/* * Copyright (C) 2012 * Altera Corporation <www.altera.com> * * SPDX-License-Identifier: GPL-2.0+ */ #include <common.h> #include <dm.h> #include <fdtdec.h> #include <malloc.h> #include <spi.h> #include <asm/errno.h> #include "cadence_qspi.h" #define CQSPI_STIG_READ 0 #define CQSPI_STIG_WRITE 1 #define CQSPI_INDIRECT_READ 2 #define CQSPI_INDIRECT_WRITE 3 DECLARE_GLOBAL_DATA_PTR; static int cadence_spi_write_speed(struct udevice *bus, uint hz) { struct cadence_spi_platdata *plat = bus->platdata; struct cadence_spi_priv *priv = dev_get_priv(bus); cadence_qspi_apb_config_baudrate_div(priv->regbase, CONFIG_CQSPI_REF_CLK, hz); /* Reconfigure delay timing if speed is changed. */ cadence_qspi_apb_delay(priv->regbase, CONFIG_CQSPI_REF_CLK, hz, plat->tshsl_ns, plat->tsd2d_ns, plat->tchsh_ns, plat->tslch_ns); return 0; } /* Calibration sequence to determine the read data capture delay register */ static int spi_calibration(struct udevice *bus, uint hz) { struct cadence_spi_priv *priv = dev_get_priv(bus); void *base = priv->regbase; u8 opcode_rdid = 0x9F; unsigned int idcode = 0, temp = 0; int err = 0, i, range_lo = -1, range_hi = -1; /* start with slowest clock (1 MHz) */ cadence_spi_write_speed(bus, 1000000); /* configure the read data capture delay register to 0 */ cadence_qspi_apb_readdata_capture(base, 1, 0); /* Enable QSPI */ cadence_qspi_apb_controller_enable(base); /* read the ID which will be our golden value */ err = cadence_qspi_apb_command_read(base, 1, &opcode_rdid, 3, (u8 *)&idcode); if (err) { puts("SF: Calibration failed (read)\n"); return err; } /* use back the intended clock and find low range */ cadence_spi_write_speed(bus, hz); for (i = 0; i < CQSPI_READ_CAPTURE_MAX_DELAY; i++) { /* Disable QSPI */ cadence_qspi_apb_controller_disable(base); /* reconfigure the read data capture delay register */ cadence_qspi_apb_readdata_capture(base, 1, i); /* Enable back QSPI */ cadence_qspi_apb_controller_enable(base); /* issue a RDID to get the ID value */ err = cadence_qspi_apb_command_read(base, 1, &opcode_rdid, 3, (u8 *)&temp); if (err) { puts("SF: Calibration failed (read)\n"); return err; } /* search for range lo */ if (range_lo == -1 && temp == idcode) { range_lo = i; continue; } /* search for range hi */ if (range_lo != -1 && temp != idcode) { range_hi = i - 1; break; } range_hi = i; } if (range_lo == -1) { puts("SF: Calibration failed (low range)\n"); return err; } /* Disable QSPI for subsequent initialization */ cadence_qspi_apb_controller_disable(base); /* configure the final value for read data capture delay register */ cadence_qspi_apb_readdata_capture(base, 1, (range_hi + range_lo) / 2); debug("SF: Read data capture delay calibrated to %i (%i - %i)\n", (range_hi + range_lo) / 2, range_lo, range_hi); /* just to ensure we do once only when speed or chip select change */ priv->qspi_calibrated_hz = hz; priv->qspi_calibrated_cs = spi_chip_select(bus); return 0; } static int cadence_spi_set_speed(struct udevice *bus, uint hz) { struct cadence_spi_platdata *plat = bus->platdata; struct cadence_spi_priv *priv = dev_get_priv(bus); int err; if (hz > plat->max_hz) hz = plat->max_hz; /* Disable QSPI */ cadence_qspi_apb_controller_disable(priv->regbase); /* * Calibration required for different current SCLK speed, requested * SCLK speed or chip select */ if (priv->previous_hz != hz || priv->qspi_calibrated_hz != hz || priv->qspi_calibrated_cs != spi_chip_select(bus)) { err = spi_calibration(bus, hz); if (err) return err; /* prevent calibration run when same as previous request */ priv->previous_hz = hz; } /* Enable QSPI */ cadence_qspi_apb_controller_enable(priv->regbase); debug("%s: speed=%d\n", __func__, hz); return 0; } static int cadence_spi_probe(struct udevice *bus) { struct cadence_spi_platdata *plat = bus->platdata; struct cadence_spi_priv *priv = dev_get_priv(bus); priv->regbase = plat->regbase; priv->ahbbase = plat->ahbbase; if (!priv->qspi_is_init) { cadence_qspi_apb_controller_init(plat); priv->qspi_is_init = 1; } return 0; } static int cadence_spi_set_mode(struct udevice *bus, uint mode) { struct cadence_spi_priv *priv = dev_get_priv(bus); unsigned int clk_pol = (mode & SPI_CPOL) ? 1 : 0; unsigned int clk_pha = (mode & SPI_CPHA) ? 1 : 0; /* Disable QSPI */ cadence_qspi_apb_controller_disable(priv->regbase); /* Set SPI mode */ cadence_qspi_apb_set_clk_mode(priv->regbase, clk_pol, clk_pha); /* Enable QSPI */ cadence_qspi_apb_controller_enable(priv->regbase); return 0; } static int cadence_spi_xfer(struct udevice *dev, unsigned int bitlen, const void *dout, void *din, unsigned long flags) { struct udevice *bus = dev->parent; struct cadence_spi_platdata *plat = bus->platdata; struct cadence_spi_priv *priv = dev_get_priv(bus); void *base = priv->regbase; u8 *cmd_buf = priv->cmd_buf; size_t data_bytes; int err = 0; u32 mode = CQSPI_STIG_WRITE; if (flags & SPI_XFER_BEGIN) { /* copy command to local buffer */ priv->cmd_len = bitlen / 8; memcpy(cmd_buf, dout, priv->cmd_len); } if (flags == (SPI_XFER_BEGIN | SPI_XFER_END)) { /* if start and end bit are set, the data bytes is 0. */ data_bytes = 0; } else { data_bytes = bitlen / 8; } debug("%s: len=%d [bytes]\n", __func__, data_bytes); /* Set Chip select */ cadence_qspi_apb_chipselect(base, spi_chip_select(dev), CONFIG_CQSPI_DECODER); if ((flags & SPI_XFER_END) || (flags == 0)) { if (priv->cmd_len == 0) { printf("QSPI: Error, command is empty.\n"); return -1; } if (din && data_bytes) { /* read */ /* Use STIG if no address. */ if (!CQSPI_IS_ADDR(priv->cmd_len)) mode = CQSPI_STIG_READ; else mode = CQSPI_INDIRECT_READ; } else if (dout && !(flags & SPI_XFER_BEGIN)) { /* write */ if (!CQSPI_IS_ADDR(priv->cmd_len)) mode = CQSPI_STIG_WRITE; else mode = CQSPI_INDIRECT_WRITE; } switch (mode) { case CQSPI_STIG_READ: err = cadence_qspi_apb_command_read( base, priv->cmd_len, cmd_buf, data_bytes, din); break; case CQSPI_STIG_WRITE: err = cadence_qspi_apb_command_write(base, priv->cmd_len, cmd_buf, data_bytes, dout); break; case CQSPI_INDIRECT_READ: err = cadence_qspi_apb_indirect_read_setup(plat, priv->cmd_len, cmd_buf); if (!err) { err = cadence_qspi_apb_indirect_read_execute (plat, data_bytes, din); } break; case CQSPI_INDIRECT_WRITE: err = cadence_qspi_apb_indirect_write_setup (plat, priv->cmd_len, cmd_buf); if (!err) { err = cadence_qspi_apb_indirect_write_execute (plat, data_bytes, dout); } break; default: err = -1; break; } if (flags & SPI_XFER_END) { /* clear command buffer */ memset(cmd_buf, 0, sizeof(priv->cmd_buf)); priv->cmd_len = 0; } } return err; } static int cadence_spi_ofdata_to_platdata(struct udevice *bus) { struct cadence_spi_platdata *plat = bus->platdata; const void *blob = gd->fdt_blob; int node = bus->of_offset; int subnode; u32 data[4]; int ret; /* 2 base addresses are needed, lets get them from the DT */ ret = fdtdec_get_int_array(blob, node, "reg", data, ARRAY_SIZE(data)); if (ret) { printf("Error: Can't get base addresses (ret=%d)!\n", ret); return -ENODEV; } plat->regbase = (void *)data[0]; plat->ahbbase = (void *)data[2]; /* All other paramters are embedded in the child node */ subnode = fdt_first_subnode(blob, node); if (subnode < 0) { printf("Error: subnode with SPI flash config missing!\n"); return -ENODEV; } /* Use 500 KHz as a suitable default */ plat->max_hz = fdtdec_get_uint(blob, subnode, "spi-max-frequency", 500000); /* Read other parameters from DT */ plat->page_size = fdtdec_get_int(blob, subnode, "page-size", 256); plat->block_size = fdtdec_get_int(blob, subnode, "block-size", 16); plat->tshsl_ns = fdtdec_get_int(blob, subnode, "tshsl-ns", 200); plat->tsd2d_ns = fdtdec_get_int(blob, subnode, "tsd2d-ns", 255); plat->tchsh_ns = fdtdec_get_int(blob, subnode, "tchsh-ns", 20); plat->tslch_ns = fdtdec_get_int(blob, subnode, "tslch-ns", 20); plat->sram_size = fdtdec_get_int(blob, node, "sram-size", 128); debug("%s: regbase=%p ahbbase=%p max-frequency=%d page-size=%d\n", __func__, plat->regbase, plat->ahbbase, plat->max_hz, plat->page_size); return 0; } static const struct dm_spi_ops cadence_spi_ops = { .xfer = cadence_spi_xfer, .set_speed = cadence_spi_set_speed, .set_mode = cadence_spi_set_mode, /* * cs_info is not needed, since we require all chip selects to be * in the device tree explicitly */ }; static const struct udevice_id cadence_spi_ids[] = { { .compatible = "cadence,qspi" }, { } }; U_BOOT_DRIVER(cadence_spi) = { .name = "cadence_spi", .id = UCLASS_SPI, .of_match = cadence_spi_ids, .ops = &cadence_spi_ops, .ofdata_to_platdata = cadence_spi_ofdata_to_platdata, .platdata_auto_alloc_size = sizeof(struct cadence_spi_platdata), .priv_auto_alloc_size = sizeof(struct cadence_spi_priv), .probe = cadence_spi_probe, };