/* * (C) Copyright 2012 SAMSUNG Electronics * Padmavathi Venna <padma.v@samsung.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <common.h> #include <malloc.h> #include <spi.h> #include <fdtdec.h> #include <asm/arch/clk.h> #include <asm/arch/clock.h> #include <asm/arch/cpu.h> #include <asm/arch/gpio.h> #include <asm/arch/pinmux.h> #include <asm/arch-exynos/spi.h> #include <asm/io.h> DECLARE_GLOBAL_DATA_PTR; /* Information about each SPI controller */ struct spi_bus { enum periph_id periph_id; s32 frequency; /* Default clock frequency, -1 for none */ struct exynos_spi *regs; int inited; /* 1 if this bus is ready for use */ int node; }; /* A list of spi buses that we know about */ static struct spi_bus spi_bus[EXYNOS5_SPI_NUM_CONTROLLERS]; static unsigned int bus_count; struct exynos_spi_slave { struct spi_slave slave; struct exynos_spi *regs; unsigned int freq; /* Default frequency */ unsigned int mode; enum periph_id periph_id; /* Peripheral ID for this device */ unsigned int fifo_size; }; static struct spi_bus *spi_get_bus(unsigned dev_index) { if (dev_index < bus_count) return &spi_bus[dev_index]; debug("%s: invalid bus %d", __func__, dev_index); return NULL; } static inline struct exynos_spi_slave *to_exynos_spi(struct spi_slave *slave) { return container_of(slave, struct exynos_spi_slave, slave); } /** * Setup the driver private data * * @param bus ID of the bus that the slave is attached to * @param cs ID of the chip select connected to the slave * @param max_hz Required spi frequency * @param mode Required spi mode (clk polarity, clk phase and * master or slave) * @return new device or NULL */ struct spi_slave *spi_setup_slave(unsigned int busnum, unsigned int cs, unsigned int max_hz, unsigned int mode) { struct exynos_spi_slave *spi_slave; struct spi_bus *bus; if (!spi_cs_is_valid(busnum, cs)) { debug("%s: Invalid bus/chip select %d, %d\n", __func__, busnum, cs); return NULL; } spi_slave = malloc(sizeof(*spi_slave)); if (!spi_slave) { debug("%s: Could not allocate spi_slave\n", __func__); return NULL; } bus = &spi_bus[busnum]; spi_slave->slave.bus = busnum; spi_slave->slave.cs = cs; spi_slave->regs = bus->regs; spi_slave->mode = mode; spi_slave->periph_id = bus->periph_id; if (bus->periph_id == PERIPH_ID_SPI1 || bus->periph_id == PERIPH_ID_SPI2) spi_slave->fifo_size = 64; else spi_slave->fifo_size = 256; spi_slave->freq = bus->frequency; if (max_hz) spi_slave->freq = min(max_hz, spi_slave->freq); return &spi_slave->slave; } /** * Free spi controller * * @param slave Pointer to spi_slave to which controller has to * communicate with */ void spi_free_slave(struct spi_slave *slave) { struct exynos_spi_slave *spi_slave = to_exynos_spi(slave); free(spi_slave); } /** * Flush spi tx, rx fifos and reset the SPI controller * * @param slave Pointer to spi_slave to which controller has to * communicate with */ static void spi_flush_fifo(struct spi_slave *slave) { struct exynos_spi_slave *spi_slave = to_exynos_spi(slave); struct exynos_spi *regs = spi_slave->regs; clrsetbits_le32(®s->ch_cfg, SPI_CH_HS_EN, SPI_CH_RST); clrbits_le32(®s->ch_cfg, SPI_CH_RST); setbits_le32(®s->ch_cfg, SPI_TX_CH_ON | SPI_RX_CH_ON); } /** * Initialize the spi base registers, set the required clock frequency and * initialize the gpios * * @param slave Pointer to spi_slave to which controller has to * communicate with * @return zero on success else a negative value */ int spi_claim_bus(struct spi_slave *slave) { struct exynos_spi_slave *spi_slave = to_exynos_spi(slave); struct exynos_spi *regs = spi_slave->regs; u32 reg = 0; int ret; ret = set_spi_clk(spi_slave->periph_id, spi_slave->freq); if (ret < 0) { debug("%s: Failed to setup spi clock\n", __func__); return ret; } exynos_pinmux_config(spi_slave->periph_id, PINMUX_FLAG_NONE); spi_flush_fifo(slave); reg = readl(®s->ch_cfg); reg &= ~(SPI_CH_CPHA_B | SPI_CH_CPOL_L); if (spi_slave->mode & SPI_CPHA) reg |= SPI_CH_CPHA_B; if (spi_slave->mode & SPI_CPOL) reg |= SPI_CH_CPOL_L; writel(reg, ®s->ch_cfg); writel(SPI_FB_DELAY_180, ®s->fb_clk); return 0; } /** * Reset the spi H/W and flush the tx and rx fifos * * @param slave Pointer to spi_slave to which controller has to * communicate with */ void spi_release_bus(struct spi_slave *slave) { spi_flush_fifo(slave); } static void spi_get_fifo_levels(struct exynos_spi *regs, int *rx_lvl, int *tx_lvl) { uint32_t spi_sts = readl(®s->spi_sts); *rx_lvl = (spi_sts >> SPI_RX_LVL_OFFSET) & SPI_FIFO_LVL_MASK; *tx_lvl = (spi_sts >> SPI_TX_LVL_OFFSET) & SPI_FIFO_LVL_MASK; } /** * If there's something to transfer, do a software reset and set a * transaction size. * * @param regs SPI peripheral registers * @param count Number of bytes to transfer */ static void spi_request_bytes(struct exynos_spi *regs, int count) { assert(count && count < (1 << 16)); setbits_le32(®s->ch_cfg, SPI_CH_RST); clrbits_le32(®s->ch_cfg, SPI_CH_RST); writel(count | SPI_PACKET_CNT_EN, ®s->pkt_cnt); } static void spi_rx_tx(struct exynos_spi_slave *spi_slave, int todo, void **dinp, void const **doutp) { struct exynos_spi *regs = spi_slave->regs; uchar *rxp = *dinp; const uchar *txp = *doutp; int rx_lvl, tx_lvl; uint out_bytes, in_bytes; out_bytes = in_bytes = todo; /* * If there's something to send, do a software reset and set a * transaction size. */ spi_request_bytes(regs, todo); /* * Bytes are transmitted/received in pairs. Wait to receive all the * data because then transmission will be done as well. */ while (in_bytes) { int temp; /* Keep the fifos full/empty. */ spi_get_fifo_levels(regs, &rx_lvl, &tx_lvl); if (tx_lvl < spi_slave->fifo_size && out_bytes) { temp = txp ? *txp++ : 0xff; writel(temp, ®s->tx_data); out_bytes--; } if (rx_lvl > 0 && in_bytes) { temp = readl(®s->rx_data); if (rxp) *rxp++ = temp; in_bytes--; } } *dinp = rxp; *doutp = txp; } /** * Transfer and receive data * * @param slave Pointer to spi_slave to which controller has to * communicate with * @param bitlen No of bits to tranfer or receive * @param dout Pointer to transfer buffer * @param din Pointer to receive buffer * @param flags Flags for transfer begin and end * @return zero on success else a negative value */ int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout, void *din, unsigned long flags) { struct exynos_spi_slave *spi_slave = to_exynos_spi(slave); int upto, todo; int bytelen; /* spi core configured to do 8 bit transfers */ if (bitlen % 8) { debug("Non byte aligned SPI transfer.\n"); return -1; } /* Start the transaction, if necessary. */ if ((flags & SPI_XFER_BEGIN)) spi_cs_activate(slave); /* Exynos SPI limits each transfer to 65535 bytes */ bytelen = bitlen / 8; for (upto = 0; upto < bytelen; upto += todo) { todo = min(bytelen - upto, (1 << 16) - 1); spi_rx_tx(spi_slave, todo, &din, &dout); } /* Stop the transaction, if necessary. */ if ((flags & SPI_XFER_END)) spi_cs_deactivate(slave); return 0; } /** * Validates the bus and chip select numbers * * @param bus ID of the bus that the slave is attached to * @param cs ID of the chip select connected to the slave * @return one on success else zero */ int spi_cs_is_valid(unsigned int bus, unsigned int cs) { return spi_get_bus(bus) && cs == 0; } /** * Activate the CS by driving it LOW * * @param slave Pointer to spi_slave to which controller has to * communicate with */ void spi_cs_activate(struct spi_slave *slave) { struct exynos_spi_slave *spi_slave = to_exynos_spi(slave); clrbits_le32(&spi_slave->regs->cs_reg, SPI_SLAVE_SIG_INACT); debug("Activate CS, bus %d\n", spi_slave->slave.bus); } /** * Deactivate the CS by driving it HIGH * * @param slave Pointer to spi_slave to which controller has to * communicate with */ void spi_cs_deactivate(struct spi_slave *slave) { struct exynos_spi_slave *spi_slave = to_exynos_spi(slave); setbits_le32(&spi_slave->regs->cs_reg, SPI_SLAVE_SIG_INACT); debug("Deactivate CS, bus %d\n", spi_slave->slave.bus); } static inline struct exynos_spi *get_spi_base(int dev_index) { if (dev_index < 3) return (struct exynos_spi *)samsung_get_base_spi() + dev_index; else return (struct exynos_spi *)samsung_get_base_spi_isp() + (dev_index - 3); } /* * Read the SPI config from the device tree node. * * @param blob FDT blob to read from * @param node Node offset to read from * @param bus SPI bus structure to fill with information * @return 0 if ok, or -FDT_ERR_NOTFOUND if something was missing */ static int spi_get_config(const void *blob, int node, struct spi_bus *bus) { bus->node = node; bus->regs = (struct exynos_spi *)fdtdec_get_addr(blob, node, "reg"); bus->periph_id = pinmux_decode_periph_id(blob, node); if (bus->periph_id == PERIPH_ID_NONE) { debug("%s: Invalid peripheral ID %d\n", __func__, bus->periph_id); return -FDT_ERR_NOTFOUND; } /* Use 500KHz as a suitable default */ bus->frequency = fdtdec_get_int(blob, node, "spi-max-frequency", 500000); return 0; } /* * Process a list of nodes, adding them to our list of SPI ports. * * @param blob fdt blob * @param node_list list of nodes to process (any <=0 are ignored) * @param count number of nodes to process * @param is_dvc 1 if these are DVC ports, 0 if standard I2C * @return 0 if ok, -1 on error */ static int process_nodes(const void *blob, int node_list[], int count) { int i; /* build the i2c_controllers[] for each controller */ for (i = 0; i < count; i++) { int node = node_list[i]; struct spi_bus *bus; if (node <= 0) continue; bus = &spi_bus[i]; if (spi_get_config(blob, node, bus)) { printf("exynos spi_init: failed to decode bus %d\n", i); return -1; } debug("spi: controller bus %d at %p, periph_id %d\n", i, bus->regs, bus->periph_id); bus->inited = 1; bus_count++; } return 0; } /* Sadly there is no error return from this function */ void spi_init(void) { int count; #ifdef CONFIG_OF_CONTROL int node_list[EXYNOS5_SPI_NUM_CONTROLLERS]; const void *blob = gd->fdt_blob; count = fdtdec_find_aliases_for_id(blob, "spi", COMPAT_SAMSUNG_EXYNOS_SPI, node_list, EXYNOS5_SPI_NUM_CONTROLLERS); if (process_nodes(blob, node_list, count)) return; #else struct spi_bus *bus; for (count = 0; count < EXYNOS5_SPI_NUM_CONTROLLERS; count++) { bus = &spi_bus[count]; bus->regs = get_spi_base(count); bus->periph_id = PERIPH_ID_SPI0 + count; /* Although Exynos5 supports upto 50Mhz speed, * we are setting it to 10Mhz for safe side */ bus->frequency = 10000000; bus->inited = 1; bus->node = 0; bus_count = EXYNOS5_SPI_NUM_CONTROLLERS; } #endif }