// SPDX-License-Identifier: GPL-2.0+ /* * (C) Copyright 2016 * Author: Amit Singh Tomar, amittomer25@gmail.com * * Ethernet driver for H3/A64/A83T based SoC's * * It is derived from the work done by * LABBE Corentin & Chen-Yu Tsai for Linux, THANKS! * */ #include <cpu_func.h> #include <log.h> #include <asm/cache.h> #include <asm/io.h> #include <asm/arch/clock.h> #include <asm/arch/gpio.h> #include <common.h> #include <clk.h> #include <dm.h> #include <fdt_support.h> #include <dm/device_compat.h> #include <linux/bitops.h> #include <linux/delay.h> #include <linux/err.h> #include <malloc.h> #include <miiphy.h> #include <net.h> #include <reset.h> #include <dt-bindings/pinctrl/sun4i-a10.h> #if CONFIG_IS_ENABLED(DM_GPIO) #include <asm-generic/gpio.h> #endif #define MDIO_CMD_MII_BUSY BIT(0) #define MDIO_CMD_MII_WRITE BIT(1) #define MDIO_CMD_MII_PHY_REG_ADDR_MASK 0x000001f0 #define MDIO_CMD_MII_PHY_REG_ADDR_SHIFT 4 #define MDIO_CMD_MII_PHY_ADDR_MASK 0x0001f000 #define MDIO_CMD_MII_PHY_ADDR_SHIFT 12 #define CONFIG_TX_DESCR_NUM 32 #define CONFIG_RX_DESCR_NUM 32 #define CONFIG_ETH_BUFSIZE 2048 /* Note must be dma aligned */ /* * The datasheet says that each descriptor can transfers up to 4096 bytes * But later, the register documentation reduces that value to 2048, * using 2048 cause strange behaviours and even BSP driver use 2047 */ #define CONFIG_ETH_RXSIZE 2044 /* Note must fit in ETH_BUFSIZE */ #define TX_TOTAL_BUFSIZE (CONFIG_ETH_BUFSIZE * CONFIG_TX_DESCR_NUM) #define RX_TOTAL_BUFSIZE (CONFIG_ETH_BUFSIZE * CONFIG_RX_DESCR_NUM) #define H3_EPHY_DEFAULT_VALUE 0x58000 #define H3_EPHY_DEFAULT_MASK GENMASK(31, 15) #define H3_EPHY_ADDR_SHIFT 20 #define REG_PHY_ADDR_MASK GENMASK(4, 0) #define H3_EPHY_LED_POL BIT(17) /* 1: active low, 0: active high */ #define H3_EPHY_SHUTDOWN BIT(16) /* 1: shutdown, 0: power up */ #define H3_EPHY_SELECT BIT(15) /* 1: internal PHY, 0: external PHY */ #define SC_RMII_EN BIT(13) #define SC_EPIT BIT(2) /* 1: RGMII, 0: MII */ #define SC_ETCS_MASK GENMASK(1, 0) #define SC_ETCS_EXT_GMII 0x1 #define SC_ETCS_INT_GMII 0x2 #define SC_ETXDC_MASK GENMASK(12, 10) #define SC_ETXDC_OFFSET 10 #define SC_ERXDC_MASK GENMASK(9, 5) #define SC_ERXDC_OFFSET 5 #define CONFIG_MDIO_TIMEOUT (3 * CONFIG_SYS_HZ) #define AHB_GATE_OFFSET_EPHY 0 /* IO mux settings */ #define SUN8I_IOMUX_H3 2 #define SUN8I_IOMUX_R40 5 #define SUN8I_IOMUX 4 /* H3/A64 EMAC Register's offset */ #define EMAC_CTL0 0x00 #define EMAC_CTL1 0x04 #define EMAC_INT_STA 0x08 #define EMAC_INT_EN 0x0c #define EMAC_TX_CTL0 0x10 #define EMAC_TX_CTL1 0x14 #define EMAC_TX_FLOW_CTL 0x1c #define EMAC_TX_DMA_DESC 0x20 #define EMAC_RX_CTL0 0x24 #define EMAC_RX_CTL1 0x28 #define EMAC_RX_DMA_DESC 0x34 #define EMAC_MII_CMD 0x48 #define EMAC_MII_DATA 0x4c #define EMAC_ADDR0_HIGH 0x50 #define EMAC_ADDR0_LOW 0x54 #define EMAC_TX_DMA_STA 0xb0 #define EMAC_TX_CUR_DESC 0xb4 #define EMAC_TX_CUR_BUF 0xb8 #define EMAC_RX_DMA_STA 0xc0 #define EMAC_RX_CUR_DESC 0xc4 DECLARE_GLOBAL_DATA_PTR; enum emac_variant { A83T_EMAC = 1, H3_EMAC, A64_EMAC, R40_GMAC, H6_EMAC, }; struct emac_dma_desc { u32 status; u32 st; u32 buf_addr; u32 next; } __aligned(ARCH_DMA_MINALIGN); struct emac_eth_dev { struct emac_dma_desc rx_chain[CONFIG_TX_DESCR_NUM]; struct emac_dma_desc tx_chain[CONFIG_RX_DESCR_NUM]; char rxbuffer[RX_TOTAL_BUFSIZE] __aligned(ARCH_DMA_MINALIGN); char txbuffer[TX_TOTAL_BUFSIZE] __aligned(ARCH_DMA_MINALIGN); u32 interface; u32 phyaddr; u32 link; u32 speed; u32 duplex; u32 phy_configured; u32 tx_currdescnum; u32 rx_currdescnum; u32 addr; u32 tx_slot; bool use_internal_phy; enum emac_variant variant; void *mac_reg; phys_addr_t sysctl_reg; struct phy_device *phydev; struct mii_dev *bus; struct clk tx_clk; struct clk ephy_clk; struct reset_ctl tx_rst; struct reset_ctl ephy_rst; #if CONFIG_IS_ENABLED(DM_GPIO) struct gpio_desc reset_gpio; #endif }; struct sun8i_eth_pdata { struct eth_pdata eth_pdata; u32 reset_delays[3]; int tx_delay_ps; int rx_delay_ps; }; static int sun8i_mdio_read(struct mii_dev *bus, int addr, int devad, int reg) { struct udevice *dev = bus->priv; struct emac_eth_dev *priv = dev_get_priv(dev); ulong start; u32 miiaddr = 0; int timeout = CONFIG_MDIO_TIMEOUT; miiaddr &= ~MDIO_CMD_MII_WRITE; miiaddr &= ~MDIO_CMD_MII_PHY_REG_ADDR_MASK; miiaddr |= (reg << MDIO_CMD_MII_PHY_REG_ADDR_SHIFT) & MDIO_CMD_MII_PHY_REG_ADDR_MASK; miiaddr &= ~MDIO_CMD_MII_PHY_ADDR_MASK; miiaddr |= (addr << MDIO_CMD_MII_PHY_ADDR_SHIFT) & MDIO_CMD_MII_PHY_ADDR_MASK; miiaddr |= MDIO_CMD_MII_BUSY; writel(miiaddr, priv->mac_reg + EMAC_MII_CMD); start = get_timer(0); while (get_timer(start) < timeout) { if (!(readl(priv->mac_reg + EMAC_MII_CMD) & MDIO_CMD_MII_BUSY)) return readl(priv->mac_reg + EMAC_MII_DATA); udelay(10); }; return -1; } static int sun8i_mdio_write(struct mii_dev *bus, int addr, int devad, int reg, u16 val) { struct udevice *dev = bus->priv; struct emac_eth_dev *priv = dev_get_priv(dev); ulong start; u32 miiaddr = 0; int ret = -1, timeout = CONFIG_MDIO_TIMEOUT; miiaddr &= ~MDIO_CMD_MII_PHY_REG_ADDR_MASK; miiaddr |= (reg << MDIO_CMD_MII_PHY_REG_ADDR_SHIFT) & MDIO_CMD_MII_PHY_REG_ADDR_MASK; miiaddr &= ~MDIO_CMD_MII_PHY_ADDR_MASK; miiaddr |= (addr << MDIO_CMD_MII_PHY_ADDR_SHIFT) & MDIO_CMD_MII_PHY_ADDR_MASK; miiaddr |= MDIO_CMD_MII_WRITE; miiaddr |= MDIO_CMD_MII_BUSY; writel(val, priv->mac_reg + EMAC_MII_DATA); writel(miiaddr, priv->mac_reg + EMAC_MII_CMD); start = get_timer(0); while (get_timer(start) < timeout) { if (!(readl(priv->mac_reg + EMAC_MII_CMD) & MDIO_CMD_MII_BUSY)) { ret = 0; break; } udelay(10); }; return ret; } static int _sun8i_write_hwaddr(struct emac_eth_dev *priv, u8 *mac_id) { u32 macid_lo, macid_hi; macid_lo = mac_id[0] + (mac_id[1] << 8) + (mac_id[2] << 16) + (mac_id[3] << 24); macid_hi = mac_id[4] + (mac_id[5] << 8); writel(macid_hi, priv->mac_reg + EMAC_ADDR0_HIGH); writel(macid_lo, priv->mac_reg + EMAC_ADDR0_LOW); return 0; } static void sun8i_adjust_link(struct emac_eth_dev *priv, struct phy_device *phydev) { u32 v; v = readl(priv->mac_reg + EMAC_CTL0); if (phydev->duplex) v |= BIT(0); else v &= ~BIT(0); v &= ~0x0C; switch (phydev->speed) { case 1000: break; case 100: v |= BIT(2); v |= BIT(3); break; case 10: v |= BIT(3); break; } writel(v, priv->mac_reg + EMAC_CTL0); } static int sun8i_emac_set_syscon_ephy(struct emac_eth_dev *priv, u32 *reg) { if (priv->use_internal_phy) { /* H3 based SoC's that has an Internal 100MBit PHY * needs to be configured and powered up before use */ *reg &= ~H3_EPHY_DEFAULT_MASK; *reg |= H3_EPHY_DEFAULT_VALUE; *reg |= priv->phyaddr << H3_EPHY_ADDR_SHIFT; *reg &= ~H3_EPHY_SHUTDOWN; *reg |= H3_EPHY_SELECT; } else /* This is to select External Gigabit PHY on * the boards with H3 SoC. */ *reg &= ~H3_EPHY_SELECT; return 0; } static int sun8i_emac_set_syscon(struct sun8i_eth_pdata *pdata, struct emac_eth_dev *priv) { int ret; u32 reg; if (priv->variant == R40_GMAC) { /* Select RGMII for R40 */ reg = readl(priv->sysctl_reg + 0x164); reg |= SC_ETCS_INT_GMII | SC_EPIT | (CONFIG_GMAC_TX_DELAY << SC_ETXDC_OFFSET); writel(reg, priv->sysctl_reg + 0x164); return 0; } reg = readl(priv->sysctl_reg + 0x30); if (priv->variant == H3_EMAC || priv->variant == H6_EMAC) { ret = sun8i_emac_set_syscon_ephy(priv, ®); if (ret) return ret; } reg &= ~(SC_ETCS_MASK | SC_EPIT); if (priv->variant == H3_EMAC || priv->variant == A64_EMAC || priv->variant == H6_EMAC) reg &= ~SC_RMII_EN; switch (priv->interface) { case PHY_INTERFACE_MODE_MII: /* default */ break; case PHY_INTERFACE_MODE_RGMII: reg |= SC_EPIT | SC_ETCS_INT_GMII; break; case PHY_INTERFACE_MODE_RMII: if (priv->variant == H3_EMAC || priv->variant == A64_EMAC || priv->variant == H6_EMAC) { reg |= SC_RMII_EN | SC_ETCS_EXT_GMII; break; } /* RMII not supported on A83T */ default: debug("%s: Invalid PHY interface\n", __func__); return -EINVAL; } if (pdata->tx_delay_ps) reg |= ((pdata->tx_delay_ps / 100) << SC_ETXDC_OFFSET) & SC_ETXDC_MASK; if (pdata->rx_delay_ps) reg |= ((pdata->rx_delay_ps / 100) << SC_ERXDC_OFFSET) & SC_ERXDC_MASK; writel(reg, priv->sysctl_reg + 0x30); return 0; } static int sun8i_phy_init(struct emac_eth_dev *priv, void *dev) { struct phy_device *phydev; phydev = phy_connect(priv->bus, priv->phyaddr, dev, priv->interface); if (!phydev) return -ENODEV; phy_connect_dev(phydev, dev); priv->phydev = phydev; phy_config(priv->phydev); return 0; } static void rx_descs_init(struct emac_eth_dev *priv) { struct emac_dma_desc *desc_table_p = &priv->rx_chain[0]; char *rxbuffs = &priv->rxbuffer[0]; struct emac_dma_desc *desc_p; u32 idx; /* flush Rx buffers */ flush_dcache_range((uintptr_t)rxbuffs, (ulong)rxbuffs + RX_TOTAL_BUFSIZE); for (idx = 0; idx < CONFIG_RX_DESCR_NUM; idx++) { desc_p = &desc_table_p[idx]; desc_p->buf_addr = (uintptr_t)&rxbuffs[idx * CONFIG_ETH_BUFSIZE] ; desc_p->next = (uintptr_t)&desc_table_p[idx + 1]; desc_p->st |= CONFIG_ETH_RXSIZE; desc_p->status = BIT(31); } /* Correcting the last pointer of the chain */ desc_p->next = (uintptr_t)&desc_table_p[0]; flush_dcache_range((uintptr_t)priv->rx_chain, (uintptr_t)priv->rx_chain + sizeof(priv->rx_chain)); writel((uintptr_t)&desc_table_p[0], (priv->mac_reg + EMAC_RX_DMA_DESC)); priv->rx_currdescnum = 0; } static void tx_descs_init(struct emac_eth_dev *priv) { struct emac_dma_desc *desc_table_p = &priv->tx_chain[0]; char *txbuffs = &priv->txbuffer[0]; struct emac_dma_desc *desc_p; u32 idx; for (idx = 0; idx < CONFIG_TX_DESCR_NUM; idx++) { desc_p = &desc_table_p[idx]; desc_p->buf_addr = (uintptr_t)&txbuffs[idx * CONFIG_ETH_BUFSIZE] ; desc_p->next = (uintptr_t)&desc_table_p[idx + 1]; desc_p->status = (1 << 31); desc_p->st = 0; } /* Correcting the last pointer of the chain */ desc_p->next = (uintptr_t)&desc_table_p[0]; /* Flush all Tx buffer descriptors */ flush_dcache_range((uintptr_t)priv->tx_chain, (uintptr_t)priv->tx_chain + sizeof(priv->tx_chain)); writel((uintptr_t)&desc_table_p[0], priv->mac_reg + EMAC_TX_DMA_DESC); priv->tx_currdescnum = 0; } static int _sun8i_emac_eth_init(struct emac_eth_dev *priv, u8 *enetaddr) { u32 reg, v; int timeout = 100; reg = readl((priv->mac_reg + EMAC_CTL1)); if (!(reg & 0x1)) { /* Soft reset MAC */ setbits_le32((priv->mac_reg + EMAC_CTL1), 0x1); do { reg = readl(priv->mac_reg + EMAC_CTL1); } while ((reg & 0x01) != 0 && (--timeout)); if (!timeout) { printf("%s: Timeout\n", __func__); return -1; } } /* Rewrite mac address after reset */ _sun8i_write_hwaddr(priv, enetaddr); v = readl(priv->mac_reg + EMAC_TX_CTL1); /* TX_MD Transmission starts after a full frame located in TX DMA FIFO*/ v |= BIT(1); writel(v, priv->mac_reg + EMAC_TX_CTL1); v = readl(priv->mac_reg + EMAC_RX_CTL1); /* RX_MD RX DMA reads data from RX DMA FIFO to host memory after a * complete frame has been written to RX DMA FIFO */ v |= BIT(1); writel(v, priv->mac_reg + EMAC_RX_CTL1); /* DMA */ writel(8 << 24, priv->mac_reg + EMAC_CTL1); /* Initialize rx/tx descriptors */ rx_descs_init(priv); tx_descs_init(priv); /* PHY Start Up */ phy_startup(priv->phydev); sun8i_adjust_link(priv, priv->phydev); /* Start RX DMA */ v = readl(priv->mac_reg + EMAC_RX_CTL1); v |= BIT(30); writel(v, priv->mac_reg + EMAC_RX_CTL1); /* Start TX DMA */ v = readl(priv->mac_reg + EMAC_TX_CTL1); v |= BIT(30); writel(v, priv->mac_reg + EMAC_TX_CTL1); /* Enable RX/TX */ setbits_le32(priv->mac_reg + EMAC_RX_CTL0, BIT(31)); setbits_le32(priv->mac_reg + EMAC_TX_CTL0, BIT(31)); return 0; } static int parse_phy_pins(struct udevice *dev) { struct emac_eth_dev *priv = dev_get_priv(dev); int offset; const char *pin_name; int drive, pull = SUN4I_PINCTRL_NO_PULL, i; offset = fdtdec_lookup_phandle(gd->fdt_blob, dev_of_offset(dev), "pinctrl-0"); if (offset < 0) { printf("WARNING: emac: cannot find pinctrl-0 node\n"); return offset; } drive = fdt_getprop_u32_default_node(gd->fdt_blob, offset, 0, "drive-strength", ~0); if (drive != ~0) { if (drive <= 10) drive = SUN4I_PINCTRL_10_MA; else if (drive <= 20) drive = SUN4I_PINCTRL_20_MA; else if (drive <= 30) drive = SUN4I_PINCTRL_30_MA; else drive = SUN4I_PINCTRL_40_MA; } if (fdt_get_property(gd->fdt_blob, offset, "bias-pull-up", NULL)) pull = SUN4I_PINCTRL_PULL_UP; else if (fdt_get_property(gd->fdt_blob, offset, "bias-pull-down", NULL)) pull = SUN4I_PINCTRL_PULL_DOWN; for (i = 0; ; i++) { int pin; pin_name = fdt_stringlist_get(gd->fdt_blob, offset, "pins", i, NULL); if (!pin_name) break; pin = sunxi_name_to_gpio(pin_name); if (pin < 0) continue; if (priv->variant == H3_EMAC) sunxi_gpio_set_cfgpin(pin, SUN8I_IOMUX_H3); else if (priv->variant == R40_GMAC || priv->variant == H6_EMAC) sunxi_gpio_set_cfgpin(pin, SUN8I_IOMUX_R40); else sunxi_gpio_set_cfgpin(pin, SUN8I_IOMUX); if (drive != ~0) sunxi_gpio_set_drv(pin, drive); if (pull != ~0) sunxi_gpio_set_pull(pin, pull); } if (!i) { printf("WARNING: emac: cannot find pins property\n"); return -2; } return 0; } static int _sun8i_eth_recv(struct emac_eth_dev *priv, uchar **packetp) { u32 status, desc_num = priv->rx_currdescnum; struct emac_dma_desc *desc_p = &priv->rx_chain[desc_num]; int length = -EAGAIN; int good_packet = 1; uintptr_t desc_start = (uintptr_t)desc_p; uintptr_t desc_end = desc_start + roundup(sizeof(*desc_p), ARCH_DMA_MINALIGN); ulong data_start = (uintptr_t)desc_p->buf_addr; ulong data_end; /* Invalidate entire buffer descriptor */ invalidate_dcache_range(desc_start, desc_end); status = desc_p->status; /* Check for DMA own bit */ if (!(status & BIT(31))) { length = (desc_p->status >> 16) & 0x3FFF; if (length < 0x40) { good_packet = 0; debug("RX: Bad Packet (runt)\n"); } data_end = data_start + length; /* Invalidate received data */ invalidate_dcache_range(rounddown(data_start, ARCH_DMA_MINALIGN), roundup(data_end, ARCH_DMA_MINALIGN)); if (good_packet) { if (length > CONFIG_ETH_RXSIZE) { printf("Received packet is too big (len=%d)\n", length); return -EMSGSIZE; } *packetp = (uchar *)(ulong)desc_p->buf_addr; return length; } } return length; } static int _sun8i_emac_eth_send(struct emac_eth_dev *priv, void *packet, int len) { u32 v, desc_num = priv->tx_currdescnum; struct emac_dma_desc *desc_p = &priv->tx_chain[desc_num]; uintptr_t desc_start = (uintptr_t)desc_p; uintptr_t desc_end = desc_start + roundup(sizeof(*desc_p), ARCH_DMA_MINALIGN); uintptr_t data_start = (uintptr_t)desc_p->buf_addr; uintptr_t data_end = data_start + roundup(len, ARCH_DMA_MINALIGN); /* Invalidate entire buffer descriptor */ invalidate_dcache_range(desc_start, desc_end); desc_p->st = len; /* Mandatory undocumented bit */ desc_p->st |= BIT(24); memcpy((void *)data_start, packet, len); /* Flush data to be sent */ flush_dcache_range(data_start, data_end); /* frame end */ desc_p->st |= BIT(30); desc_p->st |= BIT(31); /*frame begin */ desc_p->st |= BIT(29); desc_p->status = BIT(31); /*Descriptors st and status field has changed, so FLUSH it */ flush_dcache_range(desc_start, desc_end); /* Move to next Descriptor and wrap around */ if (++desc_num >= CONFIG_TX_DESCR_NUM) desc_num = 0; priv->tx_currdescnum = desc_num; /* Start the DMA */ v = readl(priv->mac_reg + EMAC_TX_CTL1); v |= BIT(31);/* mandatory */ v |= BIT(30);/* mandatory */ writel(v, priv->mac_reg + EMAC_TX_CTL1); return 0; } static int sun8i_eth_write_hwaddr(struct udevice *dev) { struct eth_pdata *pdata = dev_get_platdata(dev); struct emac_eth_dev *priv = dev_get_priv(dev); return _sun8i_write_hwaddr(priv, pdata->enetaddr); } static int sun8i_emac_board_setup(struct emac_eth_dev *priv) { int ret; ret = clk_enable(&priv->tx_clk); if (ret) { dev_err(dev, "failed to enable TX clock\n"); return ret; } if (reset_valid(&priv->tx_rst)) { ret = reset_deassert(&priv->tx_rst); if (ret) { dev_err(dev, "failed to deassert TX reset\n"); goto err_tx_clk; } } /* Only H3/H5 have clock controls for internal EPHY */ if (clk_valid(&priv->ephy_clk)) { ret = clk_enable(&priv->ephy_clk); if (ret) { dev_err(dev, "failed to enable EPHY TX clock\n"); return ret; } } if (reset_valid(&priv->ephy_rst)) { ret = reset_deassert(&priv->ephy_rst); if (ret) { dev_err(dev, "failed to deassert EPHY TX clock\n"); return ret; } } return 0; err_tx_clk: clk_disable(&priv->tx_clk); return ret; } #if CONFIG_IS_ENABLED(DM_GPIO) static int sun8i_mdio_reset(struct mii_dev *bus) { struct udevice *dev = bus->priv; struct emac_eth_dev *priv = dev_get_priv(dev); struct sun8i_eth_pdata *pdata = dev_get_platdata(dev); int ret; if (!dm_gpio_is_valid(&priv->reset_gpio)) return 0; /* reset the phy */ ret = dm_gpio_set_value(&priv->reset_gpio, 0); if (ret) return ret; udelay(pdata->reset_delays[0]); ret = dm_gpio_set_value(&priv->reset_gpio, 1); if (ret) return ret; udelay(pdata->reset_delays[1]); ret = dm_gpio_set_value(&priv->reset_gpio, 0); if (ret) return ret; udelay(pdata->reset_delays[2]); return 0; } #endif static int sun8i_mdio_init(const char *name, struct udevice *priv) { struct mii_dev *bus = mdio_alloc(); if (!bus) { debug("Failed to allocate MDIO bus\n"); return -ENOMEM; } bus->read = sun8i_mdio_read; bus->write = sun8i_mdio_write; snprintf(bus->name, sizeof(bus->name), name); bus->priv = (void *)priv; #if CONFIG_IS_ENABLED(DM_GPIO) bus->reset = sun8i_mdio_reset; #endif return mdio_register(bus); } static int sun8i_emac_eth_start(struct udevice *dev) { struct eth_pdata *pdata = dev_get_platdata(dev); return _sun8i_emac_eth_init(dev->priv, pdata->enetaddr); } static int sun8i_emac_eth_send(struct udevice *dev, void *packet, int length) { struct emac_eth_dev *priv = dev_get_priv(dev); return _sun8i_emac_eth_send(priv, packet, length); } static int sun8i_emac_eth_recv(struct udevice *dev, int flags, uchar **packetp) { struct emac_eth_dev *priv = dev_get_priv(dev); return _sun8i_eth_recv(priv, packetp); } static int _sun8i_free_pkt(struct emac_eth_dev *priv) { u32 desc_num = priv->rx_currdescnum; struct emac_dma_desc *desc_p = &priv->rx_chain[desc_num]; uintptr_t desc_start = (uintptr_t)desc_p; uintptr_t desc_end = desc_start + roundup(sizeof(u32), ARCH_DMA_MINALIGN); /* Make the current descriptor valid again */ desc_p->status |= BIT(31); /* Flush Status field of descriptor */ flush_dcache_range(desc_start, desc_end); /* Move to next desc and wrap-around condition. */ if (++desc_num >= CONFIG_RX_DESCR_NUM) desc_num = 0; priv->rx_currdescnum = desc_num; return 0; } static int sun8i_eth_free_pkt(struct udevice *dev, uchar *packet, int length) { struct emac_eth_dev *priv = dev_get_priv(dev); return _sun8i_free_pkt(priv); } static void sun8i_emac_eth_stop(struct udevice *dev) { struct emac_eth_dev *priv = dev_get_priv(dev); /* Stop Rx/Tx transmitter */ clrbits_le32(priv->mac_reg + EMAC_RX_CTL0, BIT(31)); clrbits_le32(priv->mac_reg + EMAC_TX_CTL0, BIT(31)); /* Stop TX DMA */ clrbits_le32(priv->mac_reg + EMAC_TX_CTL1, BIT(30)); phy_shutdown(priv->phydev); } static int sun8i_emac_eth_probe(struct udevice *dev) { struct sun8i_eth_pdata *sun8i_pdata = dev_get_platdata(dev); struct eth_pdata *pdata = &sun8i_pdata->eth_pdata; struct emac_eth_dev *priv = dev_get_priv(dev); int ret; priv->mac_reg = (void *)pdata->iobase; ret = sun8i_emac_board_setup(priv); if (ret) return ret; sun8i_emac_set_syscon(sun8i_pdata, priv); sun8i_mdio_init(dev->name, dev); priv->bus = miiphy_get_dev_by_name(dev->name); return sun8i_phy_init(priv, dev); } static const struct eth_ops sun8i_emac_eth_ops = { .start = sun8i_emac_eth_start, .write_hwaddr = sun8i_eth_write_hwaddr, .send = sun8i_emac_eth_send, .recv = sun8i_emac_eth_recv, .free_pkt = sun8i_eth_free_pkt, .stop = sun8i_emac_eth_stop, }; static int sun8i_get_ephy_nodes(struct emac_eth_dev *priv) { int emac_node, ephy_node, ret, ephy_handle; emac_node = fdt_path_offset(gd->fdt_blob, "/soc/ethernet@1c30000"); if (emac_node < 0) { debug("failed to get emac node\n"); return emac_node; } ephy_handle = fdtdec_lookup_phandle(gd->fdt_blob, emac_node, "phy-handle"); /* look for mdio-mux node for internal PHY node */ ephy_node = fdt_path_offset(gd->fdt_blob, "/soc/ethernet@1c30000/mdio-mux/mdio@1/ethernet-phy@1"); if (ephy_node < 0) { debug("failed to get mdio-mux with internal PHY\n"); return ephy_node; } /* This is not the phy we are looking for */ if (ephy_node != ephy_handle) return 0; ret = fdt_node_check_compatible(gd->fdt_blob, ephy_node, "allwinner,sun8i-h3-mdio-internal"); if (ret < 0) { debug("failed to find mdio-internal node\n"); return ret; } ret = clk_get_by_index_nodev(offset_to_ofnode(ephy_node), 0, &priv->ephy_clk); if (ret) { dev_err(dev, "failed to get EPHY TX clock\n"); return ret; } ret = reset_get_by_index_nodev(offset_to_ofnode(ephy_node), 0, &priv->ephy_rst); if (ret) { dev_err(dev, "failed to get EPHY TX reset\n"); return ret; } priv->use_internal_phy = true; return 0; } static int sun8i_emac_eth_ofdata_to_platdata(struct udevice *dev) { struct sun8i_eth_pdata *sun8i_pdata = dev_get_platdata(dev); struct eth_pdata *pdata = &sun8i_pdata->eth_pdata; struct emac_eth_dev *priv = dev_get_priv(dev); const char *phy_mode; const fdt32_t *reg; int node = dev_of_offset(dev); int offset = 0; #if CONFIG_IS_ENABLED(DM_GPIO) int reset_flags = GPIOD_IS_OUT; #endif int ret; pdata->iobase = dev_read_addr(dev); if (pdata->iobase == FDT_ADDR_T_NONE) { debug("%s: Cannot find MAC base address\n", __func__); return -EINVAL; } priv->variant = dev_get_driver_data(dev); if (!priv->variant) { printf("%s: Missing variant\n", __func__); return -EINVAL; } ret = clk_get_by_name(dev, "stmmaceth", &priv->tx_clk); if (ret) { dev_err(dev, "failed to get TX clock\n"); return ret; } ret = reset_get_by_name(dev, "stmmaceth", &priv->tx_rst); if (ret && ret != -ENOENT) { dev_err(dev, "failed to get TX reset\n"); return ret; } offset = fdtdec_lookup_phandle(gd->fdt_blob, node, "syscon"); if (offset < 0) { debug("%s: cannot find syscon node\n", __func__); return -EINVAL; } reg = fdt_getprop(gd->fdt_blob, offset, "reg", NULL); if (!reg) { debug("%s: cannot find reg property in syscon node\n", __func__); return -EINVAL; } priv->sysctl_reg = fdt_translate_address((void *)gd->fdt_blob, offset, reg); if (priv->sysctl_reg == FDT_ADDR_T_NONE) { debug("%s: Cannot find syscon base address\n", __func__); return -EINVAL; } pdata->phy_interface = -1; priv->phyaddr = -1; priv->use_internal_phy = false; offset = fdtdec_lookup_phandle(gd->fdt_blob, node, "phy-handle"); if (offset < 0) { debug("%s: Cannot find PHY address\n", __func__); return -EINVAL; } priv->phyaddr = fdtdec_get_int(gd->fdt_blob, offset, "reg", -1); phy_mode = fdt_getprop(gd->fdt_blob, node, "phy-mode", NULL); if (phy_mode) pdata->phy_interface = phy_get_interface_by_name(phy_mode); printf("phy interface%d\n", pdata->phy_interface); if (pdata->phy_interface == -1) { debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode); return -EINVAL; } if (priv->variant == H3_EMAC) { ret = sun8i_get_ephy_nodes(priv); if (ret) return ret; } priv->interface = pdata->phy_interface; if (!priv->use_internal_phy) parse_phy_pins(dev); sun8i_pdata->tx_delay_ps = fdtdec_get_int(gd->fdt_blob, node, "allwinner,tx-delay-ps", 0); if (sun8i_pdata->tx_delay_ps < 0 || sun8i_pdata->tx_delay_ps > 700) printf("%s: Invalid TX delay value %d\n", __func__, sun8i_pdata->tx_delay_ps); sun8i_pdata->rx_delay_ps = fdtdec_get_int(gd->fdt_blob, node, "allwinner,rx-delay-ps", 0); if (sun8i_pdata->rx_delay_ps < 0 || sun8i_pdata->rx_delay_ps > 3100) printf("%s: Invalid RX delay value %d\n", __func__, sun8i_pdata->rx_delay_ps); #if CONFIG_IS_ENABLED(DM_GPIO) if (fdtdec_get_bool(gd->fdt_blob, dev_of_offset(dev), "snps,reset-active-low")) reset_flags |= GPIOD_ACTIVE_LOW; ret = gpio_request_by_name(dev, "snps,reset-gpio", 0, &priv->reset_gpio, reset_flags); if (ret == 0) { ret = fdtdec_get_int_array(gd->fdt_blob, dev_of_offset(dev), "snps,reset-delays-us", sun8i_pdata->reset_delays, 3); } else if (ret == -ENOENT) { ret = 0; } #endif return 0; } static const struct udevice_id sun8i_emac_eth_ids[] = { {.compatible = "allwinner,sun8i-h3-emac", .data = (uintptr_t)H3_EMAC }, {.compatible = "allwinner,sun50i-a64-emac", .data = (uintptr_t)A64_EMAC }, {.compatible = "allwinner,sun8i-a83t-emac", .data = (uintptr_t)A83T_EMAC }, {.compatible = "allwinner,sun8i-r40-gmac", .data = (uintptr_t)R40_GMAC }, {.compatible = "allwinner,sun50i-h6-emac", .data = (uintptr_t)H6_EMAC }, { } }; U_BOOT_DRIVER(eth_sun8i_emac) = { .name = "eth_sun8i_emac", .id = UCLASS_ETH, .of_match = sun8i_emac_eth_ids, .ofdata_to_platdata = sun8i_emac_eth_ofdata_to_platdata, .probe = sun8i_emac_eth_probe, .ops = &sun8i_emac_eth_ops, .priv_auto_alloc_size = sizeof(struct emac_eth_dev), .platdata_auto_alloc_size = sizeof(struct sun8i_eth_pdata), .flags = DM_FLAG_ALLOC_PRIV_DMA, };