// SPDX-License-Identifier: GPL-2.0+ /* * (C) Copyright 2018 Cisco Systems, Inc. * * Author: Thomas Fitzsimmons <fitzsim@fitzsim.org> */ #include <asm/io.h> #include <command.h> #include <config.h> #include <dm.h> #include <errno.h> #include <fdtdec.h> #include <linux/bitops.h> #include <linux/delay.h> #include <log.h> #include <malloc.h> #include <spi.h> #include <time.h> DECLARE_GLOBAL_DATA_PTR; #define SPBR_MIN 8 #define BITS_PER_WORD 8 #define NUM_TXRAM 32 #define NUM_RXRAM 32 #define NUM_CDRAM 16 /* hif_mspi register structure. */ struct bcmstb_hif_mspi_regs { u32 spcr0_lsb; /* 0x000 */ u32 spcr0_msb; /* 0x004 */ u32 spcr1_lsb; /* 0x008 */ u32 spcr1_msb; /* 0x00c */ u32 newqp; /* 0x010 */ u32 endqp; /* 0x014 */ u32 spcr2; /* 0x018 */ u32 reserved0; /* 0x01c */ u32 mspi_status; /* 0x020 */ u32 cptqp; /* 0x024 */ u32 spcr3; /* 0x028 */ u32 revision; /* 0x02c */ u32 reserved1[4]; /* 0x030 */ u32 txram[NUM_TXRAM]; /* 0x040 */ u32 rxram[NUM_RXRAM]; /* 0x0c0 */ u32 cdram[NUM_CDRAM]; /* 0x140 */ u32 write_lock; /* 0x180 */ }; /* hif_mspi masks. */ #define HIF_MSPI_SPCR2_CONT_AFTER_CMD_MASK 0x00000080 #define HIF_MSPI_SPCR2_SPE_MASK 0x00000040 #define HIF_MSPI_SPCR2_SPIFIE_MASK 0x00000020 #define HIF_MSPI_WRITE_LOCK_WRITE_LOCK_MASK 0x00000001 /* bspi offsets. */ #define BSPI_MAST_N_BOOT_CTRL 0x008 /* bspi_raf is not used in this driver. */ /* hif_spi_intr2 offsets and masks. */ #define HIF_SPI_INTR2_CPU_CLEAR 0x08 #define HIF_SPI_INTR2_CPU_MASK_SET 0x10 #define HIF_SPI_INTR2_CPU_MASK_CLEAR 0x14 #define HIF_SPI_INTR2_CPU_SET_MSPI_DONE_MASK 0x00000020 /* SPI transfer timeout in milliseconds. */ #define HIF_MSPI_WAIT 10 enum bcmstb_base_type { HIF_MSPI, BSPI, HIF_SPI_INTR2, CS_REG, BASE_LAST, }; struct bcmstb_spi_platdata { void *base[4]; }; struct bcmstb_spi_priv { struct bcmstb_hif_mspi_regs *regs; void *bspi; void *hif_spi_intr2; void *cs_reg; int default_cs; int curr_cs; uint tx_slot; uint rx_slot; u8 saved_cmd[NUM_CDRAM]; uint saved_cmd_len; void *saved_din_addr; }; static int bcmstb_spi_ofdata_to_platdata(struct udevice *bus) { struct bcmstb_spi_platdata *plat = dev_get_platdata(bus); const void *fdt = gd->fdt_blob; int node = dev_of_offset(bus); int ret = 0; int i = 0; struct fdt_resource resource = { 0 }; char *names[BASE_LAST] = { "hif_mspi", "bspi", "hif_spi_intr2", "cs_reg" }; const phys_addr_t defaults[BASE_LAST] = { BCMSTB_HIF_MSPI_BASE, BCMSTB_BSPI_BASE, BCMSTB_HIF_SPI_INTR2, BCMSTB_CS_REG }; for (i = 0; i < BASE_LAST; i++) { plat->base[i] = (void *)defaults[i]; ret = fdt_get_named_resource(fdt, node, "reg", "reg-names", names[i], &resource); if (ret) { printf("%s: Assuming BCMSTB SPI %s address 0x0x%p\n", __func__, names[i], (void *)defaults[i]); } else { plat->base[i] = (void *)resource.start; debug("BCMSTB SPI %s address: 0x0x%p\n", names[i], (void *)plat->base[i]); } } return 0; } static void bcmstb_spi_hw_set_parms(struct bcmstb_spi_priv *priv) { writel(SPBR_MIN, &priv->regs->spcr0_lsb); writel(BITS_PER_WORD << 2 | SPI_MODE_3, &priv->regs->spcr0_msb); } static void bcmstb_spi_enable_interrupt(void *base, u32 mask) { void *reg = base + HIF_SPI_INTR2_CPU_MASK_CLEAR; writel(readl(reg) | mask, reg); readl(reg); } static void bcmstb_spi_disable_interrupt(void *base, u32 mask) { void *reg = base + HIF_SPI_INTR2_CPU_MASK_SET; writel(readl(reg) | mask, reg); readl(reg); } static void bcmstb_spi_clear_interrupt(void *base, u32 mask) { void *reg = base + HIF_SPI_INTR2_CPU_CLEAR; writel(readl(reg) | mask, reg); readl(reg); } static int bcmstb_spi_probe(struct udevice *bus) { struct bcmstb_spi_platdata *plat = dev_get_platdata(bus); struct bcmstb_spi_priv *priv = dev_get_priv(bus); priv->regs = plat->base[HIF_MSPI]; priv->bspi = plat->base[BSPI]; priv->hif_spi_intr2 = plat->base[HIF_SPI_INTR2]; priv->cs_reg = plat->base[CS_REG]; priv->default_cs = 0; priv->curr_cs = -1; priv->tx_slot = 0; priv->rx_slot = 0; memset(priv->saved_cmd, 0, NUM_CDRAM); priv->saved_cmd_len = 0; priv->saved_din_addr = NULL; debug("spi_xfer: tx regs: 0x%p\n", &priv->regs->txram[0]); debug("spi_xfer: rx regs: 0x%p\n", &priv->regs->rxram[0]); /* Disable BSPI. */ writel(1, priv->bspi + BSPI_MAST_N_BOOT_CTRL); readl(priv->bspi + BSPI_MAST_N_BOOT_CTRL); /* Set up interrupts. */ bcmstb_spi_disable_interrupt(priv->hif_spi_intr2, 0xffffffff); bcmstb_spi_clear_interrupt(priv->hif_spi_intr2, 0xffffffff); bcmstb_spi_enable_interrupt(priv->hif_spi_intr2, HIF_SPI_INTR2_CPU_SET_MSPI_DONE_MASK); /* Set up control registers. */ writel(0, &priv->regs->spcr1_lsb); writel(0, &priv->regs->spcr1_msb); writel(0, &priv->regs->newqp); writel(0, &priv->regs->endqp); writel(HIF_MSPI_SPCR2_SPIFIE_MASK, &priv->regs->spcr2); writel(0, &priv->regs->spcr3); bcmstb_spi_hw_set_parms(priv); return 0; } static void bcmstb_spi_submit(struct bcmstb_spi_priv *priv, bool done) { debug("WR NEWQP: %d\n", 0); writel(0, &priv->regs->newqp); debug("WR ENDQP: %d\n", priv->tx_slot - 1); writel(priv->tx_slot - 1, &priv->regs->endqp); if (done) { debug("WR CDRAM[%d]: %02x\n", priv->tx_slot - 1, readl(&priv->regs->cdram[priv->tx_slot - 1]) & ~0x80); writel(readl(&priv->regs->cdram[priv->tx_slot - 1]) & ~0x80, &priv->regs->cdram[priv->tx_slot - 1]); } /* Force chip select first time. */ if (priv->curr_cs != priv->default_cs) { debug("spi_xfer: switching chip select to %d\n", priv->default_cs); writel((readl(priv->cs_reg) & ~0xff) | (1 << priv->default_cs), priv->cs_reg); readl(priv->cs_reg); udelay(10); priv->curr_cs = priv->default_cs; } debug("WR WRITE_LOCK: %02x\n", 1); writel((readl(&priv->regs->write_lock) & ~HIF_MSPI_WRITE_LOCK_WRITE_LOCK_MASK) | 1, &priv->regs->write_lock); readl(&priv->regs->write_lock); debug("WR SPCR2: %02x\n", HIF_MSPI_SPCR2_SPIFIE_MASK | HIF_MSPI_SPCR2_SPE_MASK | HIF_MSPI_SPCR2_CONT_AFTER_CMD_MASK); writel(HIF_MSPI_SPCR2_SPIFIE_MASK | HIF_MSPI_SPCR2_SPE_MASK | HIF_MSPI_SPCR2_CONT_AFTER_CMD_MASK, &priv->regs->spcr2); } static int bcmstb_spi_wait(struct bcmstb_spi_priv *priv) { u32 start_time = get_timer(0); u32 status = readl(&priv->regs->mspi_status); while (!(status & 1)) { if (get_timer(start_time) > HIF_MSPI_WAIT) return -ETIMEDOUT; status = readl(&priv->regs->mspi_status); } writel(readl(&priv->regs->mspi_status) & ~1, &priv->regs->mspi_status); bcmstb_spi_clear_interrupt(priv->hif_spi_intr2, HIF_SPI_INTR2_CPU_SET_MSPI_DONE_MASK); return 0; } static int bcmstb_spi_xfer(struct udevice *dev, unsigned int bitlen, const void *dout, void *din, unsigned long flags) { uint len = bitlen / 8; uint tx_len = len; uint rx_len = len; const u8 *out_bytes = (u8 *)dout; u8 *in_bytes = (u8 *)din; struct udevice *bus = dev_get_parent(dev); struct bcmstb_spi_priv *priv = dev_get_priv(bus); struct bcmstb_hif_mspi_regs *regs = priv->regs; debug("spi_xfer: %d, t: 0x%p, r: 0x%p, f: %lx\n", len, dout, din, flags); debug("spi_xfer: chip select: %x\n", readl(priv->cs_reg) & 0xff); debug("spi_xfer: tx addr: 0x%p\n", ®s->txram[0]); debug("spi_xfer: rx addr: 0x%p\n", ®s->rxram[0]); debug("spi_xfer: cd addr: 0x%p\n", ®s->cdram[0]); if (flags & SPI_XFER_END) { debug("spi_xfer: clearing saved din address: 0x%p\n", priv->saved_din_addr); priv->saved_din_addr = NULL; priv->saved_cmd_len = 0; memset(priv->saved_cmd, 0, NUM_CDRAM); } if (bitlen == 0) return 0; if (bitlen % 8) { printf("%s: Non-byte-aligned transfer\n", __func__); return -EOPNOTSUPP; } if (flags & ~(SPI_XFER_BEGIN | SPI_XFER_END)) { printf("%s: Unsupported flags: %lx\n", __func__, flags); return -EOPNOTSUPP; } if (flags & SPI_XFER_BEGIN) { priv->tx_slot = 0; priv->rx_slot = 0; if (out_bytes && len > NUM_CDRAM) { printf("%s: Unable to save transfer\n", __func__); return -EOPNOTSUPP; } if (out_bytes && !(flags & SPI_XFER_END)) { /* * This is the start of a transmit operation * that will need repeating if the calling * code polls for the result. Save it for * subsequent transmission. */ debug("spi_xfer: saving command: %x, %d\n", out_bytes[0], len); priv->saved_cmd_len = len; memcpy(priv->saved_cmd, out_bytes, priv->saved_cmd_len); } } if (!(flags & (SPI_XFER_BEGIN | SPI_XFER_END))) { if (priv->saved_din_addr == din) { /* * The caller is polling for status. Repeat * the last transmission. */ int ret = 0; debug("spi_xfer: Making recursive call\n"); ret = bcmstb_spi_xfer(dev, priv->saved_cmd_len * 8, priv->saved_cmd, NULL, SPI_XFER_BEGIN); if (ret) { printf("%s: Recursive call failed\n", __func__); return ret; } } else { debug("spi_xfer: saving din address: 0x%p\n", din); priv->saved_din_addr = din; } } while (rx_len > 0) { priv->rx_slot = priv->tx_slot; while (priv->tx_slot < NUM_CDRAM && tx_len > 0) { bcmstb_spi_hw_set_parms(priv); debug("WR TXRAM[%d]: %02x\n", priv->tx_slot, out_bytes ? out_bytes[len - tx_len] : 0xff); writel(out_bytes ? out_bytes[len - tx_len] : 0xff, ®s->txram[priv->tx_slot << 1]); debug("WR CDRAM[%d]: %02x\n", priv->tx_slot, 0x8e); writel(0x8e, ®s->cdram[priv->tx_slot]); priv->tx_slot++; tx_len--; if (!in_bytes) rx_len--; } debug("spi_xfer: early return clauses: %d, %d, %d\n", len <= NUM_CDRAM, !in_bytes, (flags & (SPI_XFER_BEGIN | SPI_XFER_END)) == SPI_XFER_BEGIN); if (len <= NUM_CDRAM && !in_bytes && (flags & (SPI_XFER_BEGIN | SPI_XFER_END)) == SPI_XFER_BEGIN) return 0; bcmstb_spi_submit(priv, tx_len == 0); if (bcmstb_spi_wait(priv) == -ETIMEDOUT) { printf("%s: Timed out\n", __func__); return -ETIMEDOUT; } priv->tx_slot %= NUM_CDRAM; if (in_bytes) { while (priv->rx_slot < NUM_CDRAM && rx_len > 0) { in_bytes[len - rx_len] = readl(®s->rxram[(priv->rx_slot << 1) + 1]) & 0xff; debug("RD RXRAM[%d]: %02x\n", priv->rx_slot, in_bytes[len - rx_len]); priv->rx_slot++; rx_len--; } } } if (flags & SPI_XFER_END) { debug("WR WRITE_LOCK: %02x\n", 0); writel((readl(&priv->regs->write_lock) & ~HIF_MSPI_WRITE_LOCK_WRITE_LOCK_MASK) | 0, &priv->regs->write_lock); readl(&priv->regs->write_lock); } return 0; } static int bcmstb_spi_set_speed(struct udevice *dev, uint speed) { return 0; } static int bcmstb_spi_set_mode(struct udevice *dev, uint mode) { return 0; } static const struct dm_spi_ops bcmstb_spi_ops = { .xfer = bcmstb_spi_xfer, .set_speed = bcmstb_spi_set_speed, .set_mode = bcmstb_spi_set_mode, }; static const struct udevice_id bcmstb_spi_id[] = { { .compatible = "brcm,spi-brcmstb" }, { } }; U_BOOT_DRIVER(bcmstb_spi) = { .name = "bcmstb_spi", .id = UCLASS_SPI, .of_match = bcmstb_spi_id, .ops = &bcmstb_spi_ops, .ofdata_to_platdata = bcmstb_spi_ofdata_to_platdata, .probe = bcmstb_spi_probe, .platdata_auto_alloc_size = sizeof(struct bcmstb_spi_platdata), .priv_auto_alloc_size = sizeof(struct bcmstb_spi_priv), };