/* * Copyright (C) 2012 Altera Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - Neither the name of the Altera Corporation nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL ALTERA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include "cadence_qspi.h" #define CQSPI_REG_POLL_US (1) /* 1us */ #define CQSPI_REG_RETRY (10000) #define CQSPI_POLL_IDLE_RETRY (3) #define CQSPI_FIFO_WIDTH (4) #define CQSPI_REG_SRAM_THRESHOLD_WORDS (50) /* Transfer mode */ #define CQSPI_INST_TYPE_SINGLE (0) #define CQSPI_INST_TYPE_DUAL (1) #define CQSPI_INST_TYPE_QUAD (2) #define CQSPI_STIG_DATA_LEN_MAX (8) #define CQSPI_INDIRECTTRIGGER_ADDR_MASK (0xFFFFF) #define CQSPI_DUMMY_CLKS_PER_BYTE (8) #define CQSPI_DUMMY_BYTES_MAX (4) #define CQSPI_REG_SRAM_FILL_THRESHOLD \ ((CQSPI_REG_SRAM_SIZE_WORD / 2) * CQSPI_FIFO_WIDTH) /**************************************************************************** * Controller's configuration and status register (offset from QSPI_BASE) ****************************************************************************/ #define CQSPI_REG_CONFIG 0x00 #define CQSPI_REG_CONFIG_CLK_POL_LSB 1 #define CQSPI_REG_CONFIG_CLK_PHA_LSB 2 #define CQSPI_REG_CONFIG_ENABLE_MASK (1 << 0) #define CQSPI_REG_CONFIG_DIRECT_MASK (1 << 7) #define CQSPI_REG_CONFIG_DECODE_MASK (1 << 9) #define CQSPI_REG_CONFIG_XIP_IMM_MASK (1 << 18) #define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10 #define CQSPI_REG_CONFIG_BAUD_LSB 19 #define CQSPI_REG_CONFIG_IDLE_LSB 31 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF #define CQSPI_REG_CONFIG_BAUD_MASK 0xF #define CQSPI_REG_RD_INSTR 0x04 #define CQSPI_REG_RD_INSTR_OPCODE_LSB 0 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20 #define CQSPI_REG_RD_INSTR_DUMMY_LSB 24 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3 #define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F #define CQSPI_REG_WR_INSTR 0x08 #define CQSPI_REG_WR_INSTR_OPCODE_LSB 0 #define CQSPI_REG_DELAY 0x0C #define CQSPI_REG_DELAY_TSLCH_LSB 0 #define CQSPI_REG_DELAY_TCHSH_LSB 8 #define CQSPI_REG_DELAY_TSD2D_LSB 16 #define CQSPI_REG_DELAY_TSHSL_LSB 24 #define CQSPI_REG_DELAY_TSLCH_MASK 0xFF #define CQSPI_REG_DELAY_TCHSH_MASK 0xFF #define CQSPI_REG_DELAY_TSD2D_MASK 0xFF #define CQSPI_REG_DELAY_TSHSL_MASK 0xFF #define CQSPI_READLCAPTURE 0x10 #define CQSPI_READLCAPTURE_BYPASS_LSB 0 #define CQSPI_READLCAPTURE_DELAY_LSB 1 #define CQSPI_READLCAPTURE_DELAY_MASK 0xF #define CQSPI_REG_SIZE 0x14 #define CQSPI_REG_SIZE_ADDRESS_LSB 0 #define CQSPI_REG_SIZE_PAGE_LSB 4 #define CQSPI_REG_SIZE_BLOCK_LSB 16 #define CQSPI_REG_SIZE_ADDRESS_MASK 0xF #define CQSPI_REG_SIZE_PAGE_MASK 0xFFF #define CQSPI_REG_SIZE_BLOCK_MASK 0x3F #define CQSPI_REG_SRAMPARTITION 0x18 #define CQSPI_REG_INDIRECTTRIGGER 0x1C #define CQSPI_REG_REMAP 0x24 #define CQSPI_REG_MODE_BIT 0x28 #define CQSPI_REG_SDRAMLEVEL 0x2C #define CQSPI_REG_SDRAMLEVEL_RD_LSB 0 #define CQSPI_REG_SDRAMLEVEL_WR_LSB 16 #define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF #define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF #define CQSPI_REG_IRQSTATUS 0x40 #define CQSPI_REG_IRQMASK 0x44 #define CQSPI_REG_INDIRECTRD 0x60 #define CQSPI_REG_INDIRECTRD_START_MASK (1 << 0) #define CQSPI_REG_INDIRECTRD_CANCEL_MASK (1 << 1) #define CQSPI_REG_INDIRECTRD_INPROGRESS_MASK (1 << 2) #define CQSPI_REG_INDIRECTRD_DONE_MASK (1 << 5) #define CQSPI_REG_INDIRECTRDWATERMARK 0x64 #define CQSPI_REG_INDIRECTRDSTARTADDR 0x68 #define CQSPI_REG_INDIRECTRDBYTES 0x6C #define CQSPI_REG_CMDCTRL 0x90 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK (1 << 0) #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK (1 << 1) #define CQSPI_REG_CMDCTRL_DUMMY_LSB 7 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12 #define CQSPI_REG_CMDCTRL_WR_EN_LSB 15 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20 #define CQSPI_REG_CMDCTRL_RD_EN_LSB 23 #define CQSPI_REG_CMDCTRL_OPCODE_LSB 24 #define CQSPI_REG_CMDCTRL_DUMMY_MASK 0x1F #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7 #define CQSPI_REG_CMDCTRL_OPCODE_MASK 0xFF #define CQSPI_REG_INDIRECTWR 0x70 #define CQSPI_REG_INDIRECTWR_START_MASK (1 << 0) #define CQSPI_REG_INDIRECTWR_CANCEL_MASK (1 << 1) #define CQSPI_REG_INDIRECTWR_INPROGRESS_MASK (1 << 2) #define CQSPI_REG_INDIRECTWR_DONE_MASK (1 << 5) #define CQSPI_REG_INDIRECTWRWATERMARK 0x74 #define CQSPI_REG_INDIRECTWRSTARTADDR 0x78 #define CQSPI_REG_INDIRECTWRBYTES 0x7C #define CQSPI_REG_CMDADDRESS 0x94 #define CQSPI_REG_CMDREADDATALOWER 0xA0 #define CQSPI_REG_CMDREADDATAUPPER 0xA4 #define CQSPI_REG_CMDWRITEDATALOWER 0xA8 #define CQSPI_REG_CMDWRITEDATAUPPER 0xAC #define CQSPI_REG_IS_IDLE(base) \ ((readl(base + CQSPI_REG_CONFIG) >> \ CQSPI_REG_CONFIG_IDLE_LSB) & 0x1) #define CQSPI_CAL_DELAY(tdelay_ns, tref_ns, tsclk_ns) \ ((((tdelay_ns) - (tsclk_ns)) / (tref_ns))) #define CQSPI_GET_RD_SRAM_LEVEL(reg_base) \ (((readl(reg_base + CQSPI_REG_SDRAMLEVEL)) >> \ CQSPI_REG_SDRAMLEVEL_RD_LSB) & CQSPI_REG_SDRAMLEVEL_RD_MASK) #define CQSPI_GET_WR_SRAM_LEVEL(reg_base) \ (((readl(reg_base + CQSPI_REG_SDRAMLEVEL)) >> \ CQSPI_REG_SDRAMLEVEL_WR_LSB) & CQSPI_REG_SDRAMLEVEL_WR_MASK) static unsigned int cadence_qspi_apb_cmd2addr(const unsigned char *addr_buf, unsigned int addr_width) { unsigned int addr; addr = (addr_buf[0] << 16) | (addr_buf[1] << 8) | addr_buf[2]; if (addr_width == 4) addr = (addr << 8) | addr_buf[3]; return addr; } static void cadence_qspi_apb_read_fifo_data(void *dest, const void *src_ahb_addr, unsigned int bytes) { unsigned int temp; int remaining = bytes; unsigned int *dest_ptr = (unsigned int *)dest; unsigned int *src_ptr = (unsigned int *)src_ahb_addr; while (remaining > 0) { if (remaining >= CQSPI_FIFO_WIDTH) { *dest_ptr = readl(src_ptr); remaining -= CQSPI_FIFO_WIDTH; } else { /* dangling bytes */ temp = readl(src_ptr); memcpy(dest_ptr, &temp, remaining); break; } dest_ptr++; } return; } static void cadence_qspi_apb_write_fifo_data(const void *dest_ahb_addr, const void *src, unsigned int bytes) { unsigned int temp; int remaining = bytes; unsigned int *dest_ptr = (unsigned int *)dest_ahb_addr; unsigned int *src_ptr = (unsigned int *)src; while (remaining > 0) { if (remaining >= CQSPI_FIFO_WIDTH) { writel(*src_ptr, dest_ptr); remaining -= sizeof(unsigned int); } else { /* dangling bytes */ memcpy(&temp, src_ptr, remaining); writel(temp, dest_ptr); break; } src_ptr++; } return; } /* Read from SRAM FIFO with polling SRAM fill level. */ static int qspi_read_sram_fifo_poll(const void *reg_base, void *dest_addr, const void *src_addr, unsigned int num_bytes) { unsigned int remaining = num_bytes; unsigned int retry; unsigned int sram_level = 0; unsigned char *dest = (unsigned char *)dest_addr; while (remaining > 0) { retry = CQSPI_REG_RETRY; while (retry--) { sram_level = CQSPI_GET_RD_SRAM_LEVEL(reg_base); if (sram_level) break; udelay(1); } if (!retry) { printf("QSPI: No receive data after polling for %d times\n", CQSPI_REG_RETRY); return -1; } sram_level *= CQSPI_FIFO_WIDTH; sram_level = sram_level > remaining ? remaining : sram_level; /* Read data from FIFO. */ cadence_qspi_apb_read_fifo_data(dest, src_addr, sram_level); dest += sram_level; remaining -= sram_level; udelay(1); } return 0; } /* Write to SRAM FIFO with polling SRAM fill level. */ static int qpsi_write_sram_fifo_push(struct cadence_spi_platdata *plat, const void *src_addr, unsigned int num_bytes) { const void *reg_base = plat->regbase; void *dest_addr = plat->ahbbase; unsigned int retry = CQSPI_REG_RETRY; unsigned int sram_level; unsigned int wr_bytes; unsigned char *src = (unsigned char *)src_addr; int remaining = num_bytes; unsigned int page_size = plat->page_size; unsigned int sram_threshold_words = CQSPI_REG_SRAM_THRESHOLD_WORDS; while (remaining > 0) { retry = CQSPI_REG_RETRY; while (retry--) { sram_level = CQSPI_GET_WR_SRAM_LEVEL(reg_base); if (sram_level <= sram_threshold_words) break; } if (!retry) { printf("QSPI: SRAM fill level (0x%08x) not hit lower expected level (0x%08x)", sram_level, sram_threshold_words); return -1; } /* Write a page or remaining bytes. */ wr_bytes = (remaining > page_size) ? page_size : remaining; cadence_qspi_apb_write_fifo_data(dest_addr, src, wr_bytes); src += wr_bytes; remaining -= wr_bytes; } return 0; } void cadence_qspi_apb_controller_enable(void *reg_base) { unsigned int reg; reg = readl(reg_base + CQSPI_REG_CONFIG); reg |= CQSPI_REG_CONFIG_ENABLE_MASK; writel(reg, reg_base + CQSPI_REG_CONFIG); return; } void cadence_qspi_apb_controller_disable(void *reg_base) { unsigned int reg; reg = readl(reg_base + CQSPI_REG_CONFIG); reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK; writel(reg, reg_base + CQSPI_REG_CONFIG); return; } /* Return 1 if idle, otherwise return 0 (busy). */ static unsigned int cadence_qspi_wait_idle(void *reg_base) { unsigned int start, count = 0; /* timeout in unit of ms */ unsigned int timeout = 5000; start = get_timer(0); for ( ; get_timer(start) < timeout ; ) { if (CQSPI_REG_IS_IDLE(reg_base)) count++; else count = 0; /* * Ensure the QSPI controller is in true idle state after * reading back the same idle status consecutively */ if (count >= CQSPI_POLL_IDLE_RETRY) return 1; } /* Timeout, still in busy mode. */ printf("QSPI: QSPI is still busy after poll for %d times.\n", CQSPI_REG_RETRY); return 0; } void cadence_qspi_apb_readdata_capture(void *reg_base, unsigned int bypass, unsigned int delay) { unsigned int reg; cadence_qspi_apb_controller_disable(reg_base); reg = readl(reg_base + CQSPI_READLCAPTURE); if (bypass) reg |= (1 << CQSPI_READLCAPTURE_BYPASS_LSB); else reg &= ~(1 << CQSPI_READLCAPTURE_BYPASS_LSB); reg &= ~(CQSPI_READLCAPTURE_DELAY_MASK << CQSPI_READLCAPTURE_DELAY_LSB); reg |= ((delay & CQSPI_READLCAPTURE_DELAY_MASK) << CQSPI_READLCAPTURE_DELAY_LSB); writel(reg, reg_base + CQSPI_READLCAPTURE); cadence_qspi_apb_controller_enable(reg_base); return; } void cadence_qspi_apb_config_baudrate_div(void *reg_base, unsigned int ref_clk_hz, unsigned int sclk_hz) { unsigned int reg; unsigned int div; cadence_qspi_apb_controller_disable(reg_base); reg = readl(reg_base + CQSPI_REG_CONFIG); reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB); div = ref_clk_hz / sclk_hz; if (div > 32) div = 32; /* Check if even number. */ if ((div & 1)) { div = (div / 2); } else { if (ref_clk_hz % sclk_hz) /* ensure generated SCLK doesn't exceed user specified sclk_hz */ div = (div / 2); else div = (div / 2) - 1; } debug("%s: ref_clk %dHz sclk %dHz Div 0x%x\n", __func__, ref_clk_hz, sclk_hz, div); div = (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB; reg |= div; writel(reg, reg_base + CQSPI_REG_CONFIG); cadence_qspi_apb_controller_enable(reg_base); return; } void cadence_qspi_apb_set_clk_mode(void *reg_base, unsigned int clk_pol, unsigned int clk_pha) { unsigned int reg; cadence_qspi_apb_controller_disable(reg_base); reg = readl(reg_base + CQSPI_REG_CONFIG); reg &= ~(1 << (CQSPI_REG_CONFIG_CLK_POL_LSB | CQSPI_REG_CONFIG_CLK_PHA_LSB)); reg |= ((clk_pol & 0x1) << CQSPI_REG_CONFIG_CLK_POL_LSB); reg |= ((clk_pha & 0x1) << CQSPI_REG_CONFIG_CLK_PHA_LSB); writel(reg, reg_base + CQSPI_REG_CONFIG); cadence_qspi_apb_controller_enable(reg_base); return; } void cadence_qspi_apb_chipselect(void *reg_base, unsigned int chip_select, unsigned int decoder_enable) { unsigned int reg; cadence_qspi_apb_controller_disable(reg_base); debug("%s : chipselect %d decode %d\n", __func__, chip_select, decoder_enable); reg = readl(reg_base + CQSPI_REG_CONFIG); /* docoder */ if (decoder_enable) { reg |= CQSPI_REG_CONFIG_DECODE_MASK; } else { reg &= ~CQSPI_REG_CONFIG_DECODE_MASK; /* Convert CS if without decoder. * CS0 to 4b'1110 * CS1 to 4b'1101 * CS2 to 4b'1011 * CS3 to 4b'0111 */ chip_select = 0xF & ~(1 << chip_select); } reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK << CQSPI_REG_CONFIG_CHIPSELECT_LSB); reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK) << CQSPI_REG_CONFIG_CHIPSELECT_LSB; writel(reg, reg_base + CQSPI_REG_CONFIG); cadence_qspi_apb_controller_enable(reg_base); return; } void cadence_qspi_apb_delay(void *reg_base, unsigned int ref_clk, unsigned int sclk_hz, unsigned int tshsl_ns, unsigned int tsd2d_ns, unsigned int tchsh_ns, unsigned int tslch_ns) { unsigned int ref_clk_ns; unsigned int sclk_ns; unsigned int tshsl, tchsh, tslch, tsd2d; unsigned int reg; cadence_qspi_apb_controller_disable(reg_base); /* Convert to ns. */ ref_clk_ns = (1000000000) / ref_clk; /* Convert to ns. */ sclk_ns = (1000000000) / sclk_hz; /* Plus 1 to round up 1 clock cycle. */ tshsl = CQSPI_CAL_DELAY(tshsl_ns, ref_clk_ns, sclk_ns) + 1; tchsh = CQSPI_CAL_DELAY(tchsh_ns, ref_clk_ns, sclk_ns) + 1; tslch = CQSPI_CAL_DELAY(tslch_ns, ref_clk_ns, sclk_ns) + 1; tsd2d = CQSPI_CAL_DELAY(tsd2d_ns, ref_clk_ns, sclk_ns) + 1; reg = ((tshsl & CQSPI_REG_DELAY_TSHSL_MASK) << CQSPI_REG_DELAY_TSHSL_LSB); reg |= ((tchsh & CQSPI_REG_DELAY_TCHSH_MASK) << CQSPI_REG_DELAY_TCHSH_LSB); reg |= ((tslch & CQSPI_REG_DELAY_TSLCH_MASK) << CQSPI_REG_DELAY_TSLCH_LSB); reg |= ((tsd2d & CQSPI_REG_DELAY_TSD2D_MASK) << CQSPI_REG_DELAY_TSD2D_LSB); writel(reg, reg_base + CQSPI_REG_DELAY); cadence_qspi_apb_controller_enable(reg_base); return; } void cadence_qspi_apb_controller_init(struct cadence_spi_platdata *plat) { unsigned reg; cadence_qspi_apb_controller_disable(plat->regbase); /* Configure the device size and address bytes */ reg = readl(plat->regbase + CQSPI_REG_SIZE); /* Clear the previous value */ reg &= ~(CQSPI_REG_SIZE_PAGE_MASK << CQSPI_REG_SIZE_PAGE_LSB); reg &= ~(CQSPI_REG_SIZE_BLOCK_MASK << CQSPI_REG_SIZE_BLOCK_LSB); reg |= (plat->page_size << CQSPI_REG_SIZE_PAGE_LSB); reg |= (plat->block_size << CQSPI_REG_SIZE_BLOCK_LSB); writel(reg, plat->regbase + CQSPI_REG_SIZE); /* Configure the remap address register, no remap */ writel(0, plat->regbase + CQSPI_REG_REMAP); /* Indirect mode configurations */ writel((plat->sram_size/2), plat->regbase + CQSPI_REG_SRAMPARTITION); /* Disable all interrupts */ writel(0, plat->regbase + CQSPI_REG_IRQMASK); cadence_qspi_apb_controller_enable(plat->regbase); return; } static int cadence_qspi_apb_exec_flash_cmd(void *reg_base, unsigned int reg) { unsigned int retry = CQSPI_REG_RETRY; /* Write the CMDCTRL without start execution. */ writel(reg, reg_base + CQSPI_REG_CMDCTRL); /* Start execute */ reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK; writel(reg, reg_base + CQSPI_REG_CMDCTRL); while (retry--) { reg = readl(reg_base + CQSPI_REG_CMDCTRL); if ((reg & CQSPI_REG_CMDCTRL_INPROGRESS_MASK) == 0) break; udelay(1); } if (!retry) { printf("QSPI: flash command execution timeout\n"); return -EIO; } /* Polling QSPI idle status. */ if (!cadence_qspi_wait_idle(reg_base)) return -EIO; return 0; } /* For command RDID, RDSR. */ int cadence_qspi_apb_command_read(void *reg_base, unsigned int cmdlen, const u8 *cmdbuf, unsigned int rxlen, u8 *rxbuf) { unsigned int reg; unsigned int read_len; int status; if (!cmdlen || rxlen > CQSPI_STIG_DATA_LEN_MAX || rxbuf == NULL) { printf("QSPI: Invalid input arguments cmdlen %d rxlen %d\n", cmdlen, rxlen); return -EINVAL; } reg = cmdbuf[0] << CQSPI_REG_CMDCTRL_OPCODE_LSB; reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB); /* 0 means 1 byte. */ reg |= (((rxlen - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK) << CQSPI_REG_CMDCTRL_RD_BYTES_LSB); status = cadence_qspi_apb_exec_flash_cmd(reg_base, reg); if (status != 0) return status; reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER); /* Put the read value into rx_buf */ read_len = (rxlen > 4) ? 4 : rxlen; memcpy(rxbuf, ®, read_len); rxbuf += read_len; if (rxlen > 4) { reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER); read_len = rxlen - read_len; memcpy(rxbuf, ®, read_len); } return 0; } /* For commands: WRSR, WREN, WRDI, CHIP_ERASE, BE, etc. */ int cadence_qspi_apb_command_write(void *reg_base, unsigned int cmdlen, const u8 *cmdbuf, unsigned int txlen, const u8 *txbuf) { unsigned int reg = 0; unsigned int addr_value; unsigned int wr_data; unsigned int wr_len; if (!cmdlen || cmdlen > 5 || txlen > 8 || cmdbuf == NULL) { printf("QSPI: Invalid input arguments cmdlen %d txlen %d\n", cmdlen, txlen); return -EINVAL; } reg |= cmdbuf[0] << CQSPI_REG_CMDCTRL_OPCODE_LSB; if (cmdlen == 4 || cmdlen == 5) { /* Command with address */ reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB); /* Number of bytes to write. */ reg |= ((cmdlen - 2) & CQSPI_REG_CMDCTRL_ADD_BYTES_MASK) << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB; /* Get address */ addr_value = cadence_qspi_apb_cmd2addr(&cmdbuf[1], cmdlen >= 5 ? 4 : 3); writel(addr_value, reg_base + CQSPI_REG_CMDADDRESS); } if (txlen) { /* writing data = yes */ reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB); reg |= ((txlen - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK) << CQSPI_REG_CMDCTRL_WR_BYTES_LSB; wr_len = txlen > 4 ? 4 : txlen; memcpy(&wr_data, txbuf, wr_len); writel(wr_data, reg_base + CQSPI_REG_CMDWRITEDATALOWER); if (txlen > 4) { txbuf += wr_len; wr_len = txlen - wr_len; memcpy(&wr_data, txbuf, wr_len); writel(wr_data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER); } } /* Execute the command */ return cadence_qspi_apb_exec_flash_cmd(reg_base, reg); } /* Opcode + Address (3/4 bytes) + dummy bytes (0-4 bytes) */ int cadence_qspi_apb_indirect_read_setup(struct cadence_spi_platdata *plat, unsigned int cmdlen, const u8 *cmdbuf) { unsigned int reg; unsigned int rd_reg; unsigned int addr_value; unsigned int dummy_clk; unsigned int dummy_bytes; unsigned int addr_bytes; /* * Identify addr_byte. All NOR flash device drivers are using fast read * which always expecting 1 dummy byte, 1 cmd byte and 3/4 addr byte. * With that, the length is in value of 5 or 6. Only FRAM chip from * ramtron using normal read (which won't need dummy byte). * Unlikely NOR flash using normal read due to performance issue. */ if (cmdlen >= 5) /* to cater fast read where cmd + addr + dummy */ addr_bytes = cmdlen - 2; else /* for normal read (only ramtron as of now) */ addr_bytes = cmdlen - 1; /* Setup the indirect trigger address */ writel(((u32)plat->ahbbase & CQSPI_INDIRECTTRIGGER_ADDR_MASK), plat->regbase + CQSPI_REG_INDIRECTTRIGGER); /* Configure the opcode */ rd_reg = cmdbuf[0] << CQSPI_REG_RD_INSTR_OPCODE_LSB; #if (CONFIG_SPI_FLASH_QUAD == 1) /* Instruction and address at DQ0, data at DQ0-3. */ rd_reg |= CQSPI_INST_TYPE_QUAD << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB; #endif /* Get address */ addr_value = cadence_qspi_apb_cmd2addr(&cmdbuf[1], addr_bytes); writel(addr_value, plat->regbase + CQSPI_REG_INDIRECTRDSTARTADDR); /* The remaining lenght is dummy bytes. */ dummy_bytes = cmdlen - addr_bytes - 1; if (dummy_bytes) { if (dummy_bytes > CQSPI_DUMMY_BYTES_MAX) dummy_bytes = CQSPI_DUMMY_BYTES_MAX; rd_reg |= (1 << CQSPI_REG_RD_INSTR_MODE_EN_LSB); #if defined(CONFIG_SPL_SPI_XIP) && defined(CONFIG_SPL_BUILD) writel(0x0, plat->regbase + CQSPI_REG_MODE_BIT); #else writel(0xFF, plat->regbase + CQSPI_REG_MODE_BIT); #endif /* Convert to clock cycles. */ dummy_clk = dummy_bytes * CQSPI_DUMMY_CLKS_PER_BYTE; /* Need to minus the mode byte (8 clocks). */ dummy_clk -= CQSPI_DUMMY_CLKS_PER_BYTE; if (dummy_clk) rd_reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK) << CQSPI_REG_RD_INSTR_DUMMY_LSB; } writel(rd_reg, plat->regbase + CQSPI_REG_RD_INSTR); /* set device size */ reg = readl(plat->regbase + CQSPI_REG_SIZE); reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK; reg |= (addr_bytes - 1); writel(reg, plat->regbase + CQSPI_REG_SIZE); return 0; } int cadence_qspi_apb_indirect_read_execute(struct cadence_spi_platdata *plat, unsigned int rxlen, u8 *rxbuf) { unsigned int reg; writel(rxlen, plat->regbase + CQSPI_REG_INDIRECTRDBYTES); /* Start the indirect read transfer */ writel(CQSPI_REG_INDIRECTRD_START_MASK, plat->regbase + CQSPI_REG_INDIRECTRD); if (qspi_read_sram_fifo_poll(plat->regbase, (void *)rxbuf, (const void *)plat->ahbbase, rxlen)) goto failrd; /* Check flash indirect controller */ reg = readl(plat->regbase + CQSPI_REG_INDIRECTRD); if (!(reg & CQSPI_REG_INDIRECTRD_DONE_MASK)) { reg = readl(plat->regbase + CQSPI_REG_INDIRECTRD); printf("QSPI: indirect completion status error with reg 0x%08x\n", reg); goto failrd; } /* Clear indirect completion status */ writel(CQSPI_REG_INDIRECTRD_DONE_MASK, plat->regbase + CQSPI_REG_INDIRECTRD); return 0; failrd: /* Cancel the indirect read */ writel(CQSPI_REG_INDIRECTRD_CANCEL_MASK, plat->regbase + CQSPI_REG_INDIRECTRD); return -1; } /* Opcode + Address (3/4 bytes) */ int cadence_qspi_apb_indirect_write_setup(struct cadence_spi_platdata *plat, unsigned int cmdlen, const u8 *cmdbuf) { unsigned int reg; unsigned int addr_bytes = cmdlen > 4 ? 4 : 3; if (cmdlen < 4 || cmdbuf == NULL) { printf("QSPI: iInvalid input argument, len %d cmdbuf 0x%08x\n", cmdlen, (unsigned int)cmdbuf); return -EINVAL; } /* Setup the indirect trigger address */ writel(((u32)plat->ahbbase & CQSPI_INDIRECTTRIGGER_ADDR_MASK), plat->regbase + CQSPI_REG_INDIRECTTRIGGER); /* Configure the opcode */ reg = cmdbuf[0] << CQSPI_REG_WR_INSTR_OPCODE_LSB; writel(reg, plat->regbase + CQSPI_REG_WR_INSTR); /* Setup write address. */ reg = cadence_qspi_apb_cmd2addr(&cmdbuf[1], addr_bytes); writel(reg, plat->regbase + CQSPI_REG_INDIRECTWRSTARTADDR); reg = readl(plat->regbase + CQSPI_REG_SIZE); reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK; reg |= (addr_bytes - 1); writel(reg, plat->regbase + CQSPI_REG_SIZE); return 0; } int cadence_qspi_apb_indirect_write_execute(struct cadence_spi_platdata *plat, unsigned int txlen, const u8 *txbuf) { unsigned int reg = 0; unsigned int retry; /* Configure the indirect read transfer bytes */ writel(txlen, plat->regbase + CQSPI_REG_INDIRECTWRBYTES); /* Start the indirect write transfer */ writel(CQSPI_REG_INDIRECTWR_START_MASK, plat->regbase + CQSPI_REG_INDIRECTWR); if (qpsi_write_sram_fifo_push(plat, (const void *)txbuf, txlen)) goto failwr; /* Wait until last write is completed (FIFO empty) */ retry = CQSPI_REG_RETRY; while (retry--) { reg = CQSPI_GET_WR_SRAM_LEVEL(plat->regbase); if (reg == 0) break; udelay(1); } if (reg != 0) { printf("QSPI: timeout for indirect write\n"); goto failwr; } /* Check flash indirect controller status */ retry = CQSPI_REG_RETRY; while (retry--) { reg = readl(plat->regbase + CQSPI_REG_INDIRECTWR); if (reg & CQSPI_REG_INDIRECTWR_DONE_MASK) break; udelay(1); } if (!(reg & CQSPI_REG_INDIRECTWR_DONE_MASK)) { printf("QSPI: indirect completion status error with reg 0x%08x\n", reg); goto failwr; } /* Clear indirect completion status */ writel(CQSPI_REG_INDIRECTWR_DONE_MASK, plat->regbase + CQSPI_REG_INDIRECTWR); return 0; failwr: /* Cancel the indirect write */ writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK, plat->regbase + CQSPI_REG_INDIRECTWR); return -1; } void cadence_qspi_apb_enter_xip(void *reg_base, char xip_dummy) { unsigned int reg; /* enter XiP mode immediately and enable direct mode */ reg = readl(reg_base + CQSPI_REG_CONFIG); reg |= CQSPI_REG_CONFIG_ENABLE_MASK; reg |= CQSPI_REG_CONFIG_DIRECT_MASK; reg |= CQSPI_REG_CONFIG_XIP_IMM_MASK; writel(reg, reg_base + CQSPI_REG_CONFIG); /* keep the XiP mode */ writel(xip_dummy, reg_base + CQSPI_REG_MODE_BIT); /* Enable mode bit at devrd */ reg = readl(reg_base + CQSPI_REG_RD_INSTR); reg |= (1 << CQSPI_REG_RD_INSTR_MODE_EN_LSB); writel(reg, reg_base + CQSPI_REG_RD_INSTR); }