/* * Qualcomm UART driver * * (C) Copyright 2015 Mateusz Kulikowski <mateusz.kulikowski@gmail.com> * * UART will work in Data Mover mode. * Based on Linux driver. * * SPDX-License-Identifier: GPL-2.0+ */ #include <common.h> #include <clk.h> #include <dm.h> #include <errno.h> #include <serial.h> #include <watchdog.h> #include <asm/io.h> #include <linux/compiler.h> /* Serial registers - this driver works in uartdm mode*/ #define UARTDM_DMRX 0x34 /* Max RX transfer length */ #define UARTDM_NCF_TX 0x40 /* Number of chars to TX */ #define UARTDM_RXFS 0x50 /* RX channel status register */ #define UARTDM_RXFS_BUF_SHIFT 0x7 /* Number of bytes in the packing buffer */ #define UARTDM_RXFS_BUF_MASK 0x7 #define UARTDM_SR 0xA4 /* Status register */ #define UARTDM_SR_RX_READY (1 << 0) /* Word is the receiver FIFO */ #define UARTDM_SR_TX_EMPTY (1 << 3) /* Transmitter underrun */ #define UARTDM_SR_UART_OVERRUN (1 << 4) /* Receive overrun */ #define UARTDM_CR 0xA8 /* Command register */ #define UARTDM_CR_CMD_RESET_ERR (3 << 4) /* Clear overrun error */ #define UARTDM_CR_CMD_RESET_STALE_INT (8 << 4) /* Clears stale irq */ #define UARTDM_CR_CMD_RESET_TX_READY (3 << 8) /* Clears TX Ready irq*/ #define UARTDM_CR_CMD_FORCE_STALE (4 << 8) /* Causes stale event */ #define UARTDM_CR_CMD_STALE_EVENT_DISABLE (6 << 8) /* Disable stale event */ #define UARTDM_IMR 0xB0 /* Interrupt mask register */ #define UARTDM_ISR 0xB4 /* Interrupt status register */ #define UARTDM_ISR_TX_READY 0x80 /* TX FIFO empty */ #define UARTDM_TF 0x100 /* UART Transmit FIFO register */ #define UARTDM_RF 0x140 /* UART Receive FIFO register */ DECLARE_GLOBAL_DATA_PTR; struct msm_serial_data { phys_addr_t base; unsigned chars_cnt; /* number of buffered chars */ uint32_t chars_buf; /* buffered chars */ }; static int msm_serial_fetch(struct udevice *dev) { struct msm_serial_data *priv = dev_get_priv(dev); unsigned sr; if (priv->chars_cnt) return priv->chars_cnt; /* Clear error in case of buffer overrun */ if (readl(priv->base + UARTDM_SR) & UARTDM_SR_UART_OVERRUN) writel(UARTDM_CR_CMD_RESET_ERR, priv->base + UARTDM_CR); /* We need to fetch new character */ sr = readl(priv->base + UARTDM_SR); if (sr & UARTDM_SR_RX_READY) { /* There are at least 4 bytes in fifo */ priv->chars_buf = readl(priv->base + UARTDM_RF); priv->chars_cnt = 4; } else { /* Check if there is anything in fifo */ priv->chars_cnt = readl(priv->base + UARTDM_RXFS); /* Extract number of characters in UART packing buffer*/ priv->chars_cnt = (priv->chars_cnt >> UARTDM_RXFS_BUF_SHIFT) & UARTDM_RXFS_BUF_MASK; if (!priv->chars_cnt) return 0; /* There is at least one charcter, move it to fifo */ writel(UARTDM_CR_CMD_FORCE_STALE, priv->base + UARTDM_CR); priv->chars_buf = readl(priv->base + UARTDM_RF); writel(UARTDM_CR_CMD_RESET_STALE_INT, priv->base + UARTDM_CR); writel(0x7, priv->base + UARTDM_DMRX); } return priv->chars_cnt; } static int msm_serial_getc(struct udevice *dev) { struct msm_serial_data *priv = dev_get_priv(dev); char c; if (!msm_serial_fetch(dev)) return -EAGAIN; c = priv->chars_buf & 0xFF; priv->chars_buf >>= 8; priv->chars_cnt--; return c; } static int msm_serial_putc(struct udevice *dev, const char ch) { struct msm_serial_data *priv = dev_get_priv(dev); if (!(readl(priv->base + UARTDM_SR) & UARTDM_SR_TX_EMPTY) && !(readl(priv->base + UARTDM_ISR) & UARTDM_ISR_TX_READY)) return -EAGAIN; writel(UARTDM_CR_CMD_RESET_TX_READY, priv->base + UARTDM_CR); writel(1, priv->base + UARTDM_NCF_TX); writel(ch, priv->base + UARTDM_TF); return 0; } static int msm_serial_pending(struct udevice *dev, bool input) { if (input) { if (msm_serial_fetch(dev)) return 1; } return 0; } static const struct dm_serial_ops msm_serial_ops = { .putc = msm_serial_putc, .pending = msm_serial_pending, .getc = msm_serial_getc, }; static int msm_uart_clk_init(struct udevice *dev) { uint clk_rate = fdtdec_get_uint(gd->fdt_blob, dev->of_offset, "clock-frequency", 115200); uint clkd[2]; /* clk_id and clk_no */ int clk_offset; struct udevice *clk; int ret; ret = fdtdec_get_int_array(gd->fdt_blob, dev->of_offset, "clock", clkd, 2); if (ret) return ret; clk_offset = fdt_node_offset_by_phandle(gd->fdt_blob, clkd[0]); if (clk_offset < 0) return clk_offset; ret = uclass_get_device_by_of_offset(UCLASS_CLK, clk_offset, &clk); if (ret) return ret; ret = clk_set_periph_rate(clk, clkd[1], clk_rate); if (ret < 0) return ret; return 0; } static int msm_serial_probe(struct udevice *dev) { struct msm_serial_data *priv = dev_get_priv(dev); msm_uart_clk_init(dev); /* Ignore return value and hope clock was properly initialized by earlier loaders */ if (readl(priv->base + UARTDM_SR) & UARTDM_SR_UART_OVERRUN) writel(UARTDM_CR_CMD_RESET_ERR, priv->base + UARTDM_CR); writel(0, priv->base + UARTDM_IMR); writel(UARTDM_CR_CMD_STALE_EVENT_DISABLE, priv->base + UARTDM_CR); msm_serial_fetch(dev); return 0; } static int msm_serial_ofdata_to_platdata(struct udevice *dev) { struct msm_serial_data *priv = dev_get_priv(dev); priv->base = dev_get_addr(dev); if (priv->base == FDT_ADDR_T_NONE) return -EINVAL; return 0; } static const struct udevice_id msm_serial_ids[] = { { .compatible = "qcom,msm-uartdm-v1.4" }, { } }; U_BOOT_DRIVER(serial_msm) = { .name = "serial_msm", .id = UCLASS_SERIAL, .of_match = msm_serial_ids, .ofdata_to_platdata = msm_serial_ofdata_to_platdata, .priv_auto_alloc_size = sizeof(struct msm_serial_data), .probe = msm_serial_probe, .ops = &msm_serial_ops, };