE_WRITEBACK) && !defined(CONFIG_SYS_DCACHE_OFF) #define flush_cache_wback(addr, len) \ flush_dcache_range((u32)addr, (u32)(addr + len - 1)) #else #define flush_cache_wback(...) #endif #if defined(CONFIG_SH_ETHER_CACHE_INVALIDATE) && defined(CONFIG_ARM) #define invalidate_cache(addr, len) \ { \ u32 line_size = CONFIG_SH_ETHER_ALIGNE_SIZE; \ u32 start, end; \ \ start = (u32)addr; \ end = start + len; \ start &= ~(line_size - 1); \ end = ((end + line_size - 1) & ~(line_size - 1)); \ \ invalidate_dcache_range(start, end); \ } #else #define invalidate_cache(...) #endif #define TIMEOUT_CNT 1000 int sh_eth_send(struct eth_device *dev, void *packet, int len) { struct sh_eth_dev *eth = dev->priv; int port = eth->port, ret = 0, timeout; struct sh_eth_info *port_info = ð->port_info[port]; if (!packet || len > 0xffff) { printf(SHETHER_NAME ": %s: Invalid argument\n", __func__); ret = -EINVAL; goto err; } /* packet must be a 4 byte boundary */ if ((int)packet & 3) { printf(SHETHER_NAME ": %s: packet not 4 byte alligned\n" , __func__); ret = -EFAULT; goto err; } /* Update tx descriptor */ flush_cache_wback(packet, len); port_info->tx_desc_cur->td2 = ADDR_TO_PHY(packet); port_info->tx_desc_cur->td1 = len << 16; /* Must preserve the end of descriptor list indication */ if (port_info->tx_desc_cur->td0 & TD_TDLE) port_info->tx_desc_cur->td0 = TD_TACT | TD_TFP | TD_TDLE; else port_info->tx_desc_cur->td0 = TD_TACT | TD_TFP; flush_cache_wback(port_info->tx_desc_cur, sizeof(struct tx_desc_s)); /* Restart the transmitter if disabled */ if (!(sh_eth_read(eth, EDTRR) & EDTRR_TRNS)) sh_eth_write(eth, EDTRR_TRNS, EDTRR); /* Wait until packet is transmitted */ timeout = TIMEOUT_CNT; do { invalidate_cache(port_info->tx_desc_cur, sizeof(struct tx_desc_s)); udelay(100); } while (port_info->tx_desc_cur->td0 & TD_TACT && timeout--); if (timeout < 0) { printf(SHETHER_NAME ": transmit timeout\n"); ret = -ETIMEDOUT; goto err; } port_info->tx_desc_cur++; if (port_info->tx_desc_cur >= port_info->tx_desc_base + NUM_TX_DESC) port_info->tx_desc_cur = port_info->tx_desc_base; err: return ret; } int sh_eth_recv(struct eth_device *dev) { struct sh_eth_dev *eth = dev->priv; int port = eth->port, len = 0; struct sh_eth_info *port_info = ð->port_info[port]; uchar *packet; /* Check if the rx descriptor is ready */ invalidate_cache(port_info->rx_desc_cur, sizeof(struct rx_desc_s)); if (!(port_info->rx_desc_cur->rd0 & RD_RACT)) { /* Check for errors */ if (!(port_info->rx_desc_cur->rd0 & RD_RFE)) { len = port_info->rx_desc_cur->rd1 & 0xffff; packet = (uchar *) ADDR_TO_P2(port_info->rx_desc_cur->rd2); invalidate_cache(packet, len); NetReceive(packet, len); } /* Make current descriptor available again */ if (port_info->rx_desc_cur->rd0 & RD_RDLE) port_info->rx_desc_cur->rd0 = RD_RACT | RD_RDLE; else port_info->rx_desc_cur->rd0 = RD_RACT; flush_cache_wback(port_info->rx_desc_cur, sizeof(struct rx_desc_s)); /* Point to the next descriptor */ port_info->rx_desc_cur++; if (port_info->rx_desc_cur >= port_info->rx_desc_base + NUM_RX_DESC) port_info->rx_desc_cur = port_info->rx_desc_base; } /* Restart the receiver if disabled */ if (!(sh_eth_read(eth, EDRRR) & EDRRR_R)) sh_eth_write(eth, EDRRR_R, EDRRR); return len; } static int sh_eth_reset(struct sh_eth_dev *eth) { #if defined(SH_ETH_TYPE_GETHER) || defined(SH_ETH_TYPE_RZ) int ret = 0, i; /* Start e-dmac transmitter and receiver */ sh_eth_write(eth, EDSR_ENALL, EDSR); /* Perform a software reset and wait for it to complete */ sh_eth_write(eth, EDMR_SRST, EDMR); for (i = 0; i < TIMEOUT_CNT; i++) { if (!(sh_eth_read(eth, EDMR) & EDMR_SRST)) break; udelay(1000); } if (i == TIMEOUT_CNT) { printf(SHETHER_NAME ": Software reset timeout\n"); ret = -EIO; } return ret; #else sh_eth_write(eth, sh_eth_read(eth, EDMR) | EDMR_SRST, EDMR); udelay(3000); sh_eth_write(eth, sh_eth_read(eth, EDMR) & ~EDMR_SRST, EDMR); return 0; #endif } static int sh_eth_tx_desc_init(struct sh_eth_dev *eth) { int port = eth->port, i, ret = 0; u32 alloc_desc_size = NUM_TX_DESC * sizeof(struct tx_desc_s); struct sh_eth_info *port_info = ð->port_info[port]; struct tx_desc_s *cur_tx_desc; /* * Allocate rx descriptors. They must be aligned to size of struct * tx_desc_s. */ port_info->tx_desc_alloc = memalign(sizeof(struct tx_desc_s), alloc_desc_size); if (!port_info->tx_desc_alloc) { printf(SHETHER_NAME ": memalign failed\n"); ret = -ENOMEM; goto err; } flush_cache_wback((u32)port_info->tx_desc_alloc, alloc_desc_size); /* Make sure we use a P2 address (non-cacheable) */ port_info->tx_desc_base = (struct tx_desc_s *)ADDR_TO_P2((u32)port_info->tx_desc_alloc); port_info->tx_desc_cur = port_info->tx_desc_base; /* Initialize all descriptors */ for (cur_tx_desc = port_info->tx_desc_base, i = 0; i < NUM_TX_DESC; cur_tx_desc++, i++) { cur_tx_desc->td0 = 0x00; cur_tx_desc->td1 = 0x00; cur_tx_desc->td2 = 0x00; } /* Mark the end of the descriptors */ cur_tx_desc--; cur_tx_desc->td0 |= TD_TDLE; /* Point the controller to the tx descriptor list. Must use physical addresses */ sh_eth_write(eth, ADDR_TO_PHY(port_info->tx_desc_base), TDLAR); #if defined(SH_ETH_TYPE_GETHER) || defined(SH_ETH_TYPE_RZ) sh_eth_write(eth, ADDR_TO_PHY(port_info->tx_desc_base), TDFAR); sh_eth_write(eth, ADDR_TO_PHY(cur_tx_desc), TDFXR); sh_eth_write(eth, 0x01, TDFFR);/* Last discriptor bit */ #endif err: return ret; } static int sh_eth_rx_desc_init(struct sh_eth_dev *eth) { int port = eth->port, i , ret = 0; u32 alloc_desc_size = NUM_RX_DESC * sizeof(struct rx_desc_s); struct sh_eth_info *port_info = ð->port_info[port]; struct rx_desc_s *cur_rx_desc; u8 *rx_buf; /* * Allocate rx descriptors. They must be aligned to size of struct * rx_desc_s. */ port_info->rx_desc_alloc = memalign(sizeof(struct rx_desc_s), alloc_desc_size); if (!port_info->rx_desc_alloc) { printf(SHETHER_NAME ": memalign failed\n"); ret = -ENOMEM; goto err; } flush_cache_wback(port_info->rx_desc_alloc, alloc_desc_size); /* Make sure we use a P2 address (non-cacheable) */ port_info->rx_desc_base = (struct rx_desc_s *)ADDR_TO_P2((u32)port_info->rx_desc_alloc); port_info->rx_desc_cur = port_info->rx_desc_base; /* * Allocate rx data buffers. They must be RX_BUF_ALIGNE_SIZE bytes * aligned and in P2 area. */ port_info->rx_buf_alloc = memalign(RX_BUF_ALIGNE_SIZE, NUM_RX_DESC * MAX_BUF_SIZE); if (!port_info->rx_buf_alloc) { printf(SHETHER_NAME ": alloc failed\n"); ret = -ENOMEM; goto err_buf_alloc; } port_info->rx_buf_base = (u8 *)ADDR_TO_P2((u32)port_info->rx_buf_alloc); /* Initialize all descriptors */ for (cur_rx_desc = port_info->rx_desc_base, rx_buf = port_info->rx_buf_base, i = 0; i < NUM_RX_DESC; cur_rx_desc++, rx_buf += MAX_BUF_SIZE, i++) { cur_rx_desc->rd0 = RD_RACT; cur_rx_desc->rd1 = MAX_BUF_SIZE << 16; cur_rx_desc->rd2 = (u32) ADDR_TO_PHY(rx_buf); } /* Mark the end of the descriptors */ cur_rx_desc--; cur_rx_desc->rd0 |= RD_RDLE; /* Point the controller to the rx descriptor list */ sh_eth_write(eth, ADDR_TO_PHY(port_info->rx_desc_base), RDLAR); #if defined(SH_ETH_TYPE_GETHER) || defined(SH_ETH_TYPE_RZ) sh_eth_write(eth, ADDR_TO_PHY(port_info->rx_desc_base), RDFAR); sh_eth_write(eth, ADDR_TO_PHY(cur_rx_desc), RDFXR); sh_eth_write(eth, RDFFR_RDLF, RDFFR); #endif return ret; err_buf_alloc: free(port_info->rx_desc_alloc); port_info->rx_desc_alloc = NULL; err: return ret; } static void sh_eth_tx_desc_free(struct sh_eth_dev *eth) { int port = eth->port; struct sh_eth_info *port_info = ð->port_info[port]; if (port_info->tx_desc_alloc) { free(port_info->tx_desc_alloc); port_info->tx_desc_alloc = NULL; } } static void sh_eth_rx_desc_free(struct sh_eth_dev *eth) { int port = eth->port; struct sh_eth_info *port_info = ð->port_info[port]; if (port_info->rx_desc_alloc) { free(port_info->rx_desc_alloc); port_info->rx_desc_alloc = NULL; } if (port_info->rx_buf_alloc) { free(port_info->rx_buf_alloc); port_info->rx_buf_alloc = NULL; } } static int sh_eth_desc_init(struct sh_eth_dev *eth) { int ret = 0; ret = sh_eth_tx_desc_init(eth); if (ret) goto err_tx_init; ret = sh_eth_rx_desc_init(eth); if (ret) goto err_rx_init; return ret; err_rx_init: sh_eth_tx_desc_free(eth); err_tx_init: return ret; } static int sh_eth_phy_config(struct sh_eth_dev *eth) { int port = eth->port, ret = 0; struct sh_eth_info *port_info = ð->port_info[port]; struct eth_device *dev = port_info->dev; struct phy_device *phydev; phydev = phy_connect( miiphy_get_dev_by_name(dev->name), port_info->phy_addr, dev, CONFIG_SH_ETHER_PHY_MODE); port_info->phydev = phydev; phy_config(phydev); return ret; } static int sh_eth_config(struct sh_eth_dev *eth, bd_t *bd) { int port = eth->port, ret = 0; u32 val; struct sh_eth_info *port_info = ð->port_info[port]; struct eth_device *dev = port_info->dev; struct phy_device *phy; /* Configure e-dmac registers */ sh_eth_write(eth, (sh_eth_read(eth, EDMR) & ~EMDR_DESC_R) | (EMDR_DESC | EDMR_EL), EDMR); sh_eth_write(eth, 0, EESIPR); sh_eth_write(eth, 0, TRSCER); sh_eth_write(eth, 0, TFTR); sh_eth_write(eth, (FIFO_SIZE_T | FIFO_SIZE_R), FDR); sh_eth_write(eth, RMCR_RST, RMCR); #if defined(SH_ETH_TYPE_GETHER) || defined(SH_ETH_TYPE_RZ) sh_eth_write(eth, 0, RPADIR); #endif sh_eth_write(eth, (FIFO_F_D_RFF | FIFO_F_D_RFD), FCFTR); /* Configure e-mac registers */ sh_eth_write(eth, 0, ECSIPR); /* Set Mac address */ val = dev->enetaddr[0] << 24 | dev->enetaddr[1] << 16 | dev->enetaddr[2] << 8 | dev->enetaddr[3]; sh_eth_write(eth, val, MAHR); val = dev->enetaddr[4] << 8 | dev->enetaddr[5]; sh_eth_write(eth, val, MALR); sh_eth_write(eth, RFLR_RFL_MIN, RFLR); #if defined(SH_ETH_TYPE_GETHER) sh_eth_write(eth, 0, PIPR); #endif #if defined(SH_ETH_TYPE_GETHER) || defined(SH_ETH_TYPE_RZ) sh_eth_write(eth, APR_AP, APR); sh_eth_write(eth, MPR_MP, MPR); sh_eth_write(eth, TPAUSER_TPAUSE, TPAUSER); #endif #if defined(CONFIG_CPU_SH7734) || defined(CONFIG_R8A7740) sh_eth_write(eth, CONFIG_SH_ETHER_SH7734_MII, RMII_MII); #elif defined(CONFIG_R8A7790) || defined(CONFIG_R8A7791) || \ defined(CONFIG_R8A7793) || defined(CONFIG_R8A7794) sh_eth_write(eth, sh_eth_read(eth, RMIIMR) | 0x1, RMIIMR); #endif /* Configure phy */ ret = sh_eth_phy_config(eth); if (ret) { printf(SHETHER_NAME ": phy config timeout\n"); goto err_phy_cfg; } phy = port_info->phydev; ret = phy_startup(phy); if (ret) { printf(SHETHER_NAME ": phy startup failure\n"); return ret; } val = 0; /* Set the transfer speed */ if (phy->speed == 100) { printf(SHETHER_NAME ": 100Base/"); #if defined(SH_ETH_TYPE_GETHER) sh_eth_write(eth, GECMR_100B, GECMR); #elif defined(CONFIG_CPU_SH7757) || defined(CONFIG_CPU_SH7752) sh_eth_write(eth, 1, RTRATE); #elif defined(CONFIG_CPU_SH7724) || defined(CONFIG_R8A7790) || \ defined(CONFIG_R8A7791) || defined(CONFIG_R8A7793) || \ defined(CONFIG_R8A7794) val = ECMR_RTM; #endif } else if (phy->speed == 10) { printf(SHETHER_NAME ": 10Base/"); #if defined(SH_ETH_TYPE_GETHER) sh_eth_write(eth, GECMR_10B, GECMR); #elif defined(CONFIG_CPU_SH7757) || defined(CONFIG_CPU_SH7752) sh_eth_write(eth, 0, RTRATE); #endif } #if defined(SH_ETH_TYPE_GETHER) else if (phy->speed == 1000) { printf(SHETHER_NAME ": 1000Base/"); sh_eth_write(eth, GECMR_1000B, GECMR); } #endif /* Check if full duplex mode is supported by the phy */ if (phy->duplex) { printf("Full\n"); sh_eth_write(eth, val | (ECMR_CHG_DM|ECMR_RE|ECMR_TE|ECMR_DM), ECMR); } else { printf("Half\n"); sh_eth_write(eth, val | (ECMR_CHG_DM|ECMR_RE|ECMR_TE), ECMR); } return ret; err_phy_cfg: return ret; } static void sh_eth_start(struct sh_eth_dev *eth) { /* * Enable the e-dmac receiver only. The transmitter will be enabled when * we have something to transmit */ sh_eth_write(eth, EDRRR_R, EDRRR); } static void sh_eth_stop(struct sh_eth_dev *eth) { sh_eth_write(eth, ~EDRRR_R, EDRRR); } int sh_eth_init(struct eth_device *dev, bd_t *bd) { int ret = 0; struct sh_eth_dev *eth = dev->priv; ret = sh_eth_reset(eth); if (ret) goto err; ret = sh_eth_desc_init(eth); if (ret) goto err; ret = sh_eth_config(eth, bd); if (ret) goto err_config; sh_eth_start(eth); return ret; err_config: sh_eth_tx_desc_free(eth); sh_eth_rx_desc_free(eth); err: return ret; } void sh_eth_halt(struct eth_device *dev) { struct sh_eth_dev *eth = dev->priv; sh_eth_stop(eth); } int sh_eth_initialize(bd_t *bd) { int ret = 0; struct sh_eth_dev *eth = NULL; struct eth_device *dev = NULL; eth = (struct sh_eth_dev *)malloc(sizeof(struct sh_eth_dev)); if (!eth) { printf(SHETHER_NAME ": %s: malloc failed\n", __func__); ret = -ENOMEM; goto err; } dev = (struct eth_device *)malloc(sizeof(struct eth_device)); if (!dev) { printf(SHETHER_NAME ": %s: malloc failed\n", __func__); ret = -ENOMEM; goto err; } memset(dev, 0, sizeof(struct eth_device)); memset(eth, 0, sizeof(struct sh_eth_dev)); eth->port = CONFIG_SH_ETHER_USE_PORT; eth->port_info[eth->port].phy_addr = CONFIG_SH_ETHER_PHY_ADDR; dev->priv = (void *)eth; dev->iobase = 0; dev->init = sh_eth_init; dev->halt = sh_eth_halt; dev->send = sh_eth_send; dev->recv = sh_eth_recv; eth->port_info[eth->port].dev = dev; sprintf(dev->name, SHETHER_NAME); /* Register Device to EtherNet subsystem */ eth_register(dev); bb_miiphy_buses[0].priv = eth; miiphy_register(dev->name, bb_miiphy_read, bb_miiphy_write); if (!eth_getenv_enetaddr("ethaddr", dev->enetaddr)) puts("Please set MAC address\n"); return ret; err: if (dev) free(dev); if (eth) free(eth); printf(SHETHER_NAME ": Failed\n"); return ret; } /******* for bb_miiphy *******/ static int sh_eth_bb_init(struct bb_miiphy_bus *bus) { return 0; } static int sh_eth_bb_mdio_active(struct bb_miiphy_bus *bus) { struct sh_eth_dev *eth = bus->priv; sh_eth_write(eth, sh_eth_read(eth, PIR) | PIR_MMD, PIR); return 0; } static int sh_eth_bb_mdio_tristate(struct bb_miiphy_bus *bus) { struct sh_eth_dev *eth = bus->priv; sh_eth_write(eth, sh_eth_read(eth, PIR) & ~PIR_MMD, PIR); return 0; } static int sh_eth_bb_set_mdio(struct bb_miiphy_bus *bus, int v) { struct sh_eth_dev *eth = bus->priv; if (v) sh_eth_write(eth, sh_eth_read(eth, PIR) | PIR_MDO, PIR); else sh_eth_write(eth, sh_eth_read(eth, PIR) & ~PIR_MDO, PIR); return 0; } static int sh_eth_bb_get_mdio(struct bb_miiphy_bus *bus, int *v) { struct sh_eth_dev *eth = bus->priv; *v = (sh_eth_read(eth, PIR) & PIR_MDI) >> 3; return 0; } static int sh_eth_bb_set_mdc(struct bb_miiphy_bus *bus, int v) { struct sh_eth_dev *eth = bus->priv; if (v) sh_eth_write(eth, sh_eth_read(eth, PIR) | PIR_MDC, PIR); else sh_eth_write(eth, sh_eth_read(eth, PIR) & ~PIR_MDC, PIR); return 0; } static int sh_eth_bb_delay(struct bb_miiphy_bus *bus) { udelay(10); return 0; } struct bb_miiphy_bus bb_miiphy_buses[] = { { .name = "sh_eth", .init = sh_eth_bb_init, .mdio_active = sh_eth_bb_mdio_active, .mdio_tristate = sh_eth_bb_mdio_tristate, .set_mdio = sh_eth_bb_set_mdio, .get_mdio = sh_eth_bb_get_mdio, .set_mdc = sh_eth_bb_set_mdc, .delay = sh_eth_bb_delay, } }; int bb_miiphy_buses_num = ARRAY_SIZE(bb_miiphy_buses);