// SPDX-License-Identifier: GPL-2.0+ /* * eSPI controller driver. * * Copyright 2010-2011 Freescale Semiconductor, Inc. * Copyright 2020 NXP * Author: Mingkai Hu (Mingkai.hu@freescale.com) * Chuanhua Han (chuanhua.han@nxp.com) */ #include <common.h> #include <log.h> #include <linux/bitops.h> #include <linux/delay.h> #include <malloc.h> #include <spi.h> #include <asm/immap_85xx.h> #include <dm.h> #include <errno.h> #include <fdtdec.h> #include <dm/platform_data/fsl_espi.h> struct fsl_spi_slave { struct spi_slave slave; ccsr_espi_t *espi; u32 speed_hz; unsigned int cs; unsigned int div16; unsigned int pm; int tx_timeout; unsigned int mode; size_t cmd_len; u8 cmd_buf[16]; size_t data_len; unsigned int max_transfer_length; }; #define to_fsl_spi_slave(s) container_of(s, struct fsl_spi_slave, slave) #define US_PER_SECOND 1000000UL /* default SCK frequency, unit: HZ */ #define FSL_ESPI_DEFAULT_SCK_FREQ 10000000 #define ESPI_MAX_CS_NUM 4 #define ESPI_FIFO_WIDTH_BIT 32 #define ESPI_EV_RNE BIT(9) #define ESPI_EV_TNF BIT(8) #define ESPI_EV_DON BIT(14) #define ESPI_EV_TXE BIT(15) #define ESPI_EV_RFCNT_SHIFT 24 #define ESPI_EV_RFCNT_MASK (0x3f << ESPI_EV_RFCNT_SHIFT) #define ESPI_MODE_EN BIT(31) /* Enable interface */ #define ESPI_MODE_TXTHR(x) ((x) << 8) /* Tx FIFO threshold */ #define ESPI_MODE_RXTHR(x) ((x) << 0) /* Rx FIFO threshold */ #define ESPI_COM_CS(x) ((x) << 30) #define ESPI_COM_TRANLEN(x) ((x) << 0) #define ESPI_CSMODE_CI_INACTIVEHIGH BIT(31) #define ESPI_CSMODE_CP_BEGIN_EDGCLK BIT(30) #define ESPI_CSMODE_REV_MSB_FIRST BIT(29) #define ESPI_CSMODE_DIV16 BIT(28) #define ESPI_CSMODE_PM(x) ((x) << 24) #define ESPI_CSMODE_POL_ASSERTED_LOW BIT(20) #define ESPI_CSMODE_LEN(x) ((x) << 16) #define ESPI_CSMODE_CSBEF(x) ((x) << 12) #define ESPI_CSMODE_CSAFT(x) ((x) << 8) #define ESPI_CSMODE_CSCG(x) ((x) << 3) #define ESPI_CSMODE_INIT_VAL (ESPI_CSMODE_POL_ASSERTED_LOW | \ ESPI_CSMODE_CSBEF(0) | ESPI_CSMODE_CSAFT(0) | \ ESPI_CSMODE_CSCG(1)) #define ESPI_MAX_DATA_TRANSFER_LEN 0xFFF0 void fsl_spi_cs_activate(struct spi_slave *slave, uint cs) { struct fsl_spi_slave *fsl = to_fsl_spi_slave(slave); ccsr_espi_t *espi = fsl->espi; unsigned int com = 0; size_t data_len = fsl->data_len; com &= ~(ESPI_COM_CS(0x3) | ESPI_COM_TRANLEN(0xFFFF)); com |= ESPI_COM_CS(cs); com |= ESPI_COM_TRANLEN(data_len - 1); out_be32(&espi->com, com); } void fsl_spi_cs_deactivate(struct spi_slave *slave) { struct fsl_spi_slave *fsl = to_fsl_spi_slave(slave); ccsr_espi_t *espi = fsl->espi; /* clear the RXCNT and TXCNT */ out_be32(&espi->mode, in_be32(&espi->mode) & (~ESPI_MODE_EN)); out_be32(&espi->mode, in_be32(&espi->mode) | ESPI_MODE_EN); } static void fsl_espi_tx(struct fsl_spi_slave *fsl, const void *dout) { ccsr_espi_t *espi = fsl->espi; unsigned int tmpdout, event; int tmp_tx_timeout; if (dout) tmpdout = *(u32 *)dout; else tmpdout = 0; out_be32(&espi->tx, tmpdout); out_be32(&espi->event, ESPI_EV_TNF); debug("***spi_xfer:...%08x written\n", tmpdout); tmp_tx_timeout = fsl->tx_timeout; /* Wait for eSPI transmit to go out */ while (tmp_tx_timeout--) { event = in_be32(&espi->event); if (event & ESPI_EV_DON || event & ESPI_EV_TXE) { out_be32(&espi->event, ESPI_EV_TXE); break; } udelay(1); } if (tmp_tx_timeout < 0) debug("***spi_xfer:...Tx timeout! event = %08x\n", event); } static int fsl_espi_rx(struct fsl_spi_slave *fsl, void *din, unsigned int bytes) { ccsr_espi_t *espi = fsl->espi; unsigned int tmpdin, rx_times; unsigned char *buf, *p_cursor; if (bytes <= 0) return 0; rx_times = DIV_ROUND_UP(bytes, 4); buf = (unsigned char *)malloc(4 * rx_times); if (!buf) { debug("SF: Failed to malloc memory.\n"); return -1; } p_cursor = buf; while (rx_times--) { tmpdin = in_be32(&espi->rx); debug("***spi_xfer:...%08x readed\n", tmpdin); *(u32 *)p_cursor = tmpdin; p_cursor += 4; } if (din) memcpy(din, buf, bytes); free(buf); out_be32(&espi->event, ESPI_EV_RNE); return bytes; } void espi_release_bus(struct fsl_spi_slave *fsl) { /* Disable the SPI hardware */ out_be32(&fsl->espi->mode, in_be32(&fsl->espi->mode) & (~ESPI_MODE_EN)); } int espi_xfer(struct fsl_spi_slave *fsl, uint cs, unsigned int bitlen, const void *data_out, void *data_in, unsigned long flags) { struct spi_slave *slave = &fsl->slave; ccsr_espi_t *espi = fsl->espi; unsigned int event, rx_bytes; const void *dout = NULL; void *din = NULL; int len = 0; int num_blks, num_chunks, max_tran_len, tran_len; int num_bytes; unsigned char *buffer = NULL; size_t buf_len; u8 *cmd_buf = fsl->cmd_buf; size_t cmd_len = fsl->cmd_len; size_t data_len = bitlen / 8; size_t rx_offset = 0; int rf_cnt; max_tran_len = fsl->max_transfer_length; switch (flags) { case SPI_XFER_BEGIN: cmd_len = data_len; fsl->cmd_len = cmd_len; memcpy(cmd_buf, data_out, cmd_len); return 0; case 0: case SPI_XFER_END: if (bitlen == 0) { fsl_spi_cs_deactivate(slave); return 0; } buf_len = 2 * cmd_len + min(data_len, (size_t)max_tran_len); len = cmd_len + data_len; rx_offset = cmd_len; buffer = (unsigned char *)malloc(buf_len); if (!buffer) { debug("SF: Failed to malloc memory.\n"); return 1; } memcpy(buffer, cmd_buf, cmd_len); if (data_in == NULL) memcpy(buffer + cmd_len, data_out, data_len); break; case SPI_XFER_BEGIN | SPI_XFER_END: len = data_len; buffer = (unsigned char *)malloc(len * 2); if (!buffer) { debug("SF: Failed to malloc memory.\n"); return 1; } memcpy(buffer, data_out, len); rx_offset = len; cmd_len = 0; break; } debug("spi_xfer: data_out %08X(%p) data_in %08X(%p) len %u\n", *(uint *)data_out, data_out, *(uint *)data_in, data_in, len); num_chunks = DIV_ROUND_UP(data_len, max_tran_len); while (num_chunks--) { if (data_in) din = buffer + rx_offset; dout = buffer; tran_len = min(data_len, (size_t)max_tran_len); num_blks = DIV_ROUND_UP(tran_len + cmd_len, 4); num_bytes = (tran_len + cmd_len) % 4; fsl->data_len = tran_len + cmd_len; fsl_spi_cs_activate(slave, cs); /* Clear all eSPI events */ out_be32(&espi->event , 0xffffffff); /* handle data in 32-bit chunks */ while (num_blks) { event = in_be32(&espi->event); if (event & ESPI_EV_TNF) { fsl_espi_tx(fsl, dout); /* Set up the next iteration */ if (len > 4) { len -= 4; dout += 4; } } event = in_be32(&espi->event); if (event & ESPI_EV_RNE) { rf_cnt = ((event & ESPI_EV_RFCNT_MASK) >> ESPI_EV_RFCNT_SHIFT); if (rf_cnt >= 4) rx_bytes = 4; else if (num_blks == 1 && rf_cnt == num_bytes) rx_bytes = num_bytes; else continue; if (fsl_espi_rx(fsl, din, rx_bytes) == rx_bytes) { num_blks--; if (din) din = (unsigned char *)din + rx_bytes; } } } if (data_in) { memcpy(data_in, buffer + 2 * cmd_len, tran_len); if (*buffer == 0x0b) { data_in += tran_len; data_len -= tran_len; *(int *)buffer += tran_len; } } fsl_spi_cs_deactivate(slave); } free(buffer); return 0; } void espi_claim_bus(struct fsl_spi_slave *fsl, unsigned int cs) { ccsr_espi_t *espi = fsl->espi; unsigned char pm = fsl->pm; unsigned int mode = fsl->mode; unsigned int div16 = fsl->div16; int i; /* Enable eSPI interface */ out_be32(&espi->mode, ESPI_MODE_RXTHR(3) | ESPI_MODE_TXTHR(4) | ESPI_MODE_EN); out_be32(&espi->event, 0xffffffff); /* Clear all eSPI events */ out_be32(&espi->mask, 0x00000000); /* Mask all eSPI interrupts */ /* Init CS mode interface */ for (i = 0; i < ESPI_MAX_CS_NUM; i++) out_be32(&espi->csmode[i], ESPI_CSMODE_INIT_VAL); out_be32(&espi->csmode[cs], in_be32(&espi->csmode[cs]) & ~(ESPI_CSMODE_PM(0xF) | ESPI_CSMODE_DIV16 | ESPI_CSMODE_CI_INACTIVEHIGH | ESPI_CSMODE_CP_BEGIN_EDGCLK | ESPI_CSMODE_REV_MSB_FIRST | ESPI_CSMODE_LEN(0xF))); /* Set eSPI BRG clock source */ out_be32(&espi->csmode[cs], in_be32(&espi->csmode[cs]) | ESPI_CSMODE_PM(pm) | div16); /* Set eSPI mode */ if (mode & SPI_CPHA) out_be32(&espi->csmode[cs], in_be32(&espi->csmode[cs]) | ESPI_CSMODE_CP_BEGIN_EDGCLK); if (mode & SPI_CPOL) out_be32(&espi->csmode[cs], in_be32(&espi->csmode[cs]) | ESPI_CSMODE_CI_INACTIVEHIGH); /* Character bit order: msb first */ out_be32(&espi->csmode[cs], in_be32(&espi->csmode[cs]) | ESPI_CSMODE_REV_MSB_FIRST); /* Character length in bits, between 0x3~0xf, i.e. 4bits~16bits */ out_be32(&espi->csmode[cs], in_be32(&espi->csmode[cs]) | ESPI_CSMODE_LEN(7)); } void espi_setup_slave(struct fsl_spi_slave *fsl) { unsigned int max_hz; sys_info_t sysinfo; unsigned long spibrg = 0; unsigned long spi_freq = 0; unsigned char pm = 0; max_hz = fsl->speed_hz; get_sys_info(&sysinfo); spibrg = sysinfo.freq_systembus / 2; fsl->div16 = 0; if ((spibrg / max_hz) > 32) { fsl->div16 = ESPI_CSMODE_DIV16; pm = spibrg / (max_hz * 16 * 2); if (pm > 16) { pm = 16; debug("max_hz is too low: %d Hz, %ld Hz is used.\n", max_hz, spibrg / (32 * 16)); } } else { pm = spibrg / (max_hz * 2); } if (pm) pm--; fsl->pm = pm; if (fsl->div16) spi_freq = spibrg / ((pm + 1) * 2 * 16); else spi_freq = spibrg / ((pm + 1) * 2); /* set tx_timeout to 10 times of one espi FIFO entry go out */ fsl->tx_timeout = DIV_ROUND_UP((US_PER_SECOND * ESPI_FIFO_WIDTH_BIT * 10), spi_freq);/* Set eSPI BRG clock source */ } #if !CONFIG_IS_ENABLED(DM_SPI) int spi_cs_is_valid(unsigned int bus, unsigned int cs) { return bus == 0 && cs < ESPI_MAX_CS_NUM; } struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs, unsigned int max_hz, unsigned int mode) { struct fsl_spi_slave *fsl; if (!spi_cs_is_valid(bus, cs)) return NULL; fsl = spi_alloc_slave(struct fsl_spi_slave, bus, cs); if (!fsl) return NULL; fsl->espi = (void *)(CONFIG_SYS_MPC85xx_ESPI_ADDR); fsl->mode = mode; fsl->max_transfer_length = ESPI_MAX_DATA_TRANSFER_LEN; fsl->speed_hz = max_hz; espi_setup_slave(fsl); return &fsl->slave; } void spi_free_slave(struct spi_slave *slave) { struct fsl_spi_slave *fsl = to_fsl_spi_slave(slave); free(fsl); } int spi_claim_bus(struct spi_slave *slave) { struct fsl_spi_slave *fsl = to_fsl_spi_slave(slave); espi_claim_bus(fsl, slave->cs); return 0; } void spi_release_bus(struct spi_slave *slave) { struct fsl_spi_slave *fsl = to_fsl_spi_slave(slave); espi_release_bus(fsl); } int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout, void *din, unsigned long flags) { struct fsl_spi_slave *fsl = (struct fsl_spi_slave *)slave; return espi_xfer(fsl, slave->cs, bitlen, dout, din, flags); } #else static void __espi_set_speed(struct fsl_spi_slave *fsl) { espi_setup_slave(fsl); /* Set eSPI BRG clock source */ out_be32(&fsl->espi->csmode[fsl->cs], in_be32(&fsl->espi->csmode[fsl->cs]) | ESPI_CSMODE_PM(fsl->pm) | fsl->div16); } static void __espi_set_mode(struct fsl_spi_slave *fsl) { /* Set eSPI mode */ if (fsl->mode & SPI_CPHA) out_be32(&fsl->espi->csmode[fsl->cs], in_be32(&fsl->espi->csmode[fsl->cs]) | ESPI_CSMODE_CP_BEGIN_EDGCLK); if (fsl->mode & SPI_CPOL) out_be32(&fsl->espi->csmode[fsl->cs], in_be32(&fsl->espi->csmode[fsl->cs]) | ESPI_CSMODE_CI_INACTIVEHIGH); } static int fsl_espi_claim_bus(struct udevice *dev) { struct udevice *bus = dev->parent; struct fsl_spi_slave *fsl = dev_get_priv(bus); espi_claim_bus(fsl, fsl->cs); return 0; } static int fsl_espi_release_bus(struct udevice *dev) { struct udevice *bus = dev->parent; struct fsl_spi_slave *fsl = dev_get_priv(bus); espi_release_bus(fsl); return 0; } static int fsl_espi_xfer(struct udevice *dev, unsigned int bitlen, const void *dout, void *din, unsigned long flags) { struct udevice *bus = dev->parent; struct fsl_spi_slave *fsl = dev_get_priv(bus); return espi_xfer(fsl, fsl->cs, bitlen, dout, din, flags); } static int fsl_espi_set_speed(struct udevice *bus, uint speed) { struct fsl_spi_slave *fsl = dev_get_priv(bus); debug("%s speed %u\n", __func__, speed); fsl->speed_hz = speed; __espi_set_speed(fsl); return 0; } static int fsl_espi_set_mode(struct udevice *bus, uint mode) { struct fsl_spi_slave *fsl = dev_get_priv(bus); debug("%s mode %u\n", __func__, mode); fsl->mode = mode; __espi_set_mode(fsl); return 0; } static int fsl_espi_child_pre_probe(struct udevice *dev) { struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev); struct udevice *bus = dev->parent; struct fsl_spi_slave *fsl = dev_get_priv(bus); debug("%s cs %u\n", __func__, slave_plat->cs); fsl->cs = slave_plat->cs; return 0; } static int fsl_espi_probe(struct udevice *bus) { struct fsl_espi_platdata *plat = dev_get_platdata(bus); struct fsl_spi_slave *fsl = dev_get_priv(bus); fsl->espi = (ccsr_espi_t *)((u32)plat->regs_addr); fsl->max_transfer_length = ESPI_MAX_DATA_TRANSFER_LEN; fsl->speed_hz = plat->speed_hz; debug("%s probe done, bus-num %d.\n", bus->name, bus->seq); return 0; } static const struct dm_spi_ops fsl_espi_ops = { .claim_bus = fsl_espi_claim_bus, .release_bus = fsl_espi_release_bus, .xfer = fsl_espi_xfer, .set_speed = fsl_espi_set_speed, .set_mode = fsl_espi_set_mode, }; #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA) static int fsl_espi_ofdata_to_platdata(struct udevice *bus) { fdt_addr_t addr; struct fsl_espi_platdata *plat = bus->platdata; const void *blob = gd->fdt_blob; int node = dev_of_offset(bus); addr = dev_read_addr(bus); if (addr == FDT_ADDR_T_NONE) return -EINVAL; plat->regs_addr = lower_32_bits(addr); plat->speed_hz = fdtdec_get_int(blob, node, "spi-max-frequency", FSL_ESPI_DEFAULT_SCK_FREQ); debug("ESPI: regs=%p, max-frequency=%d\n", &plat->regs_addr, plat->speed_hz); return 0; } static const struct udevice_id fsl_espi_ids[] = { { .compatible = "fsl,mpc8536-espi" }, { } }; #endif U_BOOT_DRIVER(fsl_espi) = { .name = "fsl_espi", .id = UCLASS_SPI, #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA) .of_match = fsl_espi_ids, .ofdata_to_platdata = fsl_espi_ofdata_to_platdata, #endif .ops = &fsl_espi_ops, .platdata_auto_alloc_size = sizeof(struct fsl_espi_platdata), .priv_auto_alloc_size = sizeof(struct fsl_spi_slave), .probe = fsl_espi_probe, .child_pre_probe = fsl_espi_child_pre_probe, }; #endif