/* * Copyright (C) 2017 NXP Semiconductors * Copyright (C) 2017 Bin Meng * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include "nvme.h" struct nvme_info *nvme_info; #define NVME_Q_DEPTH 2 #define NVME_AQ_DEPTH 2 #define NVME_SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) #define NVME_CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) #define ADMIN_TIMEOUT 60 #define IO_TIMEOUT 30 #define MAX_PRP_POOL 512 enum nvme_queue_id { NVME_ADMIN_Q, NVME_IO_Q, NVME_Q_NUM, }; /* * An NVM Express queue. Each device has at least two (one for admin * commands and one for I/O commands). */ struct nvme_queue { struct nvme_dev *dev; struct nvme_command *sq_cmds; struct nvme_completion *cqes; wait_queue_head_t sq_full; u32 __iomem *q_db; u16 q_depth; s16 cq_vector; u16 sq_head; u16 sq_tail; u16 cq_head; u16 qid; u8 cq_phase; u8 cqe_seen; unsigned long cmdid_data[]; }; static int nvme_wait_ready(struct nvme_dev *dev, bool enabled) { u32 bit = enabled ? NVME_CSTS_RDY : 0; int timeout; ulong start; /* Timeout field in the CAP register is in 500 millisecond units */ timeout = NVME_CAP_TIMEOUT(dev->cap) * 500; start = get_timer(0); while (get_timer(start) < timeout) { if ((readl(&dev->bar->csts) & NVME_CSTS_RDY) == bit) return 0; } return -ETIME; } static int nvme_setup_prps(struct nvme_dev *dev, u64 *prp2, int total_len, u64 dma_addr) { u32 page_size = dev->page_size; int offset = dma_addr & (page_size - 1); u64 *prp_pool; int length = total_len; int i, nprps; length -= (page_size - offset); if (length <= 0) { *prp2 = 0; return 0; } if (length) dma_addr += (page_size - offset); if (length <= page_size) { *prp2 = dma_addr; return 0; } nprps = DIV_ROUND_UP(length, page_size); if (nprps > dev->prp_entry_num) { free(dev->prp_pool); dev->prp_pool = malloc(nprps << 3); if (!dev->prp_pool) { printf("Error: malloc prp_pool fail\n"); return -ENOMEM; } dev->prp_entry_num = nprps; } prp_pool = dev->prp_pool; i = 0; while (nprps) { if (i == ((page_size >> 3) - 1)) { *(prp_pool + i) = cpu_to_le64((ulong)prp_pool + page_size); i = 0; prp_pool += page_size; } *(prp_pool + i++) = cpu_to_le64(dma_addr); dma_addr += page_size; nprps--; } *prp2 = (ulong)dev->prp_pool; return 0; } static __le16 nvme_get_cmd_id(void) { static unsigned short cmdid; return cpu_to_le16((cmdid < USHRT_MAX) ? cmdid++ : 0); } static u16 nvme_read_completion_status(struct nvme_queue *nvmeq, u16 index) { u64 start = (ulong)&nvmeq->cqes[index]; u64 stop = start + sizeof(struct nvme_completion); invalidate_dcache_range(start, stop); return le16_to_cpu(readw(&(nvmeq->cqes[index].status))); } /** * nvme_submit_cmd() - copy a command into a queue and ring the doorbell * * @nvmeq: The queue to use * @cmd: The command to send */ static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd) { u16 tail = nvmeq->sq_tail; memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd)); flush_dcache_range((ulong)&nvmeq->sq_cmds[tail], (ulong)&nvmeq->sq_cmds[tail] + sizeof(*cmd)); if (++tail == nvmeq->q_depth) tail = 0; writel(tail, nvmeq->q_db); nvmeq->sq_tail = tail; } static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd, u32 *result, unsigned timeout) { u16 head = nvmeq->cq_head; u16 phase = nvmeq->cq_phase; u16 status; ulong start_time; ulong timeout_us = timeout * 100000; cmd->common.command_id = nvme_get_cmd_id(); nvme_submit_cmd(nvmeq, cmd); start_time = timer_get_us(); for (;;) { status = nvme_read_completion_status(nvmeq, head); if ((status & 0x01) == phase) break; if (timeout_us > 0 && (timer_get_us() - start_time) >= timeout_us) return -ETIMEDOUT; } status >>= 1; if (status) { printf("ERROR: status = %x, phase = %d, head = %d\n", status, phase, head); status = 0; if (++head == nvmeq->q_depth) { head = 0; phase = !phase; } writel(head, nvmeq->q_db + nvmeq->dev->db_stride); nvmeq->cq_head = head; nvmeq->cq_phase = phase; return -EIO; } if (result) *result = le32_to_cpu(readl(&(nvmeq->cqes[head].result))); if (++head == nvmeq->q_depth) { head = 0; phase = !phase; } writel(head, nvmeq->q_db + nvmeq->dev->db_stride); nvmeq->cq_head = head; nvmeq->cq_phase = phase; return status; } static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd, u32 *result) { return nvme_submit_sync_cmd(dev->queues[NVME_ADMIN_Q], cmd, result, ADMIN_TIMEOUT); } static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) { struct nvme_queue *nvmeq = malloc(sizeof(*nvmeq)); if (!nvmeq) return NULL; memset(nvmeq, 0, sizeof(*nvmeq)); nvmeq->cqes = (void *)memalign(4096, NVME_CQ_SIZE(depth)); if (!nvmeq->cqes) goto free_nvmeq; memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(depth)); nvmeq->sq_cmds = (void *)memalign(4096, NVME_SQ_SIZE(depth)); if (!nvmeq->sq_cmds) goto free_queue; memset((void *)nvmeq->sq_cmds, 0, NVME_SQ_SIZE(depth)); nvmeq->dev = dev; nvmeq->cq_head = 0; nvmeq->cq_phase = 1; nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; nvmeq->q_depth = depth; nvmeq->qid = qid; dev->queue_count++; dev->queues[qid] = nvmeq; return nvmeq; free_queue: free((void *)nvmeq->cqes); free_nvmeq: free(nvmeq); return NULL; } static int nvme_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) { struct nvme_command c; memset(&c, 0, sizeof(c)); c.delete_queue.opcode = opcode; c.delete_queue.qid = cpu_to_le16(id); return nvme_submit_admin_cmd(dev, &c, NULL); } static int nvme_delete_sq(struct nvme_dev *dev, u16 sqid) { return nvme_delete_queue(dev, nvme_admin_delete_sq, sqid); } static int nvme_delete_cq(struct nvme_dev *dev, u16 cqid) { return nvme_delete_queue(dev, nvme_admin_delete_cq, cqid); } static int nvme_enable_ctrl(struct nvme_dev *dev) { dev->ctrl_config &= ~NVME_CC_SHN_MASK; dev->ctrl_config |= NVME_CC_ENABLE; writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc); return nvme_wait_ready(dev, true); } static int nvme_disable_ctrl(struct nvme_dev *dev) { dev->ctrl_config &= ~NVME_CC_SHN_MASK; dev->ctrl_config &= ~NVME_CC_ENABLE; writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc); return nvme_wait_ready(dev, false); } static void nvme_free_queue(struct nvme_queue *nvmeq) { free((void *)nvmeq->cqes); free(nvmeq->sq_cmds); free(nvmeq); } static void nvme_free_queues(struct nvme_dev *dev, int lowest) { int i; for (i = dev->queue_count - 1; i >= lowest; i--) { struct nvme_queue *nvmeq = dev->queues[i]; dev->queue_count--; dev->queues[i] = NULL; nvme_free_queue(nvmeq); } } static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) { struct nvme_dev *dev = nvmeq->dev; nvmeq->sq_tail = 0; nvmeq->cq_head = 0; nvmeq->cq_phase = 1; nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(nvmeq->q_depth)); flush_dcache_range((ulong)nvmeq->cqes, (ulong)nvmeq->cqes + NVME_CQ_SIZE(nvmeq->q_depth)); dev->online_queues++; } static int nvme_configure_admin_queue(struct nvme_dev *dev) { int result; u32 aqa; u64 cap = dev->cap; struct nvme_queue *nvmeq; /* most architectures use 4KB as the page size */ unsigned page_shift = 12; unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12; unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12; if (page_shift < dev_page_min) { debug("Device minimum page size (%u) too large for host (%u)\n", 1 << dev_page_min, 1 << page_shift); return -ENODEV; } if (page_shift > dev_page_max) { debug("Device maximum page size (%u) smaller than host (%u)\n", 1 << dev_page_max, 1 << page_shift); page_shift = dev_page_max; } result = nvme_disable_ctrl(dev); if (result < 0) return result; nvmeq = dev->queues[NVME_ADMIN_Q]; if (!nvmeq) { nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); if (!nvmeq) return -ENOMEM; } aqa = nvmeq->q_depth - 1; aqa |= aqa << 16; aqa |= aqa << 16; dev->page_size = 1 << page_shift; dev->ctrl_config = NVME_CC_CSS_NVM; dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT; dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE; dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; writel(aqa, &dev->bar->aqa); nvme_writeq((ulong)nvmeq->sq_cmds, &dev->bar->asq); nvme_writeq((ulong)nvmeq->cqes, &dev->bar->acq); result = nvme_enable_ctrl(dev); if (result) goto free_nvmeq; nvmeq->cq_vector = 0; nvme_init_queue(dev->queues[NVME_ADMIN_Q], 0); return result; free_nvmeq: nvme_free_queues(dev, 0); return result; } static int nvme_alloc_cq(struct nvme_dev *dev, u16 qid, struct nvme_queue *nvmeq) { struct nvme_command c; int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED; memset(&c, 0, sizeof(c)); c.create_cq.opcode = nvme_admin_create_cq; c.create_cq.prp1 = cpu_to_le64((ulong)nvmeq->cqes); c.create_cq.cqid = cpu_to_le16(qid); c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); c.create_cq.cq_flags = cpu_to_le16(flags); c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector); return nvme_submit_admin_cmd(dev, &c, NULL); } static int nvme_alloc_sq(struct nvme_dev *dev, u16 qid, struct nvme_queue *nvmeq) { struct nvme_command c; int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM; memset(&c, 0, sizeof(c)); c.create_sq.opcode = nvme_admin_create_sq; c.create_sq.prp1 = cpu_to_le64((ulong)nvmeq->sq_cmds); c.create_sq.sqid = cpu_to_le16(qid); c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); c.create_sq.sq_flags = cpu_to_le16(flags); c.create_sq.cqid = cpu_to_le16(qid); return nvme_submit_admin_cmd(dev, &c, NULL); } int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns, dma_addr_t dma_addr) { struct nvme_command c; u32 page_size = dev->page_size; int offset = dma_addr & (page_size - 1); int length = sizeof(struct nvme_id_ctrl); memset(&c, 0, sizeof(c)); c.identify.opcode = nvme_admin_identify; c.identify.nsid = cpu_to_le32(nsid); c.identify.prp1 = cpu_to_le64(dma_addr); length -= (page_size - offset); if (length <= 0) { c.identify.prp2 = 0; } else { dma_addr += (page_size - offset); c.identify.prp2 = cpu_to_le64(dma_addr); } c.identify.cns = cpu_to_le32(cns); return nvme_submit_admin_cmd(dev, &c, NULL); } int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid, dma_addr_t dma_addr, u32 *result) { struct nvme_command c; memset(&c, 0, sizeof(c)); c.features.opcode = nvme_admin_get_features; c.features.nsid = cpu_to_le32(nsid); c.features.prp1 = cpu_to_le64(dma_addr); c.features.fid = cpu_to_le32(fid); return nvme_submit_admin_cmd(dev, &c, result); } int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11, dma_addr_t dma_addr, u32 *result) { struct nvme_command c; memset(&c, 0, sizeof(c)); c.features.opcode = nvme_admin_set_features; c.features.prp1 = cpu_to_le64(dma_addr); c.features.fid = cpu_to_le32(fid); c.features.dword11 = cpu_to_le32(dword11); return nvme_submit_admin_cmd(dev, &c, result); } static int nvme_create_queue(struct nvme_queue *nvmeq, int qid) { struct nvme_dev *dev = nvmeq->dev; int result; nvmeq->cq_vector = qid - 1; result = nvme_alloc_cq(dev, qid, nvmeq); if (result < 0) goto release_cq; result = nvme_alloc_sq(dev, qid, nvmeq); if (result < 0) goto release_sq; nvme_init_queue(nvmeq, qid); return result; release_sq: nvme_delete_sq(dev, qid); release_cq: nvme_delete_cq(dev, qid); return result; } static int nvme_set_queue_count(struct nvme_dev *dev, int count) { int status; u32 result; u32 q_count = (count - 1) | ((count - 1) << 16); status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0, &result); if (status < 0) return status; if (status > 1) return 0; return min(result & 0xffff, result >> 16) + 1; } static void nvme_create_io_queues(struct nvme_dev *dev) { unsigned int i; for (i = dev->queue_count; i <= dev->max_qid; i++) if (!nvme_alloc_queue(dev, i, dev->q_depth)) break; for (i = dev->online_queues; i <= dev->queue_count - 1; i++) if (nvme_create_queue(dev->queues[i], i)) break; } static int nvme_setup_io_queues(struct nvme_dev *dev) { int nr_io_queues; int result; nr_io_queues = 1; result = nvme_set_queue_count(dev, nr_io_queues); if (result <= 0) return result; if (result < nr_io_queues) nr_io_queues = result; dev->max_qid = nr_io_queues; /* Free previously allocated queues */ nvme_free_queues(dev, nr_io_queues + 1); nvme_create_io_queues(dev); return 0; } static int nvme_get_info_from_identify(struct nvme_dev *dev) { struct nvme_id_ctrl buf, *ctrl = &buf; int ret; int shift = NVME_CAP_MPSMIN(dev->cap) + 12; ret = nvme_identify(dev, 0, 1, (dma_addr_t)ctrl); if (ret) return -EIO; dev->nn = le32_to_cpu(ctrl->nn); dev->vwc = ctrl->vwc; memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn)); memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn)); memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr)); if (ctrl->mdts) dev->max_transfer_shift = (ctrl->mdts + shift); else { /* * Maximum Data Transfer Size (MDTS) field indicates the maximum * data transfer size between the host and the controller. The * host should not submit a command that exceeds this transfer * size. The value is in units of the minimum memory page size * and is reported as a power of two (2^n). * * The spec also says: a value of 0h indicates no restrictions * on transfer size. But in nvme_blk_read/write() below we have * the following algorithm for maximum number of logic blocks * per transfer: * * u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift); * * In order for lbas not to overflow, the maximum number is 15 * which means dev->max_transfer_shift = 15 + 9 (ns->lba_shift). * Let's use 20 which provides 1MB size. */ dev->max_transfer_shift = 20; } return 0; } int nvme_scan_namespace(void) { struct uclass *uc; struct udevice *dev; int ret; ret = uclass_get(UCLASS_NVME, &uc); if (ret) return ret; uclass_foreach_dev(dev, uc) { ret = device_probe(dev); if (ret) return ret; } return 0; } static int nvme_blk_probe(struct udevice *udev) { struct nvme_dev *ndev = dev_get_priv(udev->parent); struct blk_desc *desc = dev_get_uclass_platdata(udev); struct nvme_ns *ns = dev_get_priv(udev); u8 flbas; struct nvme_id_ns buf, *id = &buf; struct pci_child_platdata *pplat; memset(ns, 0, sizeof(*ns)); ns->dev = ndev; ns->ns_id = desc->devnum - ndev->blk_dev_start + 1; if (nvme_identify(ndev, ns->ns_id, 0, (dma_addr_t)id)) return -EIO; flbas = id->flbas & NVME_NS_FLBAS_LBA_MASK; ns->flbas = flbas; ns->lba_shift = id->lbaf[flbas].ds; ns->mode_select_num_blocks = le64_to_cpu(id->nsze); ns->mode_select_block_len = 1 << ns->lba_shift; list_add(&ns->list, &ndev->namespaces); desc->lba = ns->mode_select_num_blocks; desc->log2blksz = ns->lba_shift; desc->blksz = 1 << ns->lba_shift; desc->bdev = udev; pplat = dev_get_parent_platdata(udev->parent); sprintf(desc->vendor, "0x%.4x", pplat->vendor); memcpy(desc->product, ndev->serial, sizeof(ndev->serial)); memcpy(desc->revision, ndev->firmware_rev, sizeof(ndev->firmware_rev)); part_init(desc); return 0; } static ulong nvme_blk_rw(struct udevice *udev, lbaint_t blknr, lbaint_t blkcnt, void *buffer, bool read) { struct nvme_ns *ns = dev_get_priv(udev); struct nvme_dev *dev = ns->dev; struct nvme_command c; struct blk_desc *desc = dev_get_uclass_platdata(udev); int status; u64 prp2; u64 total_len = blkcnt << desc->log2blksz; u64 temp_len = total_len; u64 slba = blknr; u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift); u64 total_lbas = blkcnt; c.rw.opcode = read ? nvme_cmd_read : nvme_cmd_write; c.rw.flags = 0; c.rw.nsid = cpu_to_le32(ns->ns_id); c.rw.control = 0; c.rw.dsmgmt = 0; c.rw.reftag = 0; c.rw.apptag = 0; c.rw.appmask = 0; c.rw.metadata = 0; while (total_lbas) { if (total_lbas < lbas) { lbas = (u16)total_lbas; total_lbas = 0; } else { total_lbas -= lbas; } if (nvme_setup_prps(dev, &prp2, lbas << ns->lba_shift, (ulong)buffer)) return -EIO; c.rw.slba = cpu_to_le64(slba); slba += lbas; c.rw.length = cpu_to_le16(lbas - 1); c.rw.prp1 = cpu_to_le64((ulong)buffer); c.rw.prp2 = cpu_to_le64(prp2); status = nvme_submit_sync_cmd(dev->queues[NVME_IO_Q], &c, NULL, IO_TIMEOUT); if (status) break; temp_len -= lbas << ns->lba_shift; buffer += lbas << ns->lba_shift; } return (total_len - temp_len) >> desc->log2blksz; } static ulong nvme_blk_read(struct udevice *udev, lbaint_t blknr, lbaint_t blkcnt, void *buffer) { return nvme_blk_rw(udev, blknr, blkcnt, buffer, true); } static ulong nvme_blk_write(struct udevice *udev, lbaint_t blknr, lbaint_t blkcnt, const void *buffer) { return nvme_blk_rw(udev, blknr, blkcnt, (void *)buffer, false); } static const struct blk_ops nvme_blk_ops = { .read = nvme_blk_read, .write = nvme_blk_write, }; U_BOOT_DRIVER(nvme_blk) = { .name = "nvme-blk", .id = UCLASS_BLK, .probe = nvme_blk_probe, .ops = &nvme_blk_ops, .priv_auto_alloc_size = sizeof(struct nvme_ns), }; static int nvme_bind(struct udevice *udev) { char name[20]; sprintf(name, "nvme#%d", nvme_info->ndev_num++); return device_set_name(udev, name); } static int nvme_probe(struct udevice *udev) { int ret; struct nvme_dev *ndev = dev_get_priv(udev); ndev->instance = trailing_strtol(udev->name); INIT_LIST_HEAD(&ndev->namespaces); ndev->bar = dm_pci_map_bar(udev, PCI_BASE_ADDRESS_0, PCI_REGION_MEM); if (readl(&ndev->bar->csts) == -1) { ret = -ENODEV; printf("Error: %s: Out of memory!\n", udev->name); goto free_nvme; } ndev->queues = malloc(NVME_Q_NUM * sizeof(struct nvme_queue *)); if (!ndev->queues) { ret = -ENOMEM; printf("Error: %s: Out of memory!\n", udev->name); goto free_nvme; } memset(ndev->queues, 0, sizeof(NVME_Q_NUM * sizeof(struct nvme_queue *))); ndev->prp_pool = malloc(MAX_PRP_POOL); if (!ndev->prp_pool) { ret = -ENOMEM; printf("Error: %s: Out of memory!\n", udev->name); goto free_nvme; } ndev->prp_entry_num = MAX_PRP_POOL >> 3; ndev->cap = nvme_readq(&ndev->bar->cap); ndev->q_depth = min_t(int, NVME_CAP_MQES(ndev->cap) + 1, NVME_Q_DEPTH); ndev->db_stride = 1 << NVME_CAP_STRIDE(ndev->cap); ndev->dbs = ((void __iomem *)ndev->bar) + 4096; ret = nvme_configure_admin_queue(ndev); if (ret) goto free_queue; ret = nvme_setup_io_queues(ndev); if (ret) goto free_queue; nvme_get_info_from_identify(ndev); ndev->blk_dev_start = nvme_info->ns_num; list_add(&ndev->node, &nvme_info->dev_list); return 0; free_queue: free((void *)ndev->queues); free_nvme: return ret; } U_BOOT_DRIVER(nvme) = { .name = "nvme", .id = UCLASS_NVME, .bind = nvme_bind, .probe = nvme_probe, .priv_auto_alloc_size = sizeof(struct nvme_dev), }; struct pci_device_id nvme_supported[] = { { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, ~0) }, {} }; U_BOOT_PCI_DEVICE(nvme, nvme_supported);