/* * Copyright (C) 2016, STMicroelectronics - All Rights Reserved * Author(s): Vikas Manocha, <vikas.manocha@st.com> for STMicroelectronics. * * SPDX-License-Identifier: GPL-2.0+ */ #include <common.h> #include <clk.h> #include <dm.h> #include <asm/io.h> #include <serial.h> #include <asm/arch/stm32.h> #include "serial_stm32.h" DECLARE_GLOBAL_DATA_PTR; static int stm32_serial_setbrg(struct udevice *dev, int baudrate) { struct stm32x7_serial_platdata *plat = dev_get_platdata(dev); bool stm32f4 = plat->uart_info->stm32f4; fdt_addr_t base = plat->base; u32 int_div, mantissa, fraction, oversampling; int_div = DIV_ROUND_CLOSEST(plat->clock_rate, baudrate); if (int_div < 16) { oversampling = 8; setbits_le32(base + CR1_OFFSET(stm32f4), USART_CR1_OVER8); } else { oversampling = 16; clrbits_le32(base + CR1_OFFSET(stm32f4), USART_CR1_OVER8); } mantissa = (int_div / oversampling) << USART_BRR_M_SHIFT; fraction = int_div % oversampling; writel(mantissa | fraction, base + BRR_OFFSET(stm32f4)); return 0; } static int stm32_serial_getc(struct udevice *dev) { struct stm32x7_serial_platdata *plat = dev_get_platdata(dev); bool stm32f4 = plat->uart_info->stm32f4; fdt_addr_t base = plat->base; if ((readl(base + ISR_OFFSET(stm32f4)) & USART_SR_FLAG_RXNE) == 0) return -EAGAIN; return readl(base + RDR_OFFSET(stm32f4)); } static int stm32_serial_putc(struct udevice *dev, const char c) { struct stm32x7_serial_platdata *plat = dev_get_platdata(dev); bool stm32f4 = plat->uart_info->stm32f4; fdt_addr_t base = plat->base; if ((readl(base + ISR_OFFSET(stm32f4)) & USART_SR_FLAG_TXE) == 0) return -EAGAIN; writel(c, base + TDR_OFFSET(stm32f4)); return 0; } static int stm32_serial_pending(struct udevice *dev, bool input) { struct stm32x7_serial_platdata *plat = dev_get_platdata(dev); bool stm32f4 = plat->uart_info->stm32f4; fdt_addr_t base = plat->base; if (input) return readl(base + ISR_OFFSET(stm32f4)) & USART_SR_FLAG_RXNE ? 1 : 0; else return readl(base + ISR_OFFSET(stm32f4)) & USART_SR_FLAG_TXE ? 0 : 1; } static int stm32_serial_probe(struct udevice *dev) { struct stm32x7_serial_platdata *plat = dev_get_platdata(dev); struct clk clk; fdt_addr_t base = plat->base; int ret; bool stm32f4; u8 uart_enable_bit; plat->uart_info = (struct stm32_uart_info *)dev_get_driver_data(dev); stm32f4 = plat->uart_info->stm32f4; uart_enable_bit = plat->uart_info->uart_enable_bit; ret = clk_get_by_index(dev, 0, &clk); if (ret < 0) return ret; ret = clk_enable(&clk); if (ret) { dev_err(dev, "failed to enable clock\n"); return ret; } plat->clock_rate = clk_get_rate(&clk); if (plat->clock_rate < 0) { clk_disable(&clk); return plat->clock_rate; }; /* Disable uart-> disable overrun-> enable uart */ clrbits_le32(base + CR1_OFFSET(stm32f4), USART_CR1_RE | USART_CR1_TE | BIT(uart_enable_bit)); if (plat->uart_info->has_overrun_disable) setbits_le32(base + CR3_OFFSET(stm32f4), USART_CR3_OVRDIS); if (plat->uart_info->has_fifo) setbits_le32(base + CR1_OFFSET(stm32f4), USART_CR1_FIFOEN); setbits_le32(base + CR1_OFFSET(stm32f4), USART_CR1_RE | USART_CR1_TE | BIT(uart_enable_bit)); return 0; } static const struct udevice_id stm32_serial_id[] = { { .compatible = "st,stm32-uart", .data = (ulong)&stm32f4_info}, { .compatible = "st,stm32f7-uart", .data = (ulong)&stm32f7_info}, { .compatible = "st,stm32h7-uart", .data = (ulong)&stm32h7_info}, {} }; static int stm32_serial_ofdata_to_platdata(struct udevice *dev) { struct stm32x7_serial_platdata *plat = dev_get_platdata(dev); plat->base = devfdt_get_addr(dev); if (plat->base == FDT_ADDR_T_NONE) return -EINVAL; return 0; } static const struct dm_serial_ops stm32_serial_ops = { .putc = stm32_serial_putc, .pending = stm32_serial_pending, .getc = stm32_serial_getc, .setbrg = stm32_serial_setbrg, }; U_BOOT_DRIVER(serial_stm32) = { .name = "serial_stm32", .id = UCLASS_SERIAL, .of_match = of_match_ptr(stm32_serial_id), .ofdata_to_platdata = of_match_ptr(stm32_serial_ofdata_to_platdata), .platdata_auto_alloc_size = sizeof(struct stm32x7_serial_platdata), .ops = &stm32_serial_ops, .probe = stm32_serial_probe, .flags = DM_FLAG_PRE_RELOC, };