/* * Copyright (C) 2012 Altera Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - Neither the name of the Altera Corporation nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL ALTERA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include "cadence_qspi.h" #define CQSPI_REG_POLL_US 1 /* 1us */ #define CQSPI_REG_RETRY 10000 #define CQSPI_POLL_IDLE_RETRY 3 /* Transfer mode */ #define CQSPI_INST_TYPE_SINGLE 0 #define CQSPI_INST_TYPE_DUAL 1 #define CQSPI_INST_TYPE_QUAD 2 #define CQSPI_INST_TYPE_OCTAL 3 #define CQSPI_STIG_DATA_LEN_MAX 8 #define CQSPI_DUMMY_CLKS_PER_BYTE 8 #define CQSPI_DUMMY_BYTES_MAX 4 /**************************************************************************** * Controller's configuration and status register (offset from QSPI_BASE) ****************************************************************************/ #define CQSPI_REG_CONFIG 0x00 #define CQSPI_REG_CONFIG_ENABLE BIT(0) #define CQSPI_REG_CONFIG_CLK_POL BIT(1) #define CQSPI_REG_CONFIG_CLK_PHA BIT(2) #define CQSPI_REG_CONFIG_DIRECT BIT(7) #define CQSPI_REG_CONFIG_DECODE BIT(9) #define CQSPI_REG_CONFIG_XIP_IMM BIT(18) #define CQSPI_REG_CONFIG_CHIPSELECT_LSB 10 #define CQSPI_REG_CONFIG_BAUD_LSB 19 #define CQSPI_REG_CONFIG_IDLE_LSB 31 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK 0xF #define CQSPI_REG_CONFIG_BAUD_MASK 0xF #define CQSPI_REG_RD_INSTR 0x04 #define CQSPI_REG_RD_INSTR_OPCODE_LSB 0 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB 8 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB 12 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB 16 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB 20 #define CQSPI_REG_RD_INSTR_DUMMY_LSB 24 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK 0x3 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK 0x3 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK 0x3 #define CQSPI_REG_RD_INSTR_DUMMY_MASK 0x1F #define CQSPI_REG_WR_INSTR 0x08 #define CQSPI_REG_WR_INSTR_OPCODE_LSB 0 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB 16 #define CQSPI_REG_DELAY 0x0C #define CQSPI_REG_DELAY_TSLCH_LSB 0 #define CQSPI_REG_DELAY_TCHSH_LSB 8 #define CQSPI_REG_DELAY_TSD2D_LSB 16 #define CQSPI_REG_DELAY_TSHSL_LSB 24 #define CQSPI_REG_DELAY_TSLCH_MASK 0xFF #define CQSPI_REG_DELAY_TCHSH_MASK 0xFF #define CQSPI_REG_DELAY_TSD2D_MASK 0xFF #define CQSPI_REG_DELAY_TSHSL_MASK 0xFF #define CQSPI_REG_RD_DATA_CAPTURE 0x10 #define CQSPI_REG_RD_DATA_CAPTURE_BYPASS BIT(0) #define CQSPI_REG_RD_DATA_CAPTURE_DELAY_LSB 1 #define CQSPI_REG_RD_DATA_CAPTURE_DELAY_MASK 0xF #define CQSPI_REG_SIZE 0x14 #define CQSPI_REG_SIZE_ADDRESS_LSB 0 #define CQSPI_REG_SIZE_PAGE_LSB 4 #define CQSPI_REG_SIZE_BLOCK_LSB 16 #define CQSPI_REG_SIZE_ADDRESS_MASK 0xF #define CQSPI_REG_SIZE_PAGE_MASK 0xFFF #define CQSPI_REG_SIZE_BLOCK_MASK 0x3F #define CQSPI_REG_SRAMPARTITION 0x18 #define CQSPI_REG_INDIRECTTRIGGER 0x1C #define CQSPI_REG_REMAP 0x24 #define CQSPI_REG_MODE_BIT 0x28 #define CQSPI_REG_SDRAMLEVEL 0x2C #define CQSPI_REG_SDRAMLEVEL_RD_LSB 0 #define CQSPI_REG_SDRAMLEVEL_WR_LSB 16 #define CQSPI_REG_SDRAMLEVEL_RD_MASK 0xFFFF #define CQSPI_REG_SDRAMLEVEL_WR_MASK 0xFFFF #define CQSPI_REG_IRQSTATUS 0x40 #define CQSPI_REG_IRQMASK 0x44 #define CQSPI_REG_INDIRECTRD 0x60 #define CQSPI_REG_INDIRECTRD_START BIT(0) #define CQSPI_REG_INDIRECTRD_CANCEL BIT(1) #define CQSPI_REG_INDIRECTRD_INPROGRESS BIT(2) #define CQSPI_REG_INDIRECTRD_DONE BIT(5) #define CQSPI_REG_INDIRECTRDWATERMARK 0x64 #define CQSPI_REG_INDIRECTRDSTARTADDR 0x68 #define CQSPI_REG_INDIRECTRDBYTES 0x6C #define CQSPI_REG_CMDCTRL 0x90 #define CQSPI_REG_CMDCTRL_EXECUTE BIT(0) #define CQSPI_REG_CMDCTRL_INPROGRESS BIT(1) #define CQSPI_REG_CMDCTRL_DUMMY_LSB 7 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB 12 #define CQSPI_REG_CMDCTRL_WR_EN_LSB 15 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB 16 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB 19 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB 20 #define CQSPI_REG_CMDCTRL_RD_EN_LSB 23 #define CQSPI_REG_CMDCTRL_OPCODE_LSB 24 #define CQSPI_REG_CMDCTRL_DUMMY_MASK 0x1F #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK 0x7 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK 0x3 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK 0x7 #define CQSPI_REG_CMDCTRL_OPCODE_MASK 0xFF #define CQSPI_REG_INDIRECTWR 0x70 #define CQSPI_REG_INDIRECTWR_START BIT(0) #define CQSPI_REG_INDIRECTWR_CANCEL BIT(1) #define CQSPI_REG_INDIRECTWR_INPROGRESS BIT(2) #define CQSPI_REG_INDIRECTWR_DONE BIT(5) #define CQSPI_REG_INDIRECTWRWATERMARK 0x74 #define CQSPI_REG_INDIRECTWRSTARTADDR 0x78 #define CQSPI_REG_INDIRECTWRBYTES 0x7C #define CQSPI_REG_CMDADDRESS 0x94 #define CQSPI_REG_CMDREADDATALOWER 0xA0 #define CQSPI_REG_CMDREADDATAUPPER 0xA4 #define CQSPI_REG_CMDWRITEDATALOWER 0xA8 #define CQSPI_REG_CMDWRITEDATAUPPER 0xAC #define CQSPI_REG_IS_IDLE(base) \ ((readl(base + CQSPI_REG_CONFIG) >> \ CQSPI_REG_CONFIG_IDLE_LSB) & 0x1) #define CQSPI_GET_RD_SRAM_LEVEL(reg_base) \ (((readl(reg_base + CQSPI_REG_SDRAMLEVEL)) >> \ CQSPI_REG_SDRAMLEVEL_RD_LSB) & CQSPI_REG_SDRAMLEVEL_RD_MASK) #define CQSPI_GET_WR_SRAM_LEVEL(reg_base) \ (((readl(reg_base + CQSPI_REG_SDRAMLEVEL)) >> \ CQSPI_REG_SDRAMLEVEL_WR_LSB) & CQSPI_REG_SDRAMLEVEL_WR_MASK) void cadence_qspi_apb_controller_enable(void *reg_base) { unsigned int reg; reg = readl(reg_base + CQSPI_REG_CONFIG); reg |= CQSPI_REG_CONFIG_ENABLE; writel(reg, reg_base + CQSPI_REG_CONFIG); } void cadence_qspi_apb_controller_disable(void *reg_base) { unsigned int reg; reg = readl(reg_base + CQSPI_REG_CONFIG); reg &= ~CQSPI_REG_CONFIG_ENABLE; writel(reg, reg_base + CQSPI_REG_CONFIG); } void cadence_qspi_apb_dac_mode_enable(void *reg_base) { unsigned int reg; reg = readl(reg_base + CQSPI_REG_CONFIG); reg |= CQSPI_REG_CONFIG_DIRECT; writel(reg, reg_base + CQSPI_REG_CONFIG); } /* Return 1 if idle, otherwise return 0 (busy). */ static unsigned int cadence_qspi_wait_idle(void *reg_base) { unsigned int start, count = 0; /* timeout in unit of ms */ unsigned int timeout = 5000; start = get_timer(0); for ( ; get_timer(start) < timeout ; ) { if (CQSPI_REG_IS_IDLE(reg_base)) count++; else count = 0; /* * Ensure the QSPI controller is in true idle state after * reading back the same idle status consecutively */ if (count >= CQSPI_POLL_IDLE_RETRY) return 1; } /* Timeout, still in busy mode. */ printf("QSPI: QSPI is still busy after poll for %d times.\n", CQSPI_REG_RETRY); return 0; } void cadence_qspi_apb_readdata_capture(void *reg_base, unsigned int bypass, unsigned int delay) { unsigned int reg; cadence_qspi_apb_controller_disable(reg_base); reg = readl(reg_base + CQSPI_REG_RD_DATA_CAPTURE); if (bypass) reg |= CQSPI_REG_RD_DATA_CAPTURE_BYPASS; else reg &= ~CQSPI_REG_RD_DATA_CAPTURE_BYPASS; reg &= ~(CQSPI_REG_RD_DATA_CAPTURE_DELAY_MASK << CQSPI_REG_RD_DATA_CAPTURE_DELAY_LSB); reg |= (delay & CQSPI_REG_RD_DATA_CAPTURE_DELAY_MASK) << CQSPI_REG_RD_DATA_CAPTURE_DELAY_LSB; writel(reg, reg_base + CQSPI_REG_RD_DATA_CAPTURE); cadence_qspi_apb_controller_enable(reg_base); } void cadence_qspi_apb_config_baudrate_div(void *reg_base, unsigned int ref_clk_hz, unsigned int sclk_hz) { unsigned int reg; unsigned int div; cadence_qspi_apb_controller_disable(reg_base); reg = readl(reg_base + CQSPI_REG_CONFIG); reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB); /* * The baud_div field in the config reg is 4 bits, and the ref clock is * divided by 2 * (baud_div + 1). Round up the divider to ensure the * SPI clock rate is less than or equal to the requested clock rate. */ div = DIV_ROUND_UP(ref_clk_hz, sclk_hz * 2) - 1; /* ensure the baud rate doesn't exceed the max value */ if (div > CQSPI_REG_CONFIG_BAUD_MASK) div = CQSPI_REG_CONFIG_BAUD_MASK; debug("%s: ref_clk %dHz sclk %dHz Div 0x%x, actual %dHz\n", __func__, ref_clk_hz, sclk_hz, div, ref_clk_hz / (2 * (div + 1))); reg |= (div << CQSPI_REG_CONFIG_BAUD_LSB); writel(reg, reg_base + CQSPI_REG_CONFIG); cadence_qspi_apb_controller_enable(reg_base); } void cadence_qspi_apb_set_clk_mode(void *reg_base, uint mode) { unsigned int reg; cadence_qspi_apb_controller_disable(reg_base); reg = readl(reg_base + CQSPI_REG_CONFIG); reg &= ~(CQSPI_REG_CONFIG_CLK_POL | CQSPI_REG_CONFIG_CLK_PHA); if (mode & SPI_CPOL) reg |= CQSPI_REG_CONFIG_CLK_POL; if (mode & SPI_CPHA) reg |= CQSPI_REG_CONFIG_CLK_PHA; writel(reg, reg_base + CQSPI_REG_CONFIG); cadence_qspi_apb_controller_enable(reg_base); } void cadence_qspi_apb_chipselect(void *reg_base, unsigned int chip_select, unsigned int decoder_enable) { unsigned int reg; cadence_qspi_apb_controller_disable(reg_base); debug("%s : chipselect %d decode %d\n", __func__, chip_select, decoder_enable); reg = readl(reg_base + CQSPI_REG_CONFIG); /* docoder */ if (decoder_enable) { reg |= CQSPI_REG_CONFIG_DECODE; } else { reg &= ~CQSPI_REG_CONFIG_DECODE; /* Convert CS if without decoder. * CS0 to 4b'1110 * CS1 to 4b'1101 * CS2 to 4b'1011 * CS3 to 4b'0111 */ chip_select = 0xF & ~(1 << chip_select); } reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK << CQSPI_REG_CONFIG_CHIPSELECT_LSB); reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK) << CQSPI_REG_CONFIG_CHIPSELECT_LSB; writel(reg, reg_base + CQSPI_REG_CONFIG); cadence_qspi_apb_controller_enable(reg_base); } void cadence_qspi_apb_delay(void *reg_base, unsigned int ref_clk, unsigned int sclk_hz, unsigned int tshsl_ns, unsigned int tsd2d_ns, unsigned int tchsh_ns, unsigned int tslch_ns) { unsigned int ref_clk_ns; unsigned int sclk_ns; unsigned int tshsl, tchsh, tslch, tsd2d; unsigned int reg; cadence_qspi_apb_controller_disable(reg_base); /* Convert to ns. */ ref_clk_ns = DIV_ROUND_UP(1000000000, ref_clk); /* Convert to ns. */ sclk_ns = DIV_ROUND_UP(1000000000, sclk_hz); /* The controller adds additional delay to that programmed in the reg */ if (tshsl_ns >= sclk_ns + ref_clk_ns) tshsl_ns -= sclk_ns + ref_clk_ns; if (tchsh_ns >= sclk_ns + 3 * ref_clk_ns) tchsh_ns -= sclk_ns + 3 * ref_clk_ns; tshsl = DIV_ROUND_UP(tshsl_ns, ref_clk_ns); tchsh = DIV_ROUND_UP(tchsh_ns, ref_clk_ns); tslch = DIV_ROUND_UP(tslch_ns, ref_clk_ns); tsd2d = DIV_ROUND_UP(tsd2d_ns, ref_clk_ns); reg = ((tshsl & CQSPI_REG_DELAY_TSHSL_MASK) << CQSPI_REG_DELAY_TSHSL_LSB); reg |= ((tchsh & CQSPI_REG_DELAY_TCHSH_MASK) << CQSPI_REG_DELAY_TCHSH_LSB); reg |= ((tslch & CQSPI_REG_DELAY_TSLCH_MASK) << CQSPI_REG_DELAY_TSLCH_LSB); reg |= ((tsd2d & CQSPI_REG_DELAY_TSD2D_MASK) << CQSPI_REG_DELAY_TSD2D_LSB); writel(reg, reg_base + CQSPI_REG_DELAY); cadence_qspi_apb_controller_enable(reg_base); } void cadence_qspi_apb_controller_init(struct cadence_spi_platdata *plat) { unsigned reg; cadence_qspi_apb_controller_disable(plat->regbase); /* Configure the device size and address bytes */ reg = readl(plat->regbase + CQSPI_REG_SIZE); /* Clear the previous value */ reg &= ~(CQSPI_REG_SIZE_PAGE_MASK << CQSPI_REG_SIZE_PAGE_LSB); reg &= ~(CQSPI_REG_SIZE_BLOCK_MASK << CQSPI_REG_SIZE_BLOCK_LSB); reg |= (plat->page_size << CQSPI_REG_SIZE_PAGE_LSB); reg |= (plat->block_size << CQSPI_REG_SIZE_BLOCK_LSB); writel(reg, plat->regbase + CQSPI_REG_SIZE); /* Configure the remap address register, no remap */ writel(0, plat->regbase + CQSPI_REG_REMAP); /* Indirect mode configurations */ writel(plat->fifo_depth / 2, plat->regbase + CQSPI_REG_SRAMPARTITION); /* Disable all interrupts */ writel(0, plat->regbase + CQSPI_REG_IRQMASK); cadence_qspi_apb_controller_enable(plat->regbase); } static int cadence_qspi_apb_exec_flash_cmd(void *reg_base, unsigned int reg) { unsigned int retry = CQSPI_REG_RETRY; /* Write the CMDCTRL without start execution. */ writel(reg, reg_base + CQSPI_REG_CMDCTRL); /* Start execute */ reg |= CQSPI_REG_CMDCTRL_EXECUTE; writel(reg, reg_base + CQSPI_REG_CMDCTRL); while (retry--) { reg = readl(reg_base + CQSPI_REG_CMDCTRL); if ((reg & CQSPI_REG_CMDCTRL_INPROGRESS) == 0) break; udelay(1); } if (!retry) { printf("QSPI: flash command execution timeout\n"); return -EIO; } /* Polling QSPI idle status. */ if (!cadence_qspi_wait_idle(reg_base)) return -EIO; return 0; } /* For command RDID, RDSR. */ int cadence_qspi_apb_command_read(void *reg_base, const struct spi_mem_op *op) { unsigned int reg; unsigned int read_len; int status; unsigned int rxlen = op->data.nbytes; void *rxbuf = op->data.buf.in; if (rxlen > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) { printf("QSPI: Invalid input arguments rxlen %u\n", rxlen); return -EINVAL; } reg = op->cmd.opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB; reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB); /* 0 means 1 byte. */ reg |= (((rxlen - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK) << CQSPI_REG_CMDCTRL_RD_BYTES_LSB); status = cadence_qspi_apb_exec_flash_cmd(reg_base, reg); if (status != 0) return status; reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER); /* Put the read value into rx_buf */ read_len = (rxlen > 4) ? 4 : rxlen; memcpy(rxbuf, ®, read_len); rxbuf += read_len; if (rxlen > 4) { reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER); read_len = rxlen - read_len; memcpy(rxbuf, ®, read_len); } return 0; } /* For commands: WRSR, WREN, WRDI, CHIP_ERASE, BE, etc. */ int cadence_qspi_apb_command_write(void *reg_base, const struct spi_mem_op *op) { unsigned int reg = 0; unsigned int wr_data; unsigned int wr_len; unsigned int txlen = op->data.nbytes; const void *txbuf = op->data.buf.out; u32 addr; /* Reorder address to SPI bus order if only transferring address */ if (!txlen) { addr = cpu_to_be32(op->addr.val); if (op->addr.nbytes == 3) addr >>= 8; txbuf = &addr; txlen = op->addr.nbytes; } if (txlen > CQSPI_STIG_DATA_LEN_MAX) { printf("QSPI: Invalid input arguments txlen %u\n", txlen); return -EINVAL; } reg |= op->cmd.opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB; if (txlen) { /* writing data = yes */ reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB); reg |= ((txlen - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK) << CQSPI_REG_CMDCTRL_WR_BYTES_LSB; wr_len = txlen > 4 ? 4 : txlen; memcpy(&wr_data, txbuf, wr_len); writel(wr_data, reg_base + CQSPI_REG_CMDWRITEDATALOWER); if (txlen > 4) { txbuf += wr_len; wr_len = txlen - wr_len; memcpy(&wr_data, txbuf, wr_len); writel(wr_data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER); } } /* Execute the command */ return cadence_qspi_apb_exec_flash_cmd(reg_base, reg); } /* Opcode + Address (3/4 bytes) + dummy bytes (0-4 bytes) */ int cadence_qspi_apb_read_setup(struct cadence_spi_platdata *plat, const struct spi_mem_op *op) { unsigned int reg; unsigned int rd_reg; unsigned int dummy_clk; unsigned int dummy_bytes = op->dummy.nbytes; /* Setup the indirect trigger address */ writel(plat->trigger_address, plat->regbase + CQSPI_REG_INDIRECTTRIGGER); /* Configure the opcode */ rd_reg = op->cmd.opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB; if (op->data.buswidth == 8) /* Instruction and address at DQ0, data at DQ0-7. */ rd_reg |= CQSPI_INST_TYPE_OCTAL << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB; else if (op->data.buswidth == 4) /* Instruction and address at DQ0, data at DQ0-3. */ rd_reg |= CQSPI_INST_TYPE_QUAD << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB; writel(op->addr.val, plat->regbase + CQSPI_REG_INDIRECTRDSTARTADDR); if (dummy_bytes) { if (dummy_bytes > CQSPI_DUMMY_BYTES_MAX) dummy_bytes = CQSPI_DUMMY_BYTES_MAX; /* Convert to clock cycles. */ dummy_clk = dummy_bytes * CQSPI_DUMMY_CLKS_PER_BYTE; if (dummy_clk) rd_reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK) << CQSPI_REG_RD_INSTR_DUMMY_LSB; } writel(rd_reg, plat->regbase + CQSPI_REG_RD_INSTR); /* set device size */ reg = readl(plat->regbase + CQSPI_REG_SIZE); reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK; reg |= (op->addr.nbytes - 1); writel(reg, plat->regbase + CQSPI_REG_SIZE); return 0; } static u32 cadence_qspi_get_rd_sram_level(struct cadence_spi_platdata *plat) { u32 reg = readl(plat->regbase + CQSPI_REG_SDRAMLEVEL); reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB; return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK; } static int cadence_qspi_wait_for_data(struct cadence_spi_platdata *plat) { unsigned int timeout = 10000; u32 reg; while (timeout--) { reg = cadence_qspi_get_rd_sram_level(plat); if (reg) return reg; udelay(1); } return -ETIMEDOUT; } static int cadence_qspi_apb_indirect_read_execute(struct cadence_spi_platdata *plat, unsigned int n_rx, u8 *rxbuf) { unsigned int remaining = n_rx; unsigned int bytes_to_read = 0; int ret; writel(n_rx, plat->regbase + CQSPI_REG_INDIRECTRDBYTES); /* Start the indirect read transfer */ writel(CQSPI_REG_INDIRECTRD_START, plat->regbase + CQSPI_REG_INDIRECTRD); while (remaining > 0) { ret = cadence_qspi_wait_for_data(plat); if (ret < 0) { printf("Indirect write timed out (%i)\n", ret); goto failrd; } bytes_to_read = ret; while (bytes_to_read != 0) { bytes_to_read *= plat->fifo_width; bytes_to_read = bytes_to_read > remaining ? remaining : bytes_to_read; /* * Handle non-4-byte aligned access to avoid * data abort. */ if (((uintptr_t)rxbuf % 4) || (bytes_to_read % 4)) readsb(plat->ahbbase, rxbuf, bytes_to_read); else readsl(plat->ahbbase, rxbuf, bytes_to_read >> 2); rxbuf += bytes_to_read; remaining -= bytes_to_read; bytes_to_read = cadence_qspi_get_rd_sram_level(plat); } } /* Check indirect done status */ ret = wait_for_bit_le32(plat->regbase + CQSPI_REG_INDIRECTRD, CQSPI_REG_INDIRECTRD_DONE, 1, 10, 0); if (ret) { printf("Indirect read completion error (%i)\n", ret); goto failrd; } /* Clear indirect completion status */ writel(CQSPI_REG_INDIRECTRD_DONE, plat->regbase + CQSPI_REG_INDIRECTRD); return 0; failrd: /* Cancel the indirect read */ writel(CQSPI_REG_INDIRECTRD_CANCEL, plat->regbase + CQSPI_REG_INDIRECTRD); return ret; } int cadence_qspi_apb_read_execute(struct cadence_spi_platdata *plat, const struct spi_mem_op *op) { u64 from = op->addr.val; void *buf = op->data.buf.in; size_t len = op->data.nbytes; if (plat->use_dac_mode && (from + len < plat->ahbsize)) { if (len < 256 || dma_memcpy(buf, plat->ahbbase + from, len) < 0) { memcpy_fromio(buf, plat->ahbbase + from, len); } if (!cadence_qspi_wait_idle(plat->regbase)) return -EIO; return 0; } return cadence_qspi_apb_indirect_read_execute(plat, len, buf); } /* Opcode + Address (3/4 bytes) */ int cadence_qspi_apb_write_setup(struct cadence_spi_platdata *plat, const struct spi_mem_op *op) { unsigned int reg; /* Setup the indirect trigger address */ writel(plat->trigger_address, plat->regbase + CQSPI_REG_INDIRECTTRIGGER); /* Configure the opcode */ reg = op->cmd.opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB; writel(reg, plat->regbase + CQSPI_REG_WR_INSTR); writel(op->addr.val, plat->regbase + CQSPI_REG_INDIRECTWRSTARTADDR); reg = readl(plat->regbase + CQSPI_REG_SIZE); reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK; reg |= (op->addr.nbytes - 1); writel(reg, plat->regbase + CQSPI_REG_SIZE); return 0; } static int cadence_qspi_apb_indirect_write_execute(struct cadence_spi_platdata *plat, unsigned int n_tx, const u8 *txbuf) { unsigned int page_size = plat->page_size; unsigned int remaining = n_tx; const u8 *bb_txbuf = txbuf; void *bounce_buf = NULL; unsigned int write_bytes; int ret; /* * Use bounce buffer for non 32 bit aligned txbuf to avoid data * aborts */ if ((uintptr_t)txbuf % 4) { bounce_buf = malloc(n_tx); if (!bounce_buf) return -ENOMEM; memcpy(bounce_buf, txbuf, n_tx); bb_txbuf = bounce_buf; } /* Configure the indirect read transfer bytes */ writel(n_tx, plat->regbase + CQSPI_REG_INDIRECTWRBYTES); /* Start the indirect write transfer */ writel(CQSPI_REG_INDIRECTWR_START, plat->regbase + CQSPI_REG_INDIRECTWR); while (remaining > 0) { write_bytes = remaining > page_size ? page_size : remaining; writesl(plat->ahbbase, bb_txbuf, write_bytes >> 2); if (write_bytes % 4) writesb(plat->ahbbase, bb_txbuf + rounddown(write_bytes, 4), write_bytes % 4); ret = wait_for_bit_le32(plat->regbase + CQSPI_REG_SDRAMLEVEL, CQSPI_REG_SDRAMLEVEL_WR_MASK << CQSPI_REG_SDRAMLEVEL_WR_LSB, 0, 10, 0); if (ret) { printf("Indirect write timed out (%i)\n", ret); goto failwr; } bb_txbuf += write_bytes; remaining -= write_bytes; } /* Check indirect done status */ ret = wait_for_bit_le32(plat->regbase + CQSPI_REG_INDIRECTWR, CQSPI_REG_INDIRECTWR_DONE, 1, 10, 0); if (ret) { printf("Indirect write completion error (%i)\n", ret); goto failwr; } /* Clear indirect completion status */ writel(CQSPI_REG_INDIRECTWR_DONE, plat->regbase + CQSPI_REG_INDIRECTWR); if (bounce_buf) free(bounce_buf); return 0; failwr: /* Cancel the indirect write */ writel(CQSPI_REG_INDIRECTWR_CANCEL, plat->regbase + CQSPI_REG_INDIRECTWR); if (bounce_buf) free(bounce_buf); return ret; } int cadence_qspi_apb_write_execute(struct cadence_spi_platdata *plat, const struct spi_mem_op *op) { u32 to = op->addr.val; const void *buf = op->data.buf.out; size_t len = op->data.nbytes; if (plat->use_dac_mode && (to + len < plat->ahbsize)) { memcpy_toio(plat->ahbbase + to, buf, len); if (!cadence_qspi_wait_idle(plat->regbase)) return -EIO; return 0; } return cadence_qspi_apb_indirect_write_execute(plat, len, buf); } void cadence_qspi_apb_enter_xip(void *reg_base, char xip_dummy) { unsigned int reg; /* enter XiP mode immediately and enable direct mode */ reg = readl(reg_base + CQSPI_REG_CONFIG); reg |= CQSPI_REG_CONFIG_ENABLE; reg |= CQSPI_REG_CONFIG_DIRECT; reg |= CQSPI_REG_CONFIG_XIP_IMM; writel(reg, reg_base + CQSPI_REG_CONFIG); /* keep the XiP mode */ writel(xip_dummy, reg_base + CQSPI_REG_MODE_BIT); /* Enable mode bit at devrd */ reg = readl(reg_base + CQSPI_REG_RD_INSTR); reg |= (1 << CQSPI_REG_RD_INSTR_MODE_EN_LSB); writel(reg, reg_base + CQSPI_REG_RD_INSTR); }