// SPDX-License-Identifier: GPL-2.0+ /* * (C) Copyright 2012 SAMSUNG Electronics * Padmavathi Venna <padma.v@samsung.com> */ #include <common.h> #include <dm.h> #include <errno.h> #include <log.h> #include <malloc.h> #include <spi.h> #include <fdtdec.h> #include <time.h> #include <asm/arch/clk.h> #include <asm/arch/clock.h> #include <asm/arch/cpu.h> #include <asm/arch/gpio.h> #include <asm/arch/pinmux.h> #include <asm/arch/spi.h> #include <asm/io.h> #include <linux/delay.h> DECLARE_GLOBAL_DATA_PTR; struct exynos_spi_platdata { enum periph_id periph_id; s32 frequency; /* Default clock frequency, -1 for none */ struct exynos_spi *regs; uint deactivate_delay_us; /* Delay to wait after deactivate */ }; struct exynos_spi_priv { struct exynos_spi *regs; unsigned int freq; /* Default frequency */ unsigned int mode; enum periph_id periph_id; /* Peripheral ID for this device */ unsigned int fifo_size; int skip_preamble; ulong last_transaction_us; /* Time of last transaction end */ }; /** * Flush spi tx, rx fifos and reset the SPI controller * * @param regs Pointer to SPI registers */ static void spi_flush_fifo(struct exynos_spi *regs) { clrsetbits_le32(®s->ch_cfg, SPI_CH_HS_EN, SPI_CH_RST); clrbits_le32(®s->ch_cfg, SPI_CH_RST); setbits_le32(®s->ch_cfg, SPI_TX_CH_ON | SPI_RX_CH_ON); } static void spi_get_fifo_levels(struct exynos_spi *regs, int *rx_lvl, int *tx_lvl) { uint32_t spi_sts = readl(®s->spi_sts); *rx_lvl = (spi_sts >> SPI_RX_LVL_OFFSET) & SPI_FIFO_LVL_MASK; *tx_lvl = (spi_sts >> SPI_TX_LVL_OFFSET) & SPI_FIFO_LVL_MASK; } /** * If there's something to transfer, do a software reset and set a * transaction size. * * @param regs SPI peripheral registers * @param count Number of bytes to transfer * @param step Number of bytes to transfer in each packet (1 or 4) */ static void spi_request_bytes(struct exynos_spi *regs, int count, int step) { debug("%s: regs=%p, count=%d, step=%d\n", __func__, regs, count, step); /* For word address we need to swap bytes */ if (step == 4) { setbits_le32(®s->mode_cfg, SPI_MODE_CH_WIDTH_WORD | SPI_MODE_BUS_WIDTH_WORD); count /= 4; setbits_le32(®s->swap_cfg, SPI_TX_SWAP_EN | SPI_RX_SWAP_EN | SPI_TX_BYTE_SWAP | SPI_RX_BYTE_SWAP | SPI_TX_HWORD_SWAP | SPI_RX_HWORD_SWAP); } else { /* Select byte access and clear the swap configuration */ clrbits_le32(®s->mode_cfg, SPI_MODE_CH_WIDTH_WORD | SPI_MODE_BUS_WIDTH_WORD); writel(0, ®s->swap_cfg); } assert(count && count < (1 << 16)); setbits_le32(®s->ch_cfg, SPI_CH_RST); clrbits_le32(®s->ch_cfg, SPI_CH_RST); writel(count | SPI_PACKET_CNT_EN, ®s->pkt_cnt); } static int spi_rx_tx(struct exynos_spi_priv *priv, int todo, void **dinp, void const **doutp, unsigned long flags) { struct exynos_spi *regs = priv->regs; uchar *rxp = *dinp; const uchar *txp = *doutp; int rx_lvl, tx_lvl; uint out_bytes, in_bytes; int toread; unsigned start = get_timer(0); int stopping; int step; out_bytes = in_bytes = todo; stopping = priv->skip_preamble && (flags & SPI_XFER_END) && !(priv->mode & SPI_SLAVE); /* * Try to transfer words if we can. This helps read performance at * SPI clock speeds above about 20MHz. */ step = 1; if (!((todo | (uintptr_t)rxp | (uintptr_t)txp) & 3) && !priv->skip_preamble) step = 4; /* * If there's something to send, do a software reset and set a * transaction size. */ spi_request_bytes(regs, todo, step); /* * Bytes are transmitted/received in pairs. Wait to receive all the * data because then transmission will be done as well. */ toread = in_bytes; while (in_bytes) { int temp; /* Keep the fifos full/empty. */ spi_get_fifo_levels(regs, &rx_lvl, &tx_lvl); /* * Don't completely fill the txfifo, since we don't want our * rxfifo to overflow, and it may already contain data. */ while (tx_lvl < priv->fifo_size/2 && out_bytes) { if (!txp) temp = -1; else if (step == 4) temp = *(uint32_t *)txp; else temp = *txp; writel(temp, ®s->tx_data); out_bytes -= step; if (txp) txp += step; tx_lvl += step; } if (rx_lvl >= step) { while (rx_lvl >= step) { temp = readl(®s->rx_data); if (priv->skip_preamble) { if (temp == SPI_PREAMBLE_END_BYTE) { priv->skip_preamble = 0; stopping = 0; } } else { if (rxp || stopping) { if (step == 4) *(uint32_t *)rxp = temp; else *rxp = temp; rxp += step; } in_bytes -= step; } toread -= step; rx_lvl -= step; } } else if (!toread) { /* * We have run out of input data, but haven't read * enough bytes after the preamble yet. Read some more, * and make sure that we transmit dummy bytes too, to * keep things going. */ assert(!out_bytes); out_bytes = in_bytes; toread = in_bytes; txp = NULL; spi_request_bytes(regs, toread, step); } if (priv->skip_preamble && get_timer(start) > 100) { debug("SPI timeout: in_bytes=%d, out_bytes=%d, ", in_bytes, out_bytes); return -ETIMEDOUT; } } *dinp = rxp; *doutp = txp; return 0; } /** * Activate the CS by driving it LOW * * @param slave Pointer to spi_slave to which controller has to * communicate with */ static void spi_cs_activate(struct udevice *dev) { struct udevice *bus = dev->parent; struct exynos_spi_platdata *pdata = dev_get_platdata(bus); struct exynos_spi_priv *priv = dev_get_priv(bus); /* If it's too soon to do another transaction, wait */ if (pdata->deactivate_delay_us && priv->last_transaction_us) { ulong delay_us; /* The delay completed so far */ delay_us = timer_get_us() - priv->last_transaction_us; if (delay_us < pdata->deactivate_delay_us) udelay(pdata->deactivate_delay_us - delay_us); } clrbits_le32(&priv->regs->cs_reg, SPI_SLAVE_SIG_INACT); debug("Activate CS, bus '%s'\n", bus->name); priv->skip_preamble = priv->mode & SPI_PREAMBLE; } /** * Deactivate the CS by driving it HIGH * * @param slave Pointer to spi_slave to which controller has to * communicate with */ static void spi_cs_deactivate(struct udevice *dev) { struct udevice *bus = dev->parent; struct exynos_spi_platdata *pdata = dev_get_platdata(bus); struct exynos_spi_priv *priv = dev_get_priv(bus); setbits_le32(&priv->regs->cs_reg, SPI_SLAVE_SIG_INACT); /* Remember time of this transaction so we can honour the bus delay */ if (pdata->deactivate_delay_us) priv->last_transaction_us = timer_get_us(); debug("Deactivate CS, bus '%s'\n", bus->name); } static int exynos_spi_ofdata_to_platdata(struct udevice *bus) { struct exynos_spi_platdata *plat = bus->platdata; const void *blob = gd->fdt_blob; int node = dev_of_offset(bus); plat->regs = dev_read_addr_ptr(bus); plat->periph_id = pinmux_decode_periph_id(blob, node); if (plat->periph_id == PERIPH_ID_NONE) { debug("%s: Invalid peripheral ID %d\n", __func__, plat->periph_id); return -FDT_ERR_NOTFOUND; } /* Use 500KHz as a suitable default */ plat->frequency = fdtdec_get_int(blob, node, "spi-max-frequency", 500000); plat->deactivate_delay_us = fdtdec_get_int(blob, node, "spi-deactivate-delay", 0); debug("%s: regs=%p, periph_id=%d, max-frequency=%d, deactivate_delay=%d\n", __func__, plat->regs, plat->periph_id, plat->frequency, plat->deactivate_delay_us); return 0; } static int exynos_spi_probe(struct udevice *bus) { struct exynos_spi_platdata *plat = dev_get_platdata(bus); struct exynos_spi_priv *priv = dev_get_priv(bus); priv->regs = plat->regs; if (plat->periph_id == PERIPH_ID_SPI1 || plat->periph_id == PERIPH_ID_SPI2) priv->fifo_size = 64; else priv->fifo_size = 256; priv->skip_preamble = 0; priv->last_transaction_us = timer_get_us(); priv->freq = plat->frequency; priv->periph_id = plat->periph_id; return 0; } static int exynos_spi_claim_bus(struct udevice *dev) { struct udevice *bus = dev->parent; struct exynos_spi_priv *priv = dev_get_priv(bus); exynos_pinmux_config(priv->periph_id, PINMUX_FLAG_NONE); spi_flush_fifo(priv->regs); writel(SPI_FB_DELAY_180, &priv->regs->fb_clk); return 0; } static int exynos_spi_release_bus(struct udevice *dev) { struct udevice *bus = dev->parent; struct exynos_spi_priv *priv = dev_get_priv(bus); spi_flush_fifo(priv->regs); return 0; } static int exynos_spi_xfer(struct udevice *dev, unsigned int bitlen, const void *dout, void *din, unsigned long flags) { struct udevice *bus = dev->parent; struct exynos_spi_priv *priv = dev_get_priv(bus); int upto, todo; int bytelen; int ret = 0; /* spi core configured to do 8 bit transfers */ if (bitlen % 8) { debug("Non byte aligned SPI transfer.\n"); return -1; } /* Start the transaction, if necessary. */ if ((flags & SPI_XFER_BEGIN)) spi_cs_activate(dev); /* * Exynos SPI limits each transfer to 65535 transfers. To keep * things simple, allow a maximum of 65532 bytes. We could allow * more in word mode, but the performance difference is small. */ bytelen = bitlen / 8; for (upto = 0; !ret && upto < bytelen; upto += todo) { todo = min(bytelen - upto, (1 << 16) - 4); ret = spi_rx_tx(priv, todo, &din, &dout, flags); if (ret) break; } /* Stop the transaction, if necessary. */ if ((flags & SPI_XFER_END) && !(priv->mode & SPI_SLAVE)) { spi_cs_deactivate(dev); if (priv->skip_preamble) { assert(!priv->skip_preamble); debug("Failed to complete premable transaction\n"); ret = -1; } } return ret; } static int exynos_spi_set_speed(struct udevice *bus, uint speed) { struct exynos_spi_platdata *plat = bus->platdata; struct exynos_spi_priv *priv = dev_get_priv(bus); int ret; if (speed > plat->frequency) speed = plat->frequency; ret = set_spi_clk(priv->periph_id, speed); if (ret) return ret; priv->freq = speed; debug("%s: regs=%p, speed=%d\n", __func__, priv->regs, priv->freq); return 0; } static int exynos_spi_set_mode(struct udevice *bus, uint mode) { struct exynos_spi_priv *priv = dev_get_priv(bus); uint32_t reg; reg = readl(&priv->regs->ch_cfg); reg &= ~(SPI_CH_CPHA_B | SPI_CH_CPOL_L); if (mode & SPI_CPHA) reg |= SPI_CH_CPHA_B; if (mode & SPI_CPOL) reg |= SPI_CH_CPOL_L; writel(reg, &priv->regs->ch_cfg); priv->mode = mode; debug("%s: regs=%p, mode=%d\n", __func__, priv->regs, priv->mode); return 0; } static const struct dm_spi_ops exynos_spi_ops = { .claim_bus = exynos_spi_claim_bus, .release_bus = exynos_spi_release_bus, .xfer = exynos_spi_xfer, .set_speed = exynos_spi_set_speed, .set_mode = exynos_spi_set_mode, /* * cs_info is not needed, since we require all chip selects to be * in the device tree explicitly */ }; static const struct udevice_id exynos_spi_ids[] = { { .compatible = "samsung,exynos-spi" }, { } }; U_BOOT_DRIVER(exynos_spi) = { .name = "exynos_spi", .id = UCLASS_SPI, .of_match = exynos_spi_ids, .ops = &exynos_spi_ops, .ofdata_to_platdata = exynos_spi_ofdata_to_platdata, .platdata_auto_alloc_size = sizeof(struct exynos_spi_platdata), .priv_auto_alloc_size = sizeof(struct exynos_spi_priv), .probe = exynos_spi_probe, };