// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause /* * (C) Copyright 2015 Google, Inc * Copyright 2014 Rockchip Inc. * * Adapted from coreboot. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct chan_info { struct rk3288_ddr_pctl *pctl; struct rk3288_ddr_publ *publ; struct rk3288_msch *msch; }; struct dram_info { struct chan_info chan[2]; struct ram_info info; struct clk ddr_clk; struct rockchip_cru *cru; struct rk3288_grf *grf; struct rk3288_sgrf *sgrf; struct rk3288_pmu *pmu; bool is_veyron; }; struct rk3288_sdram_params { #if CONFIG_IS_ENABLED(OF_PLATDATA) struct dtd_rockchip_rk3288_dmc of_plat; #endif struct rk3288_sdram_channel ch[2]; struct rk3288_sdram_pctl_timing pctl_timing; struct rk3288_sdram_phy_timing phy_timing; struct rk3288_base_params base; int num_channels; struct regmap *map; }; const int ddrconf_table[] = { /* row col,bw */ 0, ((1 << DDRCONF_ROW_SHIFT) | 1 << DDRCONF_COL_SHIFT), ((2 << DDRCONF_ROW_SHIFT) | 1 << DDRCONF_COL_SHIFT), ((3 << DDRCONF_ROW_SHIFT) | 1 << DDRCONF_COL_SHIFT), ((4 << DDRCONF_ROW_SHIFT) | 1 << DDRCONF_COL_SHIFT), ((1 << DDRCONF_ROW_SHIFT) | 2 << DDRCONF_COL_SHIFT), ((2 << DDRCONF_ROW_SHIFT) | 2 << DDRCONF_COL_SHIFT), ((3 << DDRCONF_ROW_SHIFT) | 2 << DDRCONF_COL_SHIFT), ((1 << DDRCONF_ROW_SHIFT) | 0 << DDRCONF_COL_SHIFT), ((2 << DDRCONF_ROW_SHIFT) | 0 << DDRCONF_COL_SHIFT), ((3 << DDRCONF_ROW_SHIFT) | 0 << DDRCONF_COL_SHIFT), 0, 0, 0, 0, ((4 << 4) | 2), }; #define TEST_PATTEN 0x5aa5f00f #define DQS_GATE_TRAINING_ERROR_RANK0 (1 << 4) #define DQS_GATE_TRAINING_ERROR_RANK1 (2 << 4) #if defined(CONFIG_TPL_BUILD) || \ (!defined(CONFIG_TPL) && defined(CONFIG_SPL_BUILD)) static void copy_to_reg(u32 *dest, const u32 *src, u32 n) { int i; for (i = 0; i < n / sizeof(u32); i++) { writel(*src, dest); src++; dest++; } } static void ddr_reset(struct rockchip_cru *cru, u32 ch, u32 ctl, u32 phy) { u32 phy_ctl_srstn_shift = 4 + 5 * ch; u32 ctl_psrstn_shift = 3 + 5 * ch; u32 ctl_srstn_shift = 2 + 5 * ch; u32 phy_psrstn_shift = 1 + 5 * ch; u32 phy_srstn_shift = 5 * ch; rk_clrsetreg(&cru->cru_softrst_con[10], 1 << phy_ctl_srstn_shift | 1 << ctl_psrstn_shift | 1 << ctl_srstn_shift | 1 << phy_psrstn_shift | 1 << phy_srstn_shift, phy << phy_ctl_srstn_shift | ctl << ctl_psrstn_shift | ctl << ctl_srstn_shift | phy << phy_psrstn_shift | phy << phy_srstn_shift); } static void ddr_phy_ctl_reset(struct rockchip_cru *cru, u32 ch, u32 n) { u32 phy_ctl_srstn_shift = 4 + 5 * ch; rk_clrsetreg(&cru->cru_softrst_con[10], 1 << phy_ctl_srstn_shift, n << phy_ctl_srstn_shift); } static void phy_pctrl_reset(struct rockchip_cru *cru, struct rk3288_ddr_publ *publ, int channel) { int i; ddr_reset(cru, channel, 1, 1); udelay(1); clrbits_le32(&publ->acdllcr, ACDLLCR_DLLSRST); for (i = 0; i < 4; i++) clrbits_le32(&publ->datx8[i].dxdllcr, DXDLLCR_DLLSRST); udelay(10); setbits_le32(&publ->acdllcr, ACDLLCR_DLLSRST); for (i = 0; i < 4; i++) setbits_le32(&publ->datx8[i].dxdllcr, DXDLLCR_DLLSRST); udelay(10); ddr_reset(cru, channel, 1, 0); udelay(10); ddr_reset(cru, channel, 0, 0); udelay(10); } static void phy_dll_bypass_set(struct rk3288_ddr_publ *publ, u32 freq) { int i; if (freq <= 250000000) { if (freq <= 150000000) clrbits_le32(&publ->dllgcr, SBIAS_BYPASS); else setbits_le32(&publ->dllgcr, SBIAS_BYPASS); setbits_le32(&publ->acdllcr, ACDLLCR_DLLDIS); for (i = 0; i < 4; i++) setbits_le32(&publ->datx8[i].dxdllcr, DXDLLCR_DLLDIS); setbits_le32(&publ->pir, PIR_DLLBYP); } else { clrbits_le32(&publ->dllgcr, SBIAS_BYPASS); clrbits_le32(&publ->acdllcr, ACDLLCR_DLLDIS); for (i = 0; i < 4; i++) { clrbits_le32(&publ->datx8[i].dxdllcr, DXDLLCR_DLLDIS); } clrbits_le32(&publ->pir, PIR_DLLBYP); } } static void dfi_cfg(struct rk3288_ddr_pctl *pctl, u32 dramtype) { writel(DFI_INIT_START, &pctl->dfistcfg0); writel(DFI_DRAM_CLK_SR_EN | DFI_DRAM_CLK_DPD_EN, &pctl->dfistcfg1); writel(DFI_PARITY_INTR_EN | DFI_PARITY_EN, &pctl->dfistcfg2); writel(7 << TLP_RESP_TIME_SHIFT | LP_SR_EN | LP_PD_EN, &pctl->dfilpcfg0); writel(2 << TCTRL_DELAY_TIME_SHIFT, &pctl->dfitctrldelay); writel(1 << TPHY_WRDATA_TIME_SHIFT, &pctl->dfitphywrdata); writel(0xf << TPHY_RDLAT_TIME_SHIFT, &pctl->dfitphyrdlat); writel(2 << TDRAM_CLK_DIS_TIME_SHIFT, &pctl->dfitdramclkdis); writel(2 << TDRAM_CLK_EN_TIME_SHIFT, &pctl->dfitdramclken); writel(1, &pctl->dfitphyupdtype0); /* cs0 and cs1 write odt enable */ writel((RANK0_ODT_WRITE_SEL | RANK1_ODT_WRITE_SEL), &pctl->dfiodtcfg); /* odt write length */ writel(7 << ODT_LEN_BL8_W_SHIFT, &pctl->dfiodtcfg1); /* phyupd and ctrlupd disabled */ writel(0, &pctl->dfiupdcfg); } static void ddr_set_enable(struct rk3288_grf *grf, uint channel, bool enable) { uint val = 0; if (enable) { val = 1 << (channel ? DDR1_16BIT_EN_SHIFT : DDR0_16BIT_EN_SHIFT); } rk_clrsetreg(&grf->soc_con0, 1 << (channel ? DDR1_16BIT_EN_SHIFT : DDR0_16BIT_EN_SHIFT), val); } static void ddr_set_ddr3_mode(struct rk3288_grf *grf, uint channel, bool ddr3_mode) { uint mask, val; mask = 1 << (channel ? MSCH1_MAINDDR3_SHIFT : MSCH0_MAINDDR3_SHIFT); val = ddr3_mode << (channel ? MSCH1_MAINDDR3_SHIFT : MSCH0_MAINDDR3_SHIFT); rk_clrsetreg(&grf->soc_con0, mask, val); } static void ddr_set_en_bst_odt(struct rk3288_grf *grf, uint channel, bool enable, bool enable_bst, bool enable_odt) { uint mask; bool disable_bst = !enable_bst; mask = channel ? (1 << LPDDR3_EN1_SHIFT | 1 << UPCTL1_BST_DIABLE_SHIFT | 1 << UPCTL1_LPDDR3_ODT_EN_SHIFT) : (1 << LPDDR3_EN0_SHIFT | 1 << UPCTL0_BST_DIABLE_SHIFT | 1 << UPCTL0_LPDDR3_ODT_EN_SHIFT); rk_clrsetreg(&grf->soc_con2, mask, enable << (channel ? LPDDR3_EN1_SHIFT : LPDDR3_EN0_SHIFT) | disable_bst << (channel ? UPCTL1_BST_DIABLE_SHIFT : UPCTL0_BST_DIABLE_SHIFT) | enable_odt << (channel ? UPCTL1_LPDDR3_ODT_EN_SHIFT : UPCTL0_LPDDR3_ODT_EN_SHIFT)); } static void pctl_cfg(int channel, struct rk3288_ddr_pctl *pctl, struct rk3288_sdram_params *sdram_params, struct rk3288_grf *grf) { unsigned int burstlen; burstlen = (sdram_params->base.noc_timing >> 18) & 0x7; copy_to_reg(&pctl->togcnt1u, &sdram_params->pctl_timing.togcnt1u, sizeof(sdram_params->pctl_timing)); switch (sdram_params->base.dramtype) { case LPDDR3: writel(sdram_params->pctl_timing.tcl - 1, &pctl->dfitrddataen); writel(sdram_params->pctl_timing.tcwl, &pctl->dfitphywrlat); burstlen >>= 1; writel(LPDDR2_S4 | 0 << MDDR_LPDDR2_CLK_STOP_IDLE_SHIFT | LPDDR2_EN | burstlen << BURSTLENGTH_SHIFT | (6 - 4) << TFAW_SHIFT | PD_EXIT_FAST | 1 << PD_TYPE_SHIFT | 0 << PD_IDLE_SHIFT, &pctl->mcfg); ddr_set_ddr3_mode(grf, channel, false); ddr_set_enable(grf, channel, true); ddr_set_en_bst_odt(grf, channel, true, false, sdram_params->base.odt); break; case DDR3: if (sdram_params->phy_timing.mr[1] & DDR3_DLL_DISABLE) { writel(sdram_params->pctl_timing.tcl - 3, &pctl->dfitrddataen); } else { writel(sdram_params->pctl_timing.tcl - 2, &pctl->dfitrddataen); } writel(sdram_params->pctl_timing.tcwl - 1, &pctl->dfitphywrlat); writel(0 << MDDR_LPDDR2_CLK_STOP_IDLE_SHIFT | DDR3_EN | DDR2_DDR3_BL_8 | (6 - 4) << TFAW_SHIFT | PD_EXIT_SLOW | 1 << PD_TYPE_SHIFT | 0 << PD_IDLE_SHIFT, &pctl->mcfg); ddr_set_ddr3_mode(grf, channel, true); ddr_set_enable(grf, channel, true); ddr_set_en_bst_odt(grf, channel, false, true, false); break; } setbits_le32(&pctl->scfg, 1); } static void phy_cfg(const struct chan_info *chan, int channel, struct rk3288_sdram_params *sdram_params) { struct rk3288_ddr_publ *publ = chan->publ; struct rk3288_msch *msch = chan->msch; uint ddr_freq_mhz = sdram_params->base.ddr_freq / 1000000; u32 dinit2, tmp; int i; dinit2 = DIV_ROUND_UP(ddr_freq_mhz * 200000, 1000); /* DDR PHY Timing */ copy_to_reg(&publ->dtpr[0], &sdram_params->phy_timing.dtpr0, sizeof(sdram_params->phy_timing)); writel(sdram_params->base.noc_timing, &msch->ddrtiming); writel(0x3f, &msch->readlatency); writel(sdram_params->base.noc_activate, &msch->activate); writel(2 << BUSWRTORD_SHIFT | 2 << BUSRDTOWR_SHIFT | 1 << BUSRDTORD_SHIFT, &msch->devtodev); writel(DIV_ROUND_UP(ddr_freq_mhz * 5120, 1000) << PRT_DLLLOCK_SHIFT | DIV_ROUND_UP(ddr_freq_mhz * 50, 1000) << PRT_DLLSRST_SHIFT | 8 << PRT_ITMSRST_SHIFT, &publ->ptr[0]); writel(DIV_ROUND_UP(ddr_freq_mhz * 500000, 1000) << PRT_DINIT0_SHIFT | DIV_ROUND_UP(ddr_freq_mhz * 400, 1000) << PRT_DINIT1_SHIFT, &publ->ptr[1]); writel(min(dinit2, 0x1ffffU) << PRT_DINIT2_SHIFT | DIV_ROUND_UP(ddr_freq_mhz * 1000, 1000) << PRT_DINIT3_SHIFT, &publ->ptr[2]); switch (sdram_params->base.dramtype) { case LPDDR3: clrsetbits_le32(&publ->pgcr, 0x1F, 0 << PGCR_DFTLMT_SHIFT | 0 << PGCR_DFTCMP_SHIFT | 1 << PGCR_DQSCFG_SHIFT | 0 << PGCR_ITMDMD_SHIFT); /* DDRMODE select LPDDR3 */ clrsetbits_le32(&publ->dcr, DDRMD_MASK << DDRMD_SHIFT, DDRMD_LPDDR2_LPDDR3 << DDRMD_SHIFT); clrsetbits_le32(&publ->dxccr, DQSNRES_MASK << DQSNRES_SHIFT | DQSRES_MASK << DQSRES_SHIFT, 4 << DQSRES_SHIFT | 0xc << DQSNRES_SHIFT); tmp = readl(&publ->dtpr[1]); tmp = ((tmp >> TDQSCKMAX_SHIFT) & TDQSCKMAX_MASK) - ((tmp >> TDQSCK_SHIFT) & TDQSCK_MASK); clrsetbits_le32(&publ->dsgcr, DQSGE_MASK << DQSGE_SHIFT | DQSGX_MASK << DQSGX_SHIFT, tmp << DQSGE_SHIFT | tmp << DQSGX_SHIFT); break; case DDR3: clrbits_le32(&publ->pgcr, 0x1f); clrsetbits_le32(&publ->dcr, DDRMD_MASK << DDRMD_SHIFT, DDRMD_DDR3 << DDRMD_SHIFT); break; } if (sdram_params->base.odt) { /*dynamic RTT enable */ for (i = 0; i < 4; i++) setbits_le32(&publ->datx8[i].dxgcr, DQSRTT | DQRTT); } else { /*dynamic RTT disable */ for (i = 0; i < 4; i++) clrbits_le32(&publ->datx8[i].dxgcr, DQSRTT | DQRTT); } } static void phy_init(struct rk3288_ddr_publ *publ) { setbits_le32(&publ->pir, PIR_INIT | PIR_DLLSRST | PIR_DLLLOCK | PIR_ZCAL | PIR_ITMSRST | PIR_CLRSR); udelay(1); while ((readl(&publ->pgsr) & (PGSR_IDONE | PGSR_DLDONE | PGSR_ZCDONE)) != (PGSR_IDONE | PGSR_DLDONE | PGSR_ZCDONE)) ; } static void send_command(struct rk3288_ddr_pctl *pctl, u32 rank, u32 cmd, u32 arg) { writel((START_CMD | (rank << 20) | arg | cmd), &pctl->mcmd); udelay(1); while (readl(&pctl->mcmd) & START_CMD) ; } static inline void send_command_op(struct rk3288_ddr_pctl *pctl, u32 rank, u32 cmd, u32 ma, u32 op) { send_command(pctl, rank, cmd, (ma & LPDDR2_MA_MASK) << LPDDR2_MA_SHIFT | (op & LPDDR2_OP_MASK) << LPDDR2_OP_SHIFT); } static void memory_init(struct rk3288_ddr_publ *publ, u32 dramtype) { setbits_le32(&publ->pir, (PIR_INIT | PIR_DRAMINIT | PIR_LOCKBYP | PIR_ZCALBYP | PIR_CLRSR | PIR_ICPC | (dramtype == DDR3 ? PIR_DRAMRST : 0))); udelay(1); while ((readl(&publ->pgsr) & (PGSR_IDONE | PGSR_DLDONE)) != (PGSR_IDONE | PGSR_DLDONE)) ; } static void move_to_config_state(struct rk3288_ddr_publ *publ, struct rk3288_ddr_pctl *pctl) { unsigned int state; while (1) { state = readl(&pctl->stat) & PCTL_STAT_MSK; switch (state) { case LOW_POWER: writel(WAKEUP_STATE, &pctl->sctl); while ((readl(&pctl->stat) & PCTL_STAT_MSK) != ACCESS) ; /* wait DLL lock */ while ((readl(&publ->pgsr) & PGSR_DLDONE) != PGSR_DLDONE) ; /* * if at low power state,need wakeup first, * and then enter the config * so here no break. */ case ACCESS: /* no break */ case INIT_MEM: writel(CFG_STATE, &pctl->sctl); while ((readl(&pctl->stat) & PCTL_STAT_MSK) != CONFIG) ; break; case CONFIG: return; default: break; } } } static void set_bandwidth_ratio(const struct chan_info *chan, int channel, u32 n, struct rk3288_grf *grf) { struct rk3288_ddr_pctl *pctl = chan->pctl; struct rk3288_ddr_publ *publ = chan->publ; struct rk3288_msch *msch = chan->msch; if (n == 1) { setbits_le32(&pctl->ppcfg, 1); rk_setreg(&grf->soc_con0, 1 << (8 + channel)); setbits_le32(&msch->ddrtiming, 1 << 31); /* Data Byte disable*/ clrbits_le32(&publ->datx8[2].dxgcr, 1); clrbits_le32(&publ->datx8[3].dxgcr, 1); /* disable DLL */ setbits_le32(&publ->datx8[2].dxdllcr, DXDLLCR_DLLDIS); setbits_le32(&publ->datx8[3].dxdllcr, DXDLLCR_DLLDIS); } else { clrbits_le32(&pctl->ppcfg, 1); rk_clrreg(&grf->soc_con0, 1 << (8 + channel)); clrbits_le32(&msch->ddrtiming, 1 << 31); /* Data Byte enable*/ setbits_le32(&publ->datx8[2].dxgcr, 1); setbits_le32(&publ->datx8[3].dxgcr, 1); /* enable DLL */ clrbits_le32(&publ->datx8[2].dxdllcr, DXDLLCR_DLLDIS); clrbits_le32(&publ->datx8[3].dxdllcr, DXDLLCR_DLLDIS); /* reset DLL */ clrbits_le32(&publ->datx8[2].dxdllcr, DXDLLCR_DLLSRST); clrbits_le32(&publ->datx8[3].dxdllcr, DXDLLCR_DLLSRST); udelay(10); setbits_le32(&publ->datx8[2].dxdllcr, DXDLLCR_DLLSRST); setbits_le32(&publ->datx8[3].dxdllcr, DXDLLCR_DLLSRST); } setbits_le32(&pctl->dfistcfg0, 1 << 2); } static int data_training(const struct chan_info *chan, int channel, struct rk3288_sdram_params *sdram_params) { unsigned int j; int ret = 0; u32 rank; int i; u32 step[2] = { PIR_QSTRN, PIR_RVTRN }; struct rk3288_ddr_publ *publ = chan->publ; struct rk3288_ddr_pctl *pctl = chan->pctl; /* disable auto refresh */ writel(0, &pctl->trefi); if (sdram_params->base.dramtype != LPDDR3) setbits_le32(&publ->pgcr, 1 << PGCR_DQSCFG_SHIFT); rank = sdram_params->ch[channel].rank | 1; for (j = 0; j < ARRAY_SIZE(step); j++) { /* * trigger QSTRN and RVTRN * clear DTDONE status */ setbits_le32(&publ->pir, PIR_CLRSR); /* trigger DTT */ setbits_le32(&publ->pir, PIR_INIT | step[j] | PIR_LOCKBYP | PIR_ZCALBYP | PIR_CLRSR); udelay(1); /* wait echo byte DTDONE */ while ((readl(&publ->datx8[0].dxgsr[0]) & rank) != rank) ; while ((readl(&publ->datx8[1].dxgsr[0]) & rank) != rank) ; if (!(readl(&pctl->ppcfg) & 1)) { while ((readl(&publ->datx8[2].dxgsr[0]) & rank) != rank) ; while ((readl(&publ->datx8[3].dxgsr[0]) & rank) != rank) ; } if (readl(&publ->pgsr) & (PGSR_DTERR | PGSR_RVERR | PGSR_RVEIRR)) { ret = -1; break; } } /* send some auto refresh to complement the lost while DTT */ for (i = 0; i < (rank > 1 ? 8 : 4); i++) send_command(pctl, rank, REF_CMD, 0); if (sdram_params->base.dramtype != LPDDR3) clrbits_le32(&publ->pgcr, 1 << PGCR_DQSCFG_SHIFT); /* resume auto refresh */ writel(sdram_params->pctl_timing.trefi, &pctl->trefi); return ret; } static void move_to_access_state(const struct chan_info *chan) { struct rk3288_ddr_publ *publ = chan->publ; struct rk3288_ddr_pctl *pctl = chan->pctl; unsigned int state; while (1) { state = readl(&pctl->stat) & PCTL_STAT_MSK; switch (state) { case LOW_POWER: if (((readl(&pctl->stat) >> LP_TRIG_SHIFT) & LP_TRIG_MASK) == 1) return; writel(WAKEUP_STATE, &pctl->sctl); while ((readl(&pctl->stat) & PCTL_STAT_MSK) != ACCESS) ; /* wait DLL lock */ while ((readl(&publ->pgsr) & PGSR_DLDONE) != PGSR_DLDONE) ; break; case INIT_MEM: writel(CFG_STATE, &pctl->sctl); while ((readl(&pctl->stat) & PCTL_STAT_MSK) != CONFIG) ; case CONFIG: writel(GO_STATE, &pctl->sctl); while ((readl(&pctl->stat) & PCTL_STAT_MSK) == CONFIG) ; break; case ACCESS: return; default: break; } } } static void dram_cfg_rbc(const struct chan_info *chan, u32 chnum, struct rk3288_sdram_params *sdram_params) { struct rk3288_ddr_publ *publ = chan->publ; if (sdram_params->ch[chnum].bk == 3) clrsetbits_le32(&publ->dcr, PDQ_MASK << PDQ_SHIFT, 1 << PDQ_SHIFT); else clrbits_le32(&publ->dcr, PDQ_MASK << PDQ_SHIFT); writel(sdram_params->base.ddrconfig, &chan->msch->ddrconf); } static void dram_all_config(const struct dram_info *dram, struct rk3288_sdram_params *sdram_params) { unsigned int chan; u32 sys_reg = 0; sys_reg |= sdram_params->base.dramtype << SYS_REG_DDRTYPE_SHIFT; sys_reg |= (sdram_params->num_channels - 1) << SYS_REG_NUM_CH_SHIFT; for (chan = 0; chan < sdram_params->num_channels; chan++) { const struct rk3288_sdram_channel *info = &sdram_params->ch[chan]; sys_reg |= info->row_3_4 << SYS_REG_ROW_3_4_SHIFT(chan); sys_reg |= 1 << SYS_REG_CHINFO_SHIFT(chan); sys_reg |= (info->rank - 1) << SYS_REG_RANK_SHIFT(chan); sys_reg |= (info->col - 9) << SYS_REG_COL_SHIFT(chan); sys_reg |= info->bk == 3 ? 0 : 1 << SYS_REG_BK_SHIFT(chan); sys_reg |= (info->cs0_row - 13) << SYS_REG_CS0_ROW_SHIFT(chan); sys_reg |= (info->cs1_row - 13) << SYS_REG_CS1_ROW_SHIFT(chan); sys_reg |= (2 >> info->bw) << SYS_REG_BW_SHIFT(chan); sys_reg |= (2 >> info->dbw) << SYS_REG_DBW_SHIFT(chan); dram_cfg_rbc(&dram->chan[chan], chan, sdram_params); } writel(sys_reg, &dram->pmu->sys_reg[2]); rk_clrsetreg(&dram->sgrf->soc_con2, 0x1f, sdram_params->base.stride); } static int sdram_rank_bw_detect(struct dram_info *dram, int channel, struct rk3288_sdram_params *sdram_params) { int reg; int need_trainig = 0; const struct chan_info *chan = &dram->chan[channel]; struct rk3288_ddr_publ *publ = chan->publ; if (data_training(chan, channel, sdram_params) < 0) { reg = readl(&publ->datx8[0].dxgsr[0]); /* Check the result for rank 0 */ if ((channel == 0) && (reg & DQS_GATE_TRAINING_ERROR_RANK0)) { debug("data training fail!\n"); return -EIO; } else if ((channel == 1) && (reg & DQS_GATE_TRAINING_ERROR_RANK0)) { sdram_params->num_channels = 1; } /* Check the result for rank 1 */ if (reg & DQS_GATE_TRAINING_ERROR_RANK1) { sdram_params->ch[channel].rank = 1; clrsetbits_le32(&publ->pgcr, 0xF << 18, sdram_params->ch[channel].rank << 18); need_trainig = 1; } reg = readl(&publ->datx8[2].dxgsr[0]); if (reg & (1 << 4)) { sdram_params->ch[channel].bw = 1; set_bandwidth_ratio(chan, channel, sdram_params->ch[channel].bw, dram->grf); need_trainig = 1; } } /* Assume the Die bit width are the same with the chip bit width */ sdram_params->ch[channel].dbw = sdram_params->ch[channel].bw; if (need_trainig && (data_training(chan, channel, sdram_params) < 0)) { if (sdram_params->base.dramtype == LPDDR3) { ddr_phy_ctl_reset(dram->cru, channel, 1); udelay(10); ddr_phy_ctl_reset(dram->cru, channel, 0); udelay(10); } debug("2nd data training failed!"); return -EIO; } return 0; } static int sdram_col_row_detect(struct dram_info *dram, int channel, struct rk3288_sdram_params *sdram_params) { int row, col; unsigned int addr; const struct chan_info *chan = &dram->chan[channel]; struct rk3288_ddr_pctl *pctl = chan->pctl; struct rk3288_ddr_publ *publ = chan->publ; int ret = 0; /* Detect col */ for (col = 11; col >= 9; col--) { writel(0, CONFIG_SYS_SDRAM_BASE); addr = CONFIG_SYS_SDRAM_BASE + (1 << (col + sdram_params->ch[channel].bw - 1)); writel(TEST_PATTEN, addr); if ((readl(addr) == TEST_PATTEN) && (readl(CONFIG_SYS_SDRAM_BASE) == 0)) break; } if (col == 8) { printf("Col detect error\n"); ret = -EINVAL; goto out; } else { sdram_params->ch[channel].col = col; } move_to_config_state(publ, pctl); writel(4, &chan->msch->ddrconf); move_to_access_state(chan); /* Detect row*/ for (row = 16; row >= 12; row--) { writel(0, CONFIG_SYS_SDRAM_BASE); addr = CONFIG_SYS_SDRAM_BASE + (1 << (row + 15 - 1)); writel(TEST_PATTEN, addr); if ((readl(addr) == TEST_PATTEN) && (readl(CONFIG_SYS_SDRAM_BASE) == 0)) break; } if (row == 11) { printf("Row detect error\n"); ret = -EINVAL; } else { sdram_params->ch[channel].cs1_row = row; sdram_params->ch[channel].row_3_4 = 0; debug("chn %d col %d, row %d\n", channel, col, row); sdram_params->ch[channel].cs0_row = row; } out: return ret; } static int sdram_get_niu_config(struct rk3288_sdram_params *sdram_params) { int i, tmp, size, ret = 0; tmp = sdram_params->ch[0].col - 9; tmp -= (sdram_params->ch[0].bw == 2) ? 0 : 1; tmp |= ((sdram_params->ch[0].cs0_row - 12) << 4); size = sizeof(ddrconf_table)/sizeof(ddrconf_table[0]); for (i = 0; i < size; i++) if (tmp == ddrconf_table[i]) break; if (i >= size) { printf("niu config not found\n"); ret = -EINVAL; } else { sdram_params->base.ddrconfig = i; } return ret; } static int sdram_get_stride(struct rk3288_sdram_params *sdram_params) { int stride = -1; int ret = 0; long cap = sdram_params->num_channels * (1u << (sdram_params->ch[0].cs0_row + sdram_params->ch[0].col + (sdram_params->ch[0].rank - 1) + sdram_params->ch[0].bw + 3 - 20)); switch (cap) { case 512: stride = 0; break; case 1024: stride = 5; break; case 2048: stride = 9; break; case 4096: stride = 0xd; break; default: stride = -1; printf("could not find correct stride, cap error!\n"); ret = -EINVAL; break; } sdram_params->base.stride = stride; return ret; } static int sdram_init(struct dram_info *dram, struct rk3288_sdram_params *sdram_params) { int channel; int zqcr; int ret; debug("%s start\n", __func__); if ((sdram_params->base.dramtype == DDR3 && sdram_params->base.ddr_freq > 800000000) || (sdram_params->base.dramtype == LPDDR3 && sdram_params->base.ddr_freq > 533000000)) { debug("SDRAM frequency is too high!"); return -E2BIG; } debug("ddr clk dpll\n"); ret = clk_set_rate(&dram->ddr_clk, sdram_params->base.ddr_freq); debug("ret=%d\n", ret); if (ret) { debug("Could not set DDR clock\n"); return ret; } for (channel = 0; channel < 2; channel++) { const struct chan_info *chan = &dram->chan[channel]; struct rk3288_ddr_pctl *pctl = chan->pctl; struct rk3288_ddr_publ *publ = chan->publ; /* map all the 4GB space to the current channel */ if (channel) rk_clrsetreg(&dram->sgrf->soc_con2, 0x1f, 0x17); else rk_clrsetreg(&dram->sgrf->soc_con2, 0x1f, 0x1a); phy_pctrl_reset(dram->cru, publ, channel); phy_dll_bypass_set(publ, sdram_params->base.ddr_freq); dfi_cfg(pctl, sdram_params->base.dramtype); pctl_cfg(channel, pctl, sdram_params, dram->grf); phy_cfg(chan, channel, sdram_params); phy_init(publ); writel(POWER_UP_START, &pctl->powctl); while (!(readl(&pctl->powstat) & POWER_UP_DONE)) ; memory_init(publ, sdram_params->base.dramtype); move_to_config_state(publ, pctl); if (sdram_params->base.dramtype == LPDDR3) { send_command(pctl, 3, DESELECT_CMD, 0); udelay(1); send_command(pctl, 3, PREA_CMD, 0); udelay(1); send_command_op(pctl, 3, MRS_CMD, 63, 0xfc); udelay(1); send_command_op(pctl, 3, MRS_CMD, 1, sdram_params->phy_timing.mr[1]); udelay(1); send_command_op(pctl, 3, MRS_CMD, 2, sdram_params->phy_timing.mr[2]); udelay(1); send_command_op(pctl, 3, MRS_CMD, 3, sdram_params->phy_timing.mr[3]); udelay(1); } /* Using 32bit bus width for detect */ sdram_params->ch[channel].bw = 2; set_bandwidth_ratio(chan, channel, sdram_params->ch[channel].bw, dram->grf); /* * set cs, using n=3 for detect * CS0, n=1 * CS1, n=2 * CS0 & CS1, n = 3 */ sdram_params->ch[channel].rank = 2, clrsetbits_le32(&publ->pgcr, 0xF << 18, (sdram_params->ch[channel].rank | 1) << 18); /* DS=40ohm,ODT=155ohm */ zqcr = 1 << ZDEN_SHIFT | 2 << PU_ONDIE_SHIFT | 2 << PD_ONDIE_SHIFT | 0x19 << PU_OUTPUT_SHIFT | 0x19 << PD_OUTPUT_SHIFT; writel(zqcr, &publ->zq1cr[0]); writel(zqcr, &publ->zq0cr[0]); if (sdram_params->base.dramtype == LPDDR3) { /* LPDDR2/LPDDR3 need to wait DAI complete, max 10us */ udelay(10); send_command_op(pctl, sdram_params->ch[channel].rank | 1, MRS_CMD, 11, sdram_params->base.odt ? 3 : 0); if (channel == 0) { writel(0, &pctl->mrrcfg0); send_command_op(pctl, 1, MRR_CMD, 8, 0); /* S8 */ if ((readl(&pctl->mrrstat0) & 0x3) != 3) { debug("failed!"); return -EREMOTEIO; } } } /* Detect the rank and bit-width with data-training */ sdram_rank_bw_detect(dram, channel, sdram_params); if (sdram_params->base.dramtype == LPDDR3) { u32 i; writel(0, &pctl->mrrcfg0); for (i = 0; i < 17; i++) send_command_op(pctl, 1, MRR_CMD, i, 0); } writel(15, &chan->msch->ddrconf); move_to_access_state(chan); /* DDR3 and LPDDR3 are always 8 bank, no need detect */ sdram_params->ch[channel].bk = 3; /* Detect Col and Row number*/ ret = sdram_col_row_detect(dram, channel, sdram_params); if (ret) goto error; } /* Find NIU DDR configuration */ ret = sdram_get_niu_config(sdram_params); if (ret) goto error; /* Find stride setting */ ret = sdram_get_stride(sdram_params); if (ret) goto error; dram_all_config(dram, sdram_params); debug("%s done\n", __func__); return 0; error: printf("DRAM init failed!\n"); hang(); } # ifdef CONFIG_ROCKCHIP_FAST_SPL static int veyron_init(struct dram_info *priv) { struct udevice *pmic; int ret; ret = uclass_first_device_err(UCLASS_PMIC, &pmic); if (ret) return ret; /* Slowly raise to max CPU voltage to prevent overshoot */ ret = rk8xx_spl_configure_buck(pmic, 1, 1200000); if (ret) return ret; udelay(175);/* Must wait for voltage to stabilize, 2mV/us */ ret = rk8xx_spl_configure_buck(pmic, 1, 1400000); if (ret) return ret; udelay(100);/* Must wait for voltage to stabilize, 2mV/us */ rk3288_clk_configure_cpu(priv->cru, priv->grf); return 0; } # endif static int setup_sdram(struct udevice *dev) { struct dram_info *priv = dev_get_priv(dev); struct rk3288_sdram_params *params = dev_get_platdata(dev); # ifdef CONFIG_ROCKCHIP_FAST_SPL if (priv->is_veyron) { int ret; ret = veyron_init(priv); if (ret) return ret; } # endif return sdram_init(priv, params); } static int rk3288_dmc_ofdata_to_platdata(struct udevice *dev) { #if !CONFIG_IS_ENABLED(OF_PLATDATA) struct rk3288_sdram_params *params = dev_get_platdata(dev); int ret; /* Rk3288 supports dual-channel, set default channel num to 2 */ params->num_channels = 2; ret = dev_read_u32_array(dev, "rockchip,pctl-timing", (u32 *)¶ms->pctl_timing, sizeof(params->pctl_timing) / sizeof(u32)); if (ret) { debug("%s: Cannot read rockchip,pctl-timing\n", __func__); return -EINVAL; } ret = dev_read_u32_array(dev, "rockchip,phy-timing", (u32 *)¶ms->phy_timing, sizeof(params->phy_timing) / sizeof(u32)); if (ret) { debug("%s: Cannot read rockchip,phy-timing\n", __func__); return -EINVAL; } ret = dev_read_u32_array(dev, "rockchip,sdram-params", (u32 *)¶ms->base, sizeof(params->base) / sizeof(u32)); if (ret) { debug("%s: Cannot read rockchip,sdram-params\n", __func__); return -EINVAL; } #ifdef CONFIG_ROCKCHIP_FAST_SPL struct dram_info *priv = dev_get_priv(dev); priv->is_veyron = !fdt_node_check_compatible(blob, 0, "google,veyron"); #endif ret = regmap_init_mem(dev_ofnode(dev), ¶ms->map); if (ret) return ret; #endif return 0; } #endif /* CONFIG_SPL_BUILD */ #if CONFIG_IS_ENABLED(OF_PLATDATA) static int conv_of_platdata(struct udevice *dev) { struct rk3288_sdram_params *plat = dev_get_platdata(dev); struct dtd_rockchip_rk3288_dmc *of_plat = &plat->of_plat; int ret; memcpy(&plat->pctl_timing, of_plat->rockchip_pctl_timing, sizeof(plat->pctl_timing)); memcpy(&plat->phy_timing, of_plat->rockchip_phy_timing, sizeof(plat->phy_timing)); memcpy(&plat->base, of_plat->rockchip_sdram_params, sizeof(plat->base)); /* Rk3288 supports dual-channel, set default channel num to 2 */ plat->num_channels = 2; ret = regmap_init_mem_platdata(dev, of_plat->reg, ARRAY_SIZE(of_plat->reg) / 2, &plat->map); if (ret) return ret; return 0; } #endif static int rk3288_dmc_probe(struct udevice *dev) { #if defined(CONFIG_TPL_BUILD) || \ (!defined(CONFIG_TPL) && defined(CONFIG_SPL_BUILD)) struct rk3288_sdram_params *plat = dev_get_platdata(dev); struct udevice *dev_clk; struct regmap *map; int ret; #endif struct dram_info *priv = dev_get_priv(dev); priv->pmu = syscon_get_first_range(ROCKCHIP_SYSCON_PMU); #if defined(CONFIG_TPL_BUILD) || \ (!defined(CONFIG_TPL) && defined(CONFIG_SPL_BUILD)) #if CONFIG_IS_ENABLED(OF_PLATDATA) ret = conv_of_platdata(dev); if (ret) return ret; #endif map = syscon_get_regmap_by_driver_data(ROCKCHIP_SYSCON_NOC); if (IS_ERR(map)) return PTR_ERR(map); priv->chan[0].msch = regmap_get_range(map, 0); priv->chan[1].msch = (struct rk3288_msch *) (regmap_get_range(map, 0) + 0x80); priv->grf = syscon_get_first_range(ROCKCHIP_SYSCON_GRF); priv->sgrf = syscon_get_first_range(ROCKCHIP_SYSCON_SGRF); priv->chan[0].pctl = regmap_get_range(plat->map, 0); priv->chan[0].publ = regmap_get_range(plat->map, 1); priv->chan[1].pctl = regmap_get_range(plat->map, 2); priv->chan[1].publ = regmap_get_range(plat->map, 3); ret = rockchip_get_clk(&dev_clk); if (ret) return ret; priv->ddr_clk.id = CLK_DDR; ret = clk_request(dev_clk, &priv->ddr_clk); if (ret) return ret; priv->cru = rockchip_get_cru(); if (IS_ERR(priv->cru)) return PTR_ERR(priv->cru); ret = setup_sdram(dev); if (ret) return ret; #else priv->info.base = CONFIG_SYS_SDRAM_BASE; priv->info.size = rockchip_sdram_size( (phys_addr_t)&priv->pmu->sys_reg[2]); #endif return 0; } static int rk3288_dmc_get_info(struct udevice *dev, struct ram_info *info) { struct dram_info *priv = dev_get_priv(dev); *info = priv->info; return 0; } static struct ram_ops rk3288_dmc_ops = { .get_info = rk3288_dmc_get_info, }; static const struct udevice_id rk3288_dmc_ids[] = { { .compatible = "rockchip,rk3288-dmc" }, { } }; U_BOOT_DRIVER(dmc_rk3288) = { .name = "rockchip_rk3288_dmc", .id = UCLASS_RAM, .of_match = rk3288_dmc_ids, .ops = &rk3288_dmc_ops, #if defined(CONFIG_TPL_BUILD) || \ (!defined(CONFIG_TPL) && defined(CONFIG_SPL_BUILD)) .ofdata_to_platdata = rk3288_dmc_ofdata_to_platdata, #endif .probe = rk3288_dmc_probe, .priv_auto_alloc_size = sizeof(struct dram_info), #if defined(CONFIG_TPL_BUILD) || \ (!defined(CONFIG_TPL) && defined(CONFIG_SPL_BUILD)) .platdata_auto_alloc_size = sizeof(struct rk3288_sdram_params), #endif };